用户名: 密码: 验证码:
酒泉东盆地盐池地区地下水咸化成因及古气候特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酒泉东盆地盐池地区是甘肃省最大的芒硝、原盐富集地和酒泉东盆地地下水主要分布区。因此,研究盐池地区地下水咸化成因及规律,不仅对于查明干旱区地下水的水盐迁移、富集和成矿具有重要意义,而且对于西北内陆干旱区地下水合理开发利用和盐矿保护也具有重要的指导意义。
     本项研究的目标是揭示酒泉东盆地盐池地区地下水咸化成因和演变特征,为地下水可持续利用和盐矿合理开发提供科学依据。为此,以酒泉东盆地为研究区,盐池地区为重点研究区,侧重开展下列研究内容:(1)水循环系统中不同水体水化学和环境同位素特征;(2)地下水咸化的水盐变化规律及来源;(3)地下水咸化过程中古气候特征。
     本文以水循环系统理论为指导,以环境同位素和水化学信息作为研究基础,综合应用水文地质学、水文地球化学、同位素水文学以及相关的数学理论,采用定性判断和定量分析相结合的方法,全面调查研究区的自然背景条件,综合研究了不同水体的水化学和同位素特征,通过同位素和水化学信息的示踪功能和放射性测年技术,阐明地下水咸化演变规律及来源。在上述研究基础上,结合孢粉和氯同位素的古气候指标,探讨了1.6万年以来研究区古气候及环境变化。通过上述研究,得出如下新认识和进展:
     1.地下水咸化发生在地史演进中并与现代水循环有联系
     大量地下水化学和同位素信息表明,酒泉东盆地盐池地区地下水咸化发生在末次冰期以来地史演进中,与现代水循环有密切的联系。地下水咸化的水盐来源主要有:①大气降水入渗补给;②祁连山山区河水渗漏补给;③深层地下水顶托越流补给。
     2.阐明地下水咸化成因
     盐池是酒泉尔盆地流域尺度水循环过程中水盐滞留聚集区,具有充足的水盐补给条件、汇水积盐的地质和地貌条件(盐池凹地及北山阻隔)、有利水盐汇聚的水循环条件(径流停滞、垂直蒸发)和蒸水浓盐的气候条件(长期干旱,蒸发强烈)。这些条件都有利于地下水的盐分积聚。
     3.揭示了1.6万年以来古气候演变特征
     1.6万年以来盐池地区经历了冷干-暖湿-干旱的演变过程,总的变化趋势是由草原景观向干旱方向演变,湖泊趋于干涸,湖水咸化,木本植物和蕨类植物基本消失,耐旱植被逐渐为主,蒿、藜为主的干旱荒漠草原已成为现代景观,地下水咸化成为现状。
     4.提出地下水资源合理利用方案
     根据盐池地区地下水的水盐迁移和分布规律,将地下水资源利用分为三个区:山前地下水涵养区、中部绿洲地下水开采区、北部盐矿地下水保护控采区。开采-恢复相结合的地下水利用方案,即保证盐矿矿产产量,又有利于水资源合理利用。
Yanchi area of Jiuquan East Basin in Gansu Province is the largest enrichment area in mirabilite and raw salt, it is also the main groundwater distributed area in Jiuquan East Basin. Therefore, it is very useful to make research on the cause and law of groundwater salinization. On one hand, it is helpful to make clear of water and salt migration, enrichment and mineralization of salt in arid area groundwater system. On the other hand, it is significant to reasonable development and utilization of salt mines in northwest inland.
     In order to provide logical reasons for sustainable utilization of groundwater and rational exploration of salt mines, the goal of this study is to reveal the cause and evolution characteristics of groundwater salinization in Yanchi area of Jiuquan East Basin. Therefore, Jiuquan East Basin as the study area and YanChi as the main study area, the study focused on the following four main parts: (1) water chemistry and environmental isotope characteristics of different water body in water cycle systems; (2) changing law and source of groundwater salinization; (3) paleoclimate significance during the process of groundwater salinization.
     Based on water cycle system theory , environmental isotope and water chemistry information, this study comprehensively used hydrogeology, hydro-geochemistry, isotope hydrology, and related mathematical theory, it also combined qualitative estimation and quantitative analysis. Using these methods, this study maked clear of natural background condition of the study area, and analyzed water chemistry and environmental isotope characteristics of different water bodies by the technologies of tracing function and radioactive dating techniques of isotope and water chemistry information, and illustrated evolution characteristics and source of groundwater salinization. Based on the above analyses and combining paleoclimate index of pollen and chlorine isotope, this dissertation discussed paleoclimate and environment change in the last 16 thousand years. Finally, the peper gained following understanding.
     1. Relationship between groundwater salinization evolution history and modern water cycle
     A lot of groundwater chemistry and isotopic information showed that groundwater salinization of Yanchi area of Jiuquan East Basin happened in aBP history, and there is a close relationship between groundwater salinization and modern water cycle. Major source of groundwater salinization is from precipitation infiltration recharge, Qilian Mountain area river leakage, and deep groundwater leaky.
     2. Cause of groundwater salinization
     Yanchi is the water and salt enrichment area in water cycle system of Jiuquan East Basin, because there are several advantages, such as adequate supplies of water and salt, geological and geomorphological condition of gathering water and salt (Yanchi valley and Beishan obstruct), suitable water cycle condition of accumulating water and salt (stagnant runoff and vertical evaporation), and good climate condition of concentrating salt (perennial drought and strong evaporation intensity). All the conditions are conductive to groundwater salinization.
     3. Paleoclimate evolution characteristics in the last 1.6 million years
     There was a climate evolution process from cold-drying to wetness to drying in Yanchi area in the last 1.6 million years. During the process, grassland was becoming drought, lakes were drying, water salinization was starting, and woody plants and pteridophyte were almost disappeared. Instead, drought-resistant plants were becoming more, so fleabane and goosefoot were becoming modern landscape and groundwater salinization was finally formed.
     4. Project of logical utilization of groundwater
     According to water and salt migration and distributing characteristics, this study divided the whole study area into three groundwater utilization parts. They were piedmont groundwater conservation area, middle oasis exploration area and northern salt mines groundwater protected-mining area. Considering both exploration and recovering, the utilization programs of groundwater can not only ensure salt mines mineral production, but also guarantee rational utilization of water resources.
引文
1.朱昶明,孟昭月等,甘肃省高台县盐池芒硝矿床补充勘探报告,冶金部兰州有色冶金设计研究院,甘肃省冶金地质勘探四队,1981
    2.陈理,徐威等,甘肃省高台县盐池乡盐矿供水水文地质简报,甘肃省地矿局第二水文地质工程地质队,1989
    3.高台罗城盐池水文地质报告,甘肃省地质局祁连山地质队,1960
    4.谭增任,吴宏等,甘肃省高台县盐池硝盐矿床东矿段详查报告,地质矿产部兰州水文地质了程地质中心,1991
    5.赵永成,安瑞清等,中华人民共和国区域水文地质普查报告(高台幅J-47-4),甘肃省地质局第二水文地质队,1983
    6.谭增仁,试论民勤盆地地下水水质的层状分异作用,中国地质学会首届全国水文地球化学讨论会论文选编,地质出版社,1983
    7.刘华训,中国荒漠地带的植被[A].赵松乔主编.中国干旱地区自然地理[M].北京:科学出版社,1985.922124
    8.吴征镒,中国植被[M].北京:科学出版社,1980
    9.王弭力,刘成林等,罗布泊盐湖钾盐资源.北京:中国地质出版社,2001,125-159
    10.王恒纯,同位素水文地质概论,北京:地质出版社,1991
    11.张人权等编译,同位素方法在水文地质学中的应用,北京:地质出版社,1983
    12.张之淦,环境同位素水文地质概论,地质矿产部水文地质工程地质研究所,1985
    13.刘存富,法国同位素水文地质简介;刘存富,虞哲荣,水文地质学中常用环境同位素概述,地质矿产部水文地质工程地质研究所,1985
    14.文冬光,沈照理,钟佐燊,水-盐相互作用的地球化学模拟理论及应用,北京:中国地质大学出版社,1998.
    15.张光辉,刘少玉,谢悦波,西北内陆黑河流域水循环与地下水形成演化模式,北京:地质出版社,2005
    16.曹兴山,甘肃第四纪气候期划分[J].干旱区研究,1996,13(3):28-40
    17.徐恒力,周爱国,肖国强等,西北地区干旱化趋势及水盐失衡的生态环境效应[J].地球科学,2000,25(5):499-504
    18.张光辉,聂振龙,王金哲.黑河流域水资源对下游生态环境变化的影响阈[J].地质通报,2006,25(1-2):244-250
    19.张光辉,聂振龙,张翠云,黑河流域地下水同位素特征及对古气候变化响应[J].地球学报,2006,27(4):341-348
    20.关秉钧等.用环境同位素氚、碳-14、碳-13探讨北京地区地下水运动规律.水文地质技术方法,第12辑,1985,1-6
    21.关秉钧.我国大气降水中氚的数值推算.水文地质工程地质,1986,(4):1-6
    22.李文鹏,郝爱兵.中国西北内陆干旱盆地地下水形成演化模式及其意义.水文地质工程地质.1999,(4):28-32
    23.刘存富.地下水~(14)C年龄校正方法-以河北平原为例.水文地质工程地质,1990,(3):4-8
    24.周炼,刘存富,王佩仪.河北平原第四系咸水同位素组成[J].水文地质工程地质,1998,(3):4-8
    25.张之淦等.河北平原第四系地下水年龄、水流系统及咸水成因初探-石家庄至渤海湾同位素水文地质剖面研究.水文地质工程地质,1987,(4):1-6
    26.童国榜,石英,范淑贤,张俊牌,等.银川盆地晚第四纪环境特征[J].地球科学,1995,20(4):421-425
    27.杨振京,刘志明,张俊牌,等.银川盆地中更新世以来的孢粉记录及古气候研究[J].海洋地质与第四纪地质,2001,21(3):43-48
    28.杨振京,徐建明.孢粉-植被-气候关系研究进展,植物生态学报,2002,26(增刊):73-81
    29.潘晓玲,党荣理,伍光和,西北干旱荒漠区植被区系地理与资源利用,北京[M],科学出版社,2001,110-116
    30.童国榜,柯曼红,于淑凤,河北平原第四纪孢粉组合及其地质意义[J],海洋地质与第四纪地质,1983,3(4):912104
    31.田明中,曹伯勋,湖北黄岗晚更新世孢粉动态组合的统计分析及古气候性质[J],地球科学,1990,15(5):5052513
    32.李文鹏,1990,石羊河流域平原区径流模式,河北地质学院学报,第13卷,第2期
    33.肖应凯,P.V.Shirodkar,刘卫国,等.青海柴达木盆地硼同位素地球化学研究[J].自然科学进展.1999,9(7):612-618
    34.刘卫国,肖应凯,孙大鹏,等.柴达木盆地氯同位素组成特征[J].地球化学.1996,25(3):296-302
    35.肖应凯,刘卫国,周引民,孙大鹏.盐湖卤水及盐类矿物的氯同位素组成[J].科学通报.1996,41(22):2067-2070
    36.肖应凯,刘卫国,张崇耿.盐湖中盐类矿物沉积过程中氯同位素效应的初步研究[J].盐湖研究.1994,2(3):35-40
    37.王庆忠,肖应凯,刘卫国,周引民.第四纪察尔汗地区石盐沉积中的氯同位素组成[J].盐湖研究.1995,3(1):40-44
    38.刘卫国,肖应凯,孙大鹏,等.马海盐湖区卤水和盐类矿物的氯同位特征及意义[J].盐湖研究.1995,3(2):29-33
    39.刘卫国,肖应凯,韩凤清,彭子成.昆特依盐湖氯同位素特征及古气候意义[J].海洋与湖沼.1998,29(4):431-435
    40.肖应凯,魏海珍,尹德忠,盐湖硼氯同位素地球化学研究进展,盐湖研究,2000,Vol 8(1):30-39
    41.肖应凯,刘卫国,张崇耿,盐湖中盐类矿物沉积过程中氯同位素效应的初步研究,盐湖研究,1994,Vol.2 No.3 35-38
    42.韩凤清,刘卫国,稳定氯同位素在地球 研究中的进展,盐湖研究,1996,4(1):46
    43.王佩仪,稳定氯同位素分馏机理及其应用研究,地质科技情报,1993,12(3)
    44.刘卫国,肖应凯,孙大鹏等,氯同位素测定方法及地球化学研究进展,地球科学进展,1998,13(6):547-554
    45.肖应凯,金琳,刘卫国,祁海平,王蕴慧,孙大鹏,大柴达木湖氯同位素组成,科学通报,1994,Vol 39(14):1319-1322
    46.逯海,肖应凯,NO_3~-、SO_4~(2-)对氯同位素测定的干扰及其消除,盐湖研究,2001,Vol 9 NO.2:7-12
    47.肖应凯,石墨的非还原热离子发射特性,质谱学报,1995,Vol 16(1):18-23
    48.KeltsK.湖沼沉积--过去变化的的信息库[J].丁仲礼译.第四纪研究,1992,(2):138-143.
    49.王苏民,余源盛,吴瑞金,等.岱海-湖泊环境与气候变化.合肥:中国科技大学出版社,1990.1-191
    50.安芷生,吴锡浩,卢演俦,等.最近18000年中国古环境变迁.自然科学进展-国家重点实验室通讯(试刊),1990,(2):167-173.
    51.莱尔曼主编.湖泊的化学地质学和物理学[M].王苏民等译.北京:地质出版社,1989
    52.张彭熹,张保珍,杨文博.青海湖冰后期水体环境的演变[J].沉积学报,1998,6(2):1-14.
    53.任国玉.内蒙古湖相沉积14C年代测定中“硬水”影响的发现[J].湖泊科学,1998,10(3):80-82
    54.王保来.土楔和冰楔假形及其古气候意义[J].冰川冻土,1991,13(1):67-75.
    55.李玉成,王苏民,黄耀生.气候环境变化的湖泊沉积学响应[J].地球科学进展,1999.14(4):412-416
    56.王乃昂,王涛,高顺尉,史正涛,胡刚.河西走廊末次冰期芒硝和砂楔与古气候重建[J].地学前缘,2000,(7):59-66
    57.王乃昂,王涛,史正涛,胡刚,高顺尉,河西走廊末次冰期砂楔的发现及其古气候意义,冰川冻土,2001(1):46-49
    58.郑绵平,赵元艺,刘俊英.第四纪盐湖沉积与古气候[J],第四纪研究,1998,(4):297-307
    59.杨小平,近3万年来巴丹吉林沙漠的景观发育与雨量变化[J],科学通报,2000,45(4)::428-434
    60.Abbott M.D.,Lini A.,Bierman p.R.,δ180,D and 3H measurements constrain groundwater recharge patterns in an upland fractured bedrock aquifer,Vermont,USA,Journal of Hydrology,2000,228:101-112
    61.Cerling,T.E.,Solomon,D.K.,Quade,J.,et al.On the isotopic composition of carbon in soil carbon dioxide.Geochimica et Cosmochimica Acta,1991,55:3403-3405
    62.Chen Zongyu,Zhang Guanghui,Nie Zhenlong et.al.Isotopic stratification and its implication in groundwater of Northern China,Journal of China University of Geosciences,2001,12(3):249-257
    63.Clark,I.D.,Fritz,P.,Environmental Isotopes in Hydrogeology,CRC Press LLC,1997
    64.Craig,H.Isotopic variations in meteoric water.Science,1961,133:1702-1702
    65.Dincer T.,Al-Mugrin A.and Zimmermann U.,Study of the infiltration and recharge through the sand dunes in arid zones with special reference to the stable isotopes and thermonuclear tritium. Journal of Hydrology, 1974, 23:259-274
    
    66. Ehhalt, D.H. Vertical profile and transport of HTO in the troposphere. J. Geophys. Res., 1971, 76:75-84
    67. Eriksson, E. Major pulses of tritium in the atmosphere. Tellus, 1966, 17:118-130
    68. Ferronsky, V.I. and Polyakoc. Environmental isotopes in the hydrosphere. Ney York: Wiley and stone, 1982.
    69. Fontes, J.-Ch., Garnier, J.M. Determination of intial 14C activity of total dissolved C: a review of the existing models and a new approach. Water Resources Research, 1979, 12:399-413
    70. Fritz, P., Cherry, J., Weyer, K.U. and Sklash, M. Storm runoff analyses using environmental isotopes and major ions. In: Interpretation of environmental Isotope and Hydrochemical Data in Groundwater Hydrology 1975, Workshop Proceedings, IAEA, Vienna, 1976,111-130
    71. Gonfiantini, R. Carbon isotope exchange in Katst groundwater. In: Karst hydrogeology and karst environment protection., proceedings. IAHS-AISH Publication. 1988, 176:832-837
    72. Harvey, J.W., Krupa, S.L., Gefvert, C.J., et al. Interaction between ground water and surface water in the Northern Everglades and relation to water budgets and mercury cycling: study methods and appendixes. USGS Open-File Report 00-168, Reston, Virginia, 2000a
    73. Harvey, J.W., Jackson, J.M., Mooney, R.H., et al. Interaction between ground water and surface water in Taylor Slough and Vicinity, Everglades National Park, South Florida: study methods and appendixes. USGS Open-File Report 00-483, Reston, Virginia, 2000b
    74. IAEA, Manual on mathematical models in isotope hydrogeology, IAEA-TECDOC-910, 1996, Austria
    75. IAEA, Isotope based assessment of groundwater renewal in water scarce regions, IAEA-TECD OC-1246, 2001b, Austria
    76. IAEA, Use of isotopes for analyses of flow and transport dynamics in groundwater systems, IAEA, 2002a, Ausria
    77. Katz, B.G., Coplen, T.B., Bullen, T.D. and Dawis, T.H., Use of chemical and isotopic tracers and geochemical modeling to characterize the interactiongs between ground water and surface water in mantled karst. Ground Water, 1997, 35(6): 1014-1028
    78. Kaufman, S. and Libby, W.F. The natural distribution of tritium. Physical Review, 1954, 93:1337-1344
    79. Leduc, C., Favreau, G., Marlin, C., Drag, M. Comparison of recharge estimates for the two largest aquifers in Niger, based on hydrodynamic and isotopic data, IAHS Publ. 2000,262:391-399
    80. Le Gal La Salle, C, Marlin, C, Leduc, C, et. al., Renewal rate estimation of groundwater based on radioactive tracers (~3H,~(14)C) in an unconfined aquifer in a semi-arid area, Iullemeden Basin, Niger. Journal of Hydrology, 2001, 254:145-156
    81. Leontiadis, I.L., and Nikolaou, E., Environmental isotopes in determining groundwater flow systems, northern part of Epirus, Greece. Hydrogeology Journal, 1999, 7:219-226
    82. Levin, I., Graul, R. and Trivett, N.B.A. Long term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus, 1995, 47B:23-34
    83. Maloszewski, P. and Zuber, A. Lumped parameter models for the interpretation of environmental tracer data. In: Manual on Mathematical Models in Isotope Hydrogeology, IAEA-TECDOD -910, IAEA, Vienna, 1996, 9-58
    84. Mook, W.G. On the reconstruction of the initial 14C content of ground water from chemical and isotopic com- position, In: Proceedings of the VII International Conference on 14C. Lower Hutt, New Zealand, 1972, 18-25
    85.Mook, W.G., Bommerson, J.C. and Staverman, W.H. Carbon isotope fraction between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 1974, 22:169-176
    86. Mook, K.G, The dissolution-exchange model for dating groundwater with C-14. In: Interpretation of Enviro- nmental and Hydrchemical Data in Groundwater Hydrology. IAEA,Vienna, 1976, 212-225
    87. Mook, W.G., Environmental isotopes in the hydrological cycle principles and applications. UNESCO/IAEA Series, 2000a, Vienna/Paris
    88. Perkings, S.P., Koussis, A.D., Stream-aquifer interaction model with diffusive wave routing. Journal of Hydrology Engineering, American Society of Civil Engineers, 1996,122(4):210-218
    89. Perkings, S.P., Sophocleous, M.A., Development of a comprehensive watershed model applied to study stream yield under drought conditions. Ground Water, 1999, 37(3):418-216
    90. Phillips F M, Peeters L A, Tansey M K, and Davis S N, Paleoclimatic inferences from an isotopic investiga- tion of groundwater in the Central San Juan Basin, New Mexico. Quaternary Research, 1986,26:179-193
    91. Phillips, F.M., The use of isotopes and environmental tracers in subsurface hydrology. Rev. Geophys. Supp., 1995, 1029-1033
    92. Tamers, M.A. Validity of radiocarbon dates on groundwater. Geophys. Surv, 1975, 2:217-239
    93. Vogel, J.C. Carbon-14 dating of groundwater. In: Isotope Hydrology, IAEA, Vienna, 1970, 225-239
    94. Vogel, J.C. 1993. Variability of carbon isotope fractionation during photosynthesis. In: J.R. Ehleringer, A.E. Hall and G.D. Farquhar (Eds.) Stable Isotopes and Plant Carbon-Water Relations, Academic Press, San Diego, CA: 29-38
    95. Y.K.Xiao,D.P.Sun,Y.H.Wang,et al.Boron isotopic compositions of brine, sediments and source water in
    Da Qadam Lake,Qinghai,China[J].Geochim.et Cosmochim.Acta, 1992,56:1561-1568
    96. G.H.Sw ihart, E, H.McBay, D.H.Smith, and J.W.Siefke. Aboron isotopic study of a mine ralogically zoned lacustrine bo-rate deposit: the K ramer deposit, California, U.S.A[J].Chem. Geol.1996, 127: 241-250
    97. Y.K.Xioa and C.G.Zhang.High precision isotopic measurement of chlorine by the rmalionization mass spectrum etry of the Cs_2Cl~+ ion[J].Int.J.Mass Spectrom.InoProc.l992,116:183-192.
    98. A.J.Magenheim,A.J.Spivack,C.Volpe,etal.Precise determination of stable chlorine isotopic ratios in low-concentra-tion natural samples[J].Geochim.etCosmochim.Acta, 1994,58:3117-3121
    99. B.Ransom,A.J.Spivack,M.Kastner.Stable CI isotopes in subduction-Zone pore waters:Im placations for fluid-rock re-actions and the cycling of chliorine[J].Geology.1995,23:716-718
    
    100. C.Volpe and A.J.Spivack. Stable chlorine isotopic composition of marine aerosol particles in the western A tlantic Ocean[J] .Geoph.Resa.Lett. 1994,21:1161 -1164
    94. H.G.M.Eggenkam p,M.E.L.Kohnen and R.Kreulen. Analytical Procedures forδ~(37)Cl measurements. in H.G.M. Eggenkamp.δ~(37)Cl; the geochem is try of chlorine isotopes. Ph.D.Thesis[J].Utrecht.G eol.utrai. 1994,116:13-21
    101 G.H.Swihart, B.P.Moore, and E.L.Callis. Boron isotopic composition of marine and non-marine evaporite borates[J].Geochim.et Cosmochim.Acta, 1986,50:53
    
    102. L.Ramakumar, A.R.Parab, P.S.Khodade, et al. Determination of isotopic composition of boron[J]. J.Radioanal. Nu-cl.Chem. 1985,94:1297-1302
    
    103. AJ.Spivack and J.K.Edmond. Determination of boron isotope ratios by thermal ionization mass spectrometry of thedice-sium metaborate cation[J].Anal.Chem. 1986,58:31
    104. Y.K.Xiao,E.S.Beary and J.D.Fassett. An improved method for the high-precision isotopic m easy rement of boron by therm al ionization mass spectrometry[J].Int.J.Mass Spectrom. IonProc. 1988, 85: 203-313
    105. T.Ishikawa, and Nakamura. Boron isotop esystem atics of marine sediments[J]. Earth and Plan.SciLett. 1993,117:567-589
    106. S.Barth. Boron isotope variations in nature: a synthesis[J].Geol.Rundsch. 1993,82:640-651
    
    107. A.Vengosh, A.R.Chivas, A.Starinsky, et al. Chemical and boron isotope compositions of non-marine brines fron the Qaidam Basin, Qinghai,China[J].Chemical Geology.1995.120:135-154
    108. E.J.Catanzaro, C.E.Champion, E.L.Darner,et al. Natl.BurStand[M]. Special Publication. 1970.260-17
    109. A.Vengosh, A.Rchivas and M.T.Mc Culoch. Direct determ ination of boronand chlorine isotopic compositions in geological material ls by negative thermal ionization mass spectrometry [J]. Chem. Geol. 1989,79:333-343
    110. Y.K.Xiao, Y.M.Zhou and W.G.Liu.Precise measurem ent of chlorine isotopes based on Cs_2Cl~+ by therm al ionization mass spectrometry[J].Anal.Lett.1995,28(7):1295-1304
    111. A.Long,C.J.Easloe,R.S.Kaufmann,et al. High precis ion measurement of chlorine stable isotope ratios [J] .Geochim.etCosmochim. Acta, 1993,57:2907-2912
    112. H.G.M.Eggenkamp,R.Kreulen and A.F.Koster VAN Groos. Chlorine stable isotope fractionation in evaporates [J].Geochim.etCosmochim.Acta, 1995,59:5169-5175.
    113. W.R.Shields, T.J.Murphy, E.L.Garner and V.H.Dibeler. Absolute isotopic abundance ratios and the atom ic weitht of chlorine[J].J.Am.Chem.Soc.1962,84:1519-1522
    114. R.Kaufmann, A.Long, H.W.Bentley and S.N.Davis. Natural chlorine isotope variations [J]. Nature. 1984, 309:338-340
    115. Y.K.Xiao, Y.M.Zhou, W.G.Liu. Asecondary isotopic standard material of chlorine from seawater[J]. Int. J.MassSpectrom.IonProc.1999(in review)
    116. H.P.Schwarcz, E.K.Agyei and C.C.McMullen. Boron isotopic fractionation during clay adsorption from sea-water[J].EarthPlanSci.Lett. 1969,6:1 -5
    117. M.Nomura, T.Kanzak, T.Ozawa, et al. Boron isotopic composition of fumarolic condensates from some volcanoes in Japanese island arcs[J].Geochim.et Cosmochim.Acta, 1982,46:2403-2406
    118. A.J.Spivack, and J.M.Edmond. Boron isotope exchange between seawater and the oceanic crust[J]. Geochim.et Cos-mochim.Acta, 1987,51:1033-1043
    119. S.Barth. Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization mass spectrometry[J].Chem.Geol.1997,143:255-261
    120. N.H.Hemming and G.N.Hanson. A procedure for the isotopic analysis of boron by negative thermal ionization mass spec-trometry[J].Chem.Geol.1994,114:147-156
    121. A.Vengosh,Y, Kolodny, AStarisky, et al. Copricipitation and isotopic fractionation of boron in modern biogenic carbon-ates[J] .Geochim.etCosmochim. Acta, 1991,55:2901 -2910
    122. A.Vengosh, A.R.Chivas, M.T.McCulloch, et al. Boron isotope geochemistry of Australia salt lakes[J]. Geochim, et Cosmochim.Acta, 1991,55:2591-2606
    123. Urs.S.Klotzli. Negative thermal ionization mass spectrometry: a new approach to boron isotope geochemistry[J] .Chem.Geol. 1992,101:111 -122
    124. H.Kakihana,K.Kotaka, S.Nomura, M.Okamoto. Fundamental studies on the ionexchange separation of boron isotopes[J].Bull.Chem.Soc.Japan.1977,51:158-163
    125. A.Vengosh, A.Starinsky, Y.Kolodny and A.R.Chivas. Boron isotope geochemistry as a tracer for the evolution of brine and associated hot spring form the Dead Sea, Israel [J]. Geochim. Et Cosmochim. Acta, 1991,55:1689-1695
    126. L.Wang and Y.K.Xiao. The effect of pH and temperature of brine on isotopic fractionation of boron between salt lake brine and sediment[J].Chem.Geol.1999(inreview)
    127. R.E.Bassett. Acritical evaluation of the available measurements for the stable isotopes of boron[J]. Applied Geochem-istry. 1990,5:541 -554
    128. M.R.Palmer and C.Helvaci. The boron isotope geochemistry of the Kirkaborate deposit, western Turkey[J].Geochim.et Cosmochim.Acta, 1995,59:3599-3605
    129. T.Oi, M.Nomura, M.Musashi, et al. Boron isotopic composition of some boron minerals[J].Geochim, et Cosmochim.Acta,53:3189-3195
    130. Y.K.Xiao, W.G.Liu, Y.M.Zhou, and Y.H.Wang, Variations of isotopic compositions of chlorine in evaporation controlled salt lake brine of Qaidam Basin,China[J].ChineseJ.Ocean.Limn.1999(inprsee)
    131. W.G.Liu, Y.K.Xiao, Q.Z.Wang, et al. Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin,China[J] .Chem.Geol. 1997,136:271 -279
    132. D.D.Desaulniers, R.S.Kaufmann, J.A.Cherry. 37Cl-35Cl variations in a diffusion controlled groumd -water system[J].Geochim.et Cosmochim.Acta, 1986,50:1757-1764
    133. F.M.Philips and H.W.Bentley. Isotopic fractionation during ion filtration:1.Theory[J].Geochim.et Cosmochim.Ac-ta, 1987,51:683-695
    134. Fischer A G,de Boer P L, Premoli-silva I.Cyclostratigraphy (A) .In: Ginsburg R N,et al eds.Cretaceous Resources Events Rhythms (C) .NATOASI Series C.Dordrecht: Kluwer Academ ic Publishers, 1989, No. 304.139-172
    135. Emiliani C.Pleistocene temperature (J) .JGeol,1955,63(6):539-578
    136. Shackleton, NJ, Opdyke N D. Oxygen isotope and paleo-magnetic stratigraphy of Equatorical Pacific core V28-239, Late Pliocene to Latest Pleistocene (A) .In:Cline R M,Hays J O,eds. Investigation of Late Quaternary Palaeoceanography and Palaeoclimatology (Z) .Geological Society of the American Memoirs, 1976,145:449-464
    137. Williams D F,PeckJ,Karabanov A A,et al. Lake Baikal record of continental climate response to orbital isolation dur-ing the past 5 million years (J) .Science,1997,278:1114-1117
    138. Grootes P M, Stuiver M, White J C. Comparison of oxygen isotope records from GISP2 and GRIP Greenland ice cores (J) .Nature, 1993,366:552-554
    139. GRIP members. Climate instability during the last inter-glacial period recorded in the GRIP icecore (J) .Nature, 1993,364:203-207
    140. Thouveny N, Tacques L B, Bonifay E.Climate variations in Europe over the past 140 ka deduced from rock magnetism (J) .Nature, 1994,371:503-506
    141. Thompson L G, Yao T D, Davis, et al. Tropical climate in-stability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 1997,276:1821-1825
    142. Dansgaard W, White J W C, Johnson S T. The abrupt termination of the Younger Dryas climate events (J) .Ibid,1989,339(6225):532-533
    143. Dansgaard W. Stable isotopes in precipitations (J) .Tellus, 1964,16:436-468
    144. Fritz P, Morgan A V, Eicher U, et al. Stable isotope, fossil coleoptera and pollen stratigraphy in Late Quternary sediments from Ontario and New York state (J) .Palaeogeogra Palaeoclimate Palaeoeco, 1987,58:182-202
    145. Epstein S, Buchsbaum R, Lowenstam s H A, et al. Revised carbonate-water isotope temperature scale (J) .Geol Soc Amer Bull,1953,64:1315-1326
    
    146. Krishnamurthy R V, Bhattacharya S K, Kusumgar S. Palaeoclimatic changes deduced from ~(13)C/~(12)C and C/N ratios of Karew a lake sediments, India (J) .Nature, 1986,323:150-152
    147. Mook W G Palaeotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate (J) .Palaeogeogra Palaeoclimate Palaeoeco, 1971,9:245-263
    148. El MO-slinmany A .The ecological significance of commonnonarbo real pollen: examp le from dry land of the M iddle East[J].R ev P alaeobot and P aly n, 1990,(64): 235-243
    149. Y.K.Xiao,C.G.zhang,High precision isotopic measurement of chlorine by thermal ionization,Mass Spectrometry of the CS_2Cl~+ ion. International Journal of Mass Spectrometry and ion Process, 1992,116: 183-192
    150. Kaufmann R.,Long A.,Bentley H.,et al. Natural chlorine variations. Nature. 1984, 309-338
    151.Xiao Y. K.,Zhang C. G.,High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of the Cs_2Cl~+ ion. Int. J. Mass Spectrom, Ion Proc, 1992. 116-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700