用户名: 密码: 验证码:
岩溶地下河系统中多环芳烃的迁移、分配及生态风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶地下水资源对我国西南岩溶区的重要性不言而喻,然而随着社会经济快速发展和城市化进程的加快,我国西南岩溶区水环境问题日益突出。这不仅与人类活动有关,同时也与岩溶环境本身的脆弱性密切相关。多环芳烃(PAHs)是一类持久性有机污染物(POPs),普遍存在于环境介质中,其主要来自能源的燃烧。由于其具有毒性、能致癌、致突变而受到广泛关注。一旦进入岩溶环境有可能成为其最终归宿,危害岩溶生态系统和人类健康。为此,弄清岩溶地下河系统多环芳烃的来源、组成特征、环境行为、迁移和分配过程及生态风险,有助于提高对多环芳烃在岩溶地下河系统的污染机理的认识,具有重要意义。
     本论文以重庆市南山老龙洞地下河系统为例,通过野外岩溶水文地质和污染源地面调查,野外定位观测、降雨期间采样监测,利用气相色谱—质谱联用仪为主要分析测试手段,以地下河及其地表污染来源为主线,研究多环芳烃在土壤、地表水、悬浮颗粒物、地下水、沉积物中的分布和污染特征及来源,分析多环芳烃在地下河中多相分配及影响因素,探讨多环芳烃在岩溶地下河系统中的迁移传输过程。结果分析表明:
     1、地下河流域环境介质中PAHs含量、组成及污染水平。老龙洞流域表层土壤PAHs总量变化范围为277~3301ng/g,平均值为752.6±635.5ng/g,其组成以2-3环为主。其中7种致癌性PAHs总量平均占到∑PAHs的36.17%。土壤有机质(SOM)可能是影响PAHs含量的主要因素。受污水、季节的影响及不同PAH化合物的性质差异,水中]PAHs含量和组成呈现不同的变化特征。与溶解态PAHs相比,地下河颗粒态PAHs含量较低,表现为雨季水中赋存于颗粒物上的PAHs含量高于旱季,主要与颗粒物的来源和性质有关。流域内水中PAHs以及悬浮颗粒物结合的PAHs组成均以低环为主,而高环PAHs几乎未检测到,这与低环溶解性相对较高有关。相对于溶解态PAHs,沉积物中,高环PAHs的比重相对富集,表明随着分子量的增大,PAHs化合物倾向于吸附在颗粒物上
     根据Mali szewska-Kordybach制定的土壤PAHs污染标准,研究区表层土壤PAHs污染水平分别达到轻、中等和重污染水平,其中大部分为中等污染水平;根据Baumard等的划分标准,老龙洞地下河沉积物PAHs污染处于中等到高污染水平。按照荷兰地下水水质标准和加拿大水质标准,老龙洞流域水中PAHs以低环污染为特征;而以PAHs总量来看,地下河流域水中PAHs污染只有少数月份超出中国饮用水标准。与其他地区河流相比地下河PAHs污染水平居中,但岩溶区特殊的形态和环境有利于富集PAHs等持久性有机污染物,应该引起足够的重视。
     根据地下河潜在来源水中PAHs分子量特征及PAHs同分异构体比值解析表明,流域内水中PAHs主要来自于石油源;综合运用PAHs分子量特征比值、同分异构体比值和主成分/多元线性回归分析表明,流域内土壤PAHs污染主要来自交通排放与煤炭、石油及生物质的燃烧源和石油产品泄漏的混合源,其中来自于燃烧源占56.4%,而石油源占到43.6%。
     2、岩溶地下河PAHs多相分配及影响因素。研究表明有机质是控制老龙洞地下河水相、沉积物、颗粒物中PAHs的行为和归宿的重要的因素。其中溶解性有机碳(DOC)、有机碳(TOC)与PAHs的关系相对明确,而与颗粒物有机碳(POC)的关系比较复杂。溶解性有机质(DOM)能够促进和积累低环的溶解态PAHs,是影响溶解态PAHs含量的主要因素,同时是高环PAHs重要的贮存库。悬浮颗粒物(SPM)是影响溶解态PAHs含量的因素之一。与溶解相PAHs有所不同,颗粒物有机质(POM)对PAHs的影响不显著,主要是因为存在DOM等胶体物质的影响。老龙洞地下河沉积物TOC与总PAHs含量成显著正相关,表明了沉积物有机质是影响沉积物PAHs含量的主要因素,但InP、DaA和BgP与TOC并不显著相关。说明除了有机质外,还有另外的因素在影响沉积物PAHs的含量,需要更为详细的分析。
     通过研究表明颗粒相—水相PAHs分配系数与POC无关系,而悬浮颗粒物对分配系数有显著影响,原因是悬浮颗粒物浓度能够带来更多的DOC,导致DOM与POM相互竞争吸附PAHs。通过研究PAHs在沉积物—水相间的分配,获得了表征有机碳归一化的分配系数Koc与辛醇-水分配系数Kow之间的线性自由能方程。发现地下河沉积物对PAHs化合物的亲脂性较差。
     3、岩溶地下河系统PAHs迁移传输过程。老龙洞地下河水与流域内其它水中PAHs相似的组成特征,示踪试验和不同水之间PAHs含量关系表明了岩溶形态对地下河系统PAHs的迁移有重要的作用。通过地下河上游与下游PAHs含量及组成比较发现2-3环PAHs表现为远距离迁移,而4-6环PAHs亲颗粒性高,溶解性低,容易被沉积物或者碳酸盐岩吸附,迁移能力不足。多环芳烃在地表土壤和地下河沉积物间的交换模式表明,地下河出口沉积物主要来源于上游水体传输及地表土壤的输入。
     降雨监测表明,降雨期间落水洞的水输入和地表水渗入是控制PAHs迁移过程的主要因素,不同结合态的PAHs受控于水动力条件。降雨能够促进地下河系统PAHs由地表向地下迁移,而且流量越大,迁移量越大,一旦有足够的雨强,不仅带来更多的悬浮颗粒物,而且使高环PAHs更容易迁移,同时迁移过程中受DOC、POC、悬浮颗粒物浓度及颗粒物本身的种类和性质的影响,使得PAHs在各相中的分配产生差异。
     4、岩溶地下河流域PAHs的生态风险评价。运用风险商值(RQ)法对水中PAHs生态风险进行评价,结果发现在检测到的PAH化合物的生态风险水平处于中等污染和重污染风险。以总PAHs来看,桂花湾泉和老龙洞地下河出口达到高风险等级,已严重污染;赵家院子泉和地表水处于中等风险2级别。老龙洞沉积物PAHs处于低风险水平,很少产生负面生态效应,而仙女洞PAHs污染存在较高的生态风险,这与ERL/ERM和TEL/PEL法,平均效应区间中值商法(M-ERM-Q)评价结果基本一致。土壤PAHs污染为中等风险。老龙洞流域水中3环PAHs对生态压力贡献较大,而土壤和沉积物中2环和3环贡献较大,因此需要采取有效措施减少2-3环PAHs的污染。
     表层岩溶系统由于土层薄,岩溶裂隙发育,利于PAHs进入表层泉,导致桂花湾泉和赵家院子泉PAHs污染仍存在较高的生态风险。黄桷垭污水切断前后,老龙洞水PAHs污染分别处于高风险和中等风险状态。地下河的补给来源的介质中PAHs污染的生态风险越高,地下河中PAHs污染的生态风险也越高。不同分子量PAHs迁移行为的差异,导致老龙洞地下河上游和下游生态风险水平在水中和沉积物中有所差异,高环PAHs富集在地下河管道,其在逐渐往下游迁移过程中,将对下游的生态构成威胁。
It is well known that karst groundwater is very important in southwest China. However, with the rapid economic development and urbanization, karst groundwater pollution has become a predominant problem. This is not only related to human activities, but also closely related to the vulnerability of karst environment. Polycyclic aromatic hydrocarbons (PAHs), one of a group of persistent organic pollutants (POPs), are ubiquitous in various environmental systems, and have attracted much concern due to their toxicity, carcinogenicity and mutagenicity. The primary environmental source of PAHs is energy combustion. Once they enter into karst environment, it may become their final destination, which will be harmful to karst ecosystem and public health. For these reasons, it is very important to understand the composition, behavior, transport, partitioning of PAHs and their environmental risk to ecosystems, especially in karst underground river systems, which can help recognizing the pollution mechanisms of PAHs in karst underground river systems.
     In this thesis, the Laolongdong Underground River System (LURS) in Nanshan of Chongqing City has been chosen for studying the distribution, contamination characteristics and sources of PAHs in different medium such as soil, water, particle and sediment, partitioning of PAHs in the underground river, as well as the transporting process of PAHs in the system, based on hydrogeological and pollution source investigation, sampling and monitoring monthly and during rainfall, and measuring by GC/MC or GC/MS. It is found that:
     (1) Concentrations, composition and pollution levels in environment medium in LURS. In the surface soil of LURS, the total concentrations of PAHs range from277.4~3301ng/g, with a mean value of752.6±635.5ng/g, dominated by2~3ring PAHs, seven carcinogenic compounds of which account for36.17%of the total PAHs with an average. Soil organic matter (SOM) may be the primary factor controlling the concentrations of PAHs. There are differences among monthly variations of PAHs contents in the waters, due to waste water, season and different characteristics of PAH compounds. The concentrations of particle associated PAHs are lower than those of dissolved PAHs, and higher in rainy season than that in dry season, which may be related with the sources and quality of the particles. The PAHs compositions are dominated by low ring compounds in all waters and particles, and high rings PAHs are almost not detected due to relative high solubility of low PAHs. However, high rings PAHs are enrich in the sediments because of their tendency to be adsorbed on the particles with the increase of molecular weight..
     According to PAHs pollution standard made by Maliszewska-Kordybach, the soil samples of the LURS are slightly, moderately and heavily polluted by PAHs respectively, and most of them are moderately polluted. According to the criteria for classification of Baumard, PAHs pollution level in the sediments is moderate or slight. Based on underground water quality of Netherlands and the water quality standard of Canada, PAHs pollution of LURS are featured by low-ring PAHs. For the monthly total concentrations of PAHs, only several exceeded the limit of drinking water quality standard of China. Compare with other areas, pollution level here is moderate. However, karst features and environments are in favor of enriching PAHs and other POPs, which should attain enough attention. Isomer ratios and molecular weight characteristics show that PAHs in the waters mainly come from petroleum. Isomer pair ratios, molecular weight characteristics and principal component analysis (PCA) suggest that vehicles, coal, petroleum and biomass combustion are the main sources of PAHs, another major source being petroleum. Combustion accounts for56.4%while petroleum accounts for43.6%.
     (2) Multi-media distribution of PAHs and impact factors. The results show that organic matter is the most important factor governing the behavior and fate of PAHs in the water, particles and sediments of the underground river. The relationships among PAHs and DOC or TOC are unambiguous, while the relationship between PAHs and POC is more complicated. DOM is not only a facilitator for the accumulation of freely dissolved PAHs, but also an important pool for dissolved heavy PAHs in the underground river. Suspend particle matter (SPM) is one of the factors influencing on dissolved PAHs. In contrast with the dissolved PAHs, particle organic matter do not significantly affect PAHs, because of the existing other influencing factors such as DOM. Positive correlation has been found between TOC and PAHs in sediments, except InP, DaA and BgP, which indicates that sediment contaminations are primary controlled by organic matter, and might have some other influencing factors.
     Studies have shown that particle phase-water phase partition coefficient of PAHs have no relationship with POC, while significantly affected by SPM, because more SPM contents will bring more DOC contents, leading to competitive adsorption PAHs between POM and DOM. Through the research of PAHs partition between sediments and water, the linear free-energy equation between organic carbon normalized partition coefficient (K∝) and octanol-water partition coefficient (Kow) has been built. It is found that sediments have poorly lipophilic for PAHs compounds.
     (3) PAHs migration and transfer process in LURS. The similar composition of PAHs between the underground river and other waters, tracer tests and the relationship among different waters show that karst landforms play an important role in the migration of PAHs in the system. Different combination patterns of PAHs are controlled by hydrodynamic conditions. It is found through comparing the composition of PAHs between upstream and downstream that2-3rings PAHs have higher transport capability with farther migration distance, while lower transport capability and shorter migration distance for4-6rings PAHs, because4-6rings PAHs are affinity particle with low solubility and can be easily absorbed by sediments or carbonate rocks. The exchange mode of surface soil and underground river sediments indicates that the sediments in the outlet of the underground river mainly come from the transportation of the upstream water and surface soil.
     It is implied by the rainfall monitoring that sinkhole input and surface water infiltration are two major factors controlling the transport process of PAHs during rain events. Rainfall can promote the migration of PAHs from surface to underground. The more the discharge is, the stronger the migration will be. Once there is enough rainfall intensity, it will not only bring more suspended particles, but also make high ring PAHs easier to migrate. The PAHs distribution among different phases are controlled and influenced by the concentrations of DOC, POC, SPM and characteristics and species of the particles, leading to the different partitioning of PAHs in different phases.
     (4) Ecological risk assessment of PAHs in LURS. Based on risk quotient (RQ) method for ecological risk assessment of PAHs, it is found that all detected PAHs are in moderate or heavy ecosystem risk. The total PAHs show that the Guihuawan Spring and the outlet of Laolongdong Underground River are severely polluted, reaching high risk, while the Zhaojiayuanzi Spring and the surface water are in level2risk. The ecological risk level of the sediments of Laolongdong is low, leading to little negative ecological impact. However, the ecological risk level of the sediments of Xiannvdong is high. The coincident results are shown according to the methods including ERL/ERM, TEL/PEL and mean ERM quotient. The Ecological risk level of the surface soil is moderate. Low and moderate molecular PAHs presented much more ecosystem risk than high molecular PAHs in the Laolongdong underground river system. The3-ring PAHs have higher contribution to the ecological pressure of the water system of Laolongdong, while2-ring and3-ring PAHs contribute more to the soil and sediments. Therefore, some measurements should be taken to control2-3rings PAHs.
     Due to thin soil and karst fissure of epikarst system, PAHs can easily enter into karst springs, resulting in high ecological risk in Guihuawan Spring and Zhaojiayuanzi Spring. Affected and unaffected by the sewage of Huangjueya Town, the ecological risk of Laolongdong water is in high risk and moderate risk respectively. The higher the ecological risk of recharge of the underground river in different media is, the higher that in Laolongdong Underground River will be. Difference of migration behavior of different molecular weight PAHs lead to the difference of ecological risk levels in water or sediment between upstream and downstream in Laolongdong Underground River. The high molecular PAHs are enrichment in the sediments of the underground river conduit. Once migrating from upstream to downstream, it will produce ecological threat for the downstream.
引文
Akkanen J, Kukkonen J V K. Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter [J]. Environmental Toxicology and Chemistry,2003,22 (3):518-524.
    Alam M J, Yuan D X, Jiang Y J, et al. Sources and transports of polycyclic aromatic hydrocarbons in the Nanshan Underground River, China [J]. Environmental Earth Sciences,2014,71(4):1967-1976.
    Alam M J. Sources and transports of organic pollutants in the Nanshan underground river Chongqing, China[PDR].Chongqing:Southwest University,2013:1-57.
    Allen Burton G. Sediment quality criteria in use around the world [J]. Limnology,2002,3:65-75.
    Andreo B, Goldscheider N, Vadillo I, et al. Karst groundwater protection:First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Libar (Southern Spain)[J]. Science of the Total Environment,2006,357:54-73.
    Baeke C, Cousins I T, Larsson P. Environmental Pollution,2004,128(2):69-72.
    Barbara Morasch. Occurrence and dynamics of micropollutants in a karst aquifer [J]. Environmental Pollution,2013,173:133-137.
    Baumard P, Budzinski H, Garrigues, P. Polycyclic aromatic hydrocarbons(PAHs) in sediments and mussels of the western Mediterranean Sea [J]. Environmental Toxicology and Chemistry,1998, 17(5):765-776.
    Baumard P, Budzinski H, Michon Q, et al. Origin and bioavailability of PAHs in Mediterranean Sea from mussel and sediment records [J].Estuarine, Coastal and Shelf Science,1998,47(1):77-90.
    Boehm P D, Burns W A, Page D S, et al. Total organic carbon, an important tool in a holistic approach to hydrocarbon source fingerprinting [J]. Environmental Forensics,2002,3(3-4):243-250.
    Bzdusek P A, Christensen E R, Li A, et al. Source apportionment of sediment PAHs in Lake Calumet, Chicago:Application of factor analysis with nonnegative constraints [J]. Environmental Science & Technology,2004,38:97-103.
    Cao Z G, Liu J L,Luan Y, et al. Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China [J]. Ecotoxicology,2010,19(5):827-837.
    Carrera G, Femadz P, Vilanova R, et al. Persistent organic pollutants in snow from European high mountain areas [J]. Atmospheric Environment,2001,35(2):245-254.
    Chen L G, Ran Y, Xing B S, et al. Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China [J].Chemosphere,2005,60(7): 879-890.
    Chen S J, Luo X J, Mai B X, et al. Distribution and Mass inventories of Polycyclic Aromatic Hydrocarbons and Organochlorine Pesticides in Sediments of the Pearl River Estuary and the Northern South China Sea [J]. Environmental Science & Technology,2006,40 (3):709-714.
    Claudia Moeckel, Donald T, Monteith, et al. Relationship between the Concentrations of Dissolved Organic Matter and Polycyclic Aromatic Hydrocarbons in a Typical U.K. Upland Stream [J]. Environmental Science & Technology,2014,48:130-38.
    Cousins I T, Beck A.J, Jones K C. A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air-soil interface [J]. Science of the Total Environment 1999,228(1):5-24.
    Crimalt, Joan O, Van D, et al. Persistent organchlorine compounds in soils and sediments of European high altitude mountain lakes [J].Chemosphere,2004,54 (25):1549-1561.
    Dai J L, Li S J, Zhang Y L,et al. Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji'nan city, China [J]. Environmental Monitoring Assessment, 2008,147(1-3):317-326.
    Dennis J M, DeGraeve G M, Linton T K. Sediment quality guidelines and assessment:overview and research needs [J]. Environmental Science & Policy,2000,3(1):133-144.
    Ekmekci M. Pesticide and nutrient contamination in the Kestel polje-Kirkgoz karst springs, Southern Turkey [J]. Environmental Geology,2005,49(1):19-29.
    Fernandes M B, Sicre M A, Boireau A, et al. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary [J]. Marine Pollution Bulletin,1997,34(11):857-867.
    Finizio A, Mackay D, Bidleman T, et al. Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols [J]. Atmospheric Environment,1997,31(15): 2289-2296.
    Ford D C, Williams P. Karst Geomorphology and Hydrology [M], Unwin Hyman, London,1989,601.
    Ford D C, Williams P. Karst hydrogeology and geomorphology [M]. Wiley & Sons, Chichester,2007.
    Giglitti C L, Brunciak P A, Dach S J, et al. Air-water exchange of polycyclic aromatic hydrocarbons in the New York-New Jersey, USA, Harbor estuary [J]. Environmental Toxicology and Chemistry, 2005,21(2):235-244.
    Golomb D, Barry E, Fisher G, et al. Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters [J]. Atmospheric Environment,2001,35(36):6245-6258.
    Gordon, G.E. Receptor models [J]. Environmental Science & Technology,1988,22(10):1132-1142.
    Gullett B K, Touati A. PCD/F emissions from forest fire simulations [J]. Atmospheric Environment, 2003,37(6):803-813.
    Guo W, He M C, Yang Z F, et al. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in Daliao River water system in dry season, China [J]. Journal of Hazardous Materials,2009,164(2-3):1379-1385.
    Haitzer M, Hoss S, Traunspurger, W, et al.Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms-A review [J]. Chemosphere,1998, 37(7):1335-1362.
    Harrison R M, Smith D J T, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham U K [J]. Environmental Science & Technology,1996,30(3):825-832.
    Hong H, Xu L, Zhang L, et al. Environmental fate and chemistry of organic pollutants in the sediments of Xiamen harbor and Victoria harbor [J]. Marine Pollution Bulletin,1995,31(4-12):229-236.
    Hwang H M, Wade T L, Sericano J L. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States [J]. Atmospheric Environment,2003,37(16):2259-2267.
    Kalf D F, Crommentuijn T, vandeplassche E J.Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs)[J]. Ecotoxicology and Environmental Safety,1997,36(1):89-97.
    Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on natural sediments [J]. Water Research,1979,13(3):241-248.
    Kerstin Schwarz, Tilman Gocht, Peter Grathwohl. Transport of polycyclic aromatic hydrocarbons in highly vulnerable karst systems [J]. Environmental Pollution,2011,159(1):133-139.
    Kim G B, Maruya K A, Lee R F. Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay. Korea [J]. Marine Pollution Bulletin,1999,38(1):7-15.
    Kurt W, Helmut G. Persistent organic Pollutants (POPs) in Antarcticfish:levels patterns changes [J]. Chemosphere,2003,53:667-678.
    Lakaschus S, Weber K, Wania F, et al. The air-equilibrium and time trend of hexachlorocyclohexanes in the Atlantic Ocean between the Arctic and Antarctica [J]. Environmental Science & Technology, 2002,369(2):138-145.
    Lang Y H, Wang N N, Gao H W, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) from Liaohe estuarine wetland soils [J]. Environmental Monitoring and Assessment,2012,184(9):5545-5552.
    Larsen R K, Baker J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere:A comparison of three methods [J]. Environmental Science & Technology,2003,37(9): 1873-1881.
    Lee J H, Gigliotti C L, Offenberg J H, et al. Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed [J]. Atmospheric Environment,2004,38(35):5971-5981.
    Li A, Jang J K, Scheff P A. Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago [J]. Environmental Science & Technology,2003,37(13): 2958-2965.
    Li C K, Kamens R M. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling [J]. Atmospheric Environment,1993,27(4):523-532.
    Li N Q, Lee H K. Tandem-cartridge solid-phase extraction followed by GC/MS analysis for measuring partition coefficients of association of polycyclic aromatic hydrocarbons to humic acid [J]. Analytical Chemistry,2000,72:5272-5279.
    Li X H, Ma L L, Lin X F, et al. Polycyclic aromatic hydrocarbon in urban soil from Beijing, China [J]. Journal Environmental Science,2006,18 (5):944-950.
    Liu A X, Lang Y H, Xue L D, et al. Ecological risk analysis of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Laizhou Bay [J]. Environmental Monitoring and Assessment,2009, 159(1-4):429-436.
    Long E R, MacDonald D D, Smith S L, et al. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments [J]. Environmental Management,1995, 19(1):81-97.
    Long E R, MacDonald D D. Recommended uses of empirically derived sediment quality guidelines for marine and estuarine ecosystems [J]. Human and Ecological Risk Assessment,1998, 4(5):1019-1039.
    Luo X J, Mai B X, Yang Q S, et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China [J]. Marine Pollution Bulletin,2004),48(11-12):1102-1115.
    Ma W L, Liu L Y, Qi H, et al. Polycyclic aromatic hydrocarbons in water, sediment and soil of the Songhua River Catchment, China [J]. Environmental Monitoring and Assessment,2013,185(10): 8399-8409.
    MacDonald D D, Carr R S, Calder F D, et al. Development and evaluation of sediment quality guidelines for Florida coastal waters [J]. Ecotoxicology (London, England),1996,5:253-278.
    Mackay D, Shiu W Y, Ma K C. Illustrated Handbook of Physical Chemical Properties and Environmental Fate for Organic Chemicals:Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans [M]. Lewis Publishers, Boca Raton,1992,2:62-238.
    Maliszewska-Kordybach B, Klimkowicz-Pawlas A, Smreczak B, et al. Ecotoxic effect of phenanthrene on nitrifying bacteria in soils of different properties [J]. Journal of Environmental Quality,2007, 36(6):1635-1645.
    Markovic T, Miko S, Kapelj S, et al. Behavior of metals and nutrients in soils and groundwater of a karst polje [J]. Journal of Geochemical Exploration,2006,88(1-3):124-129.
    Maskaoui K, Zhou J L, Hong H S, et al. Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea, China [J]. Environmental Pollution,2002, 118(1):109-122.
    McCready S, Birch G F, Long E R. Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity—a chemical dataset for evaluating sediment quality guidelines [J]. Environment International,2006a,32(4):455-465.
    McGeoddy S E, Farrington J W.Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Harbor, Massachusetts [J]. Environmental Science & Technology,1995, 29(6):1542-1550
    McGroddy S E, Farrington J W, Gschwend P M. Comparison of the in Situ and Desorption Sediment-Water Partitioning of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls[J]. Environmental Science & Technology,1995,30(1):172-177.
    MeCready S, Slee D J, Birch G F, et al. The distribution of Polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbor, Australia [J]. Marine Pollution Bulletin,2000,40(11): 999-1006.
    Meijer S N, Shoeib M, Jantunen K C, et al. Air-soil exchange of organochlorine pesticides in agricultural soils. Field measurements using a novel in situ sampling device [J]. Environmental Science & Technology,2003,37(7):1292-1299.
    Menzie C A, Potocki B B, Santodonato J. Ambient concentrations and exposure to carcinogenic PAHs in the environment [J]. Environmental Science & Technology,1992,26(7):1278-1284
    Mielke H W, Wang G, Gonzales C R, et al. PAHs and metals in the soil of inner city and suburban New Orleans, Louisiana, USA [J].Environmental Toxicology and Pharmacology,2004,18 (3):243-247.
    Mitra S, Bianchi T S. A preliminary assessment of Polycyclic aromatic hydrocarbon distributions in the lower Mississippi River and Gulf of Mexieo [J]. Marine Chemistry,2003,82(3-4):273-288.
    Mitra S, Dickhut R M.Three phase modeling of polycyclic aromatic hydrocarbon association with pore-water-dissolved organic carbon [J]. Environmental Toxicology and Chemistry,1999, 18(6):1144-1148.
    Nadal M, Schuhmacher M, Domingo J L. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain [J]. Environmental Pollution,2004,132(1):1-11.
    Nielsen T, Jorgensen H E, Larsen J C, et al. City air pollution of polycyclic aromatic hydrocarbons and other mutagens:occurrence, sources and health effects [J]. Science of the Total Environment,1996, 190:41-49.
    Oramah I Theodore, Qi S H, Kong X S, et al. Distribution of polycyclic aromatic hydrocarbons in Datuo karst Tiankeng of south china [J].Environmental Geochemistry and Health,2008,30(5):423-429.
    Panther B C, Hooper M A, Tapper N J. A comparison of air particulate matter and associated polycyclic aromatic hydrocarbons in some tropical and temperate urban environments [J]. Atmospheric Environment,1999,33(24-25):4087-4099.
    Poerschmann J, Zhang Z Y, Kopinke F D, et al. Solid phase microextraction for determining the distribution of chemicals in aqueous matrices [J]. Analytical Chemistry,1997,69(4):597-600.
    Readman J W, Mantoura R F C, Rhead M M. The physicochemical speciation of polycyclic aromatic hydrocarbons (PAH) in aquatic systems [J].Fresenius Zeitschrift fur Analytische Chemie,1984, 319(2):126-131.
    Rockne K J, Shor L M, Young L Y, et al. Distributed sequestration and release of PAHs in weathered sediment:The role of sediment structure and organic carbon properties [J]. Environmental Science & Technology,2002,36(12):2636-2644.
    Rose N, Rippy B. The historical record of PAH, PCB, Trace metal and flyash particle deposition in a remote lake in north-west Scotland [J]. Environmental Pollution,2002,117 (1):121-132.
    Schrap S M, Haller M, Opperhuizen A. Investigating the influence of incomplete separation of sediment and water on experimental sorption coefficients of chlorinated benzenes[J]. Environ Toxicol Chem 1995,14(2):219-228.
    Seheringer M., Charaeterization of the environmental distribution behavior of organic chemicals by means of persistence and spatial range [J]. Environmental Science & Technology,1997(31): 2891-2897.
    Seth R, Mackay D, Muncke J. Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals [J]. Environmental Science & Technology,1999,33(17):2390-2394.
    Shi Z, Tao S, Pan B, et al. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons [J]. Environmental Pollution,2005,134(1):97-111.
    Shi Z, Tao S, Pan B, et al. Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China[J]. Environmental Pollution,2007,146(2):492-500.
    Simcik M F, Eisenreich S J, Lioy P J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan[J]. Atmospheric Environment,1999,33(30): 5071-5079.
    Simmleit, N.R. Herrmann. The behavior of hydrophobic organic micropollutants in different Karst water systems [J]. Water, Ai r, & Soil Pollution,1987,34 (1):79-95.
    Simpson, C D, Mosi, A A, Cullen, W R., et al. Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada[J]. Science of the Total Environment,1996,181:265-278.
    Soclo H H, Garrigues P H, Ewald M. Origin of Polycyclic Aromatic Hydrocarbons (PAHs) in Coastal Marine Sediments:Case Studies in Cotonou (Benin) and Aquitaine (France) Areas[J]. Marine Pollution Bulletin,2000,40 (5):387-396.
    Sofowote U M, McCarry B E, Marvin C H. Source apportionment of PAH in Hamilton Harbour suspended sediments:comparison of two factor analysis methods [J]. Environmental Science & Technology,2008,42(16):6007-6014.
    Sun J H, Wang G L, Chai Y, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China [J]. Ecotoxicology and Environmental Safety,2009, 72(5):1614-1624.
    Tang X Y, Tang L L, Zhu Y G, et al. Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test [J]. Environmental Pollution,2006,140(2): 279-285.
    Tao S, Cui Y H, Xu F L, et al. Polycyclic aromatic hydrocarbons in agricultural soil and vegetables from Tianjin [J]. Science of the Total Environment,2004,320(15):11-24.
    Telli-Karakoc F, Tolun L, Henkelmann B, et al. Polycyclic aromatic hydrocarbons(PAHs) and polychlorinated biphenyls(PCBs) distributions in the Bay of Marmara sea:Izmit Bay [J]. Environmental Pollution,2002,119(3):383-397.
    Tian F L, Chen J W, Qiao X L, et al. Source identification of PCDD/Fs and PCBs in pine (Cedrus deodara) needles:A case study in Dalian, China[J]. Atmospheric Environment,2008,42(19): 4769-4777.
    Tittle mier S A, Blank D H, Gribble G W, et al. Structure elucidation of four possible biogenic organohalogens using isotope exchange mass spectrometry [J]. Chemosphere,2002,46(4): 511-517.
    Tolosa J, Bayona J M, Albaige's J. Aliphatic and polycyclic aromativ hydrocarbons and sulfur/oxygen dderviatives in northwestern mediterranean sediments:spatial and temporal variability, fluxes, and budets [J]. Environmental Science & Technology,1996,30(8):2495-2503.
    Tremblay L, Kohl S D, Rice J A, et al. Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles [J]. Marine Chemistry, 2005,96(1-2):21-34.
    UNEP. Global Report 2003:Regionally Based Assessment of Toxic Substances. Switzerland
    USEPA. Health effect assessment for polycyclic aromatic hydrocarbons (PAH) [S]. Environmental Protection Agency, Environmental Criteria and Assessment Office. Cincinnati, OH.EPA 549 /1-86-013.
    Vilanova R M, Femandez P, Martinez C, et al. Polycyclic aromatic hydrocarbons in remote mountain lake waters [J]. Water Research,2001,35(16):3916-3926.
    Wang W T, Staci Simonich, Basant Giri, et al. Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China [J]. Science of the Total Environment,2011,409(15): 2942-2950.
    Wang Y H, Qi S H, Chen J, et al. Concentration, distribution and sources of polycyclic aromatic hydrocarbons in soils from the Karst Tiankengs, South China [J]. Bulletin of Environmental Contamination and Toxicology,2009,83(5):720-726.
    Wania F, Mackay D. Modelling the global distribution of toxaphene:A discussion of feasibility and desirability [J]. Chemosphere,1993,27(10):2079-2094.
    Webster E, Mackay D, Wania F. The effects of snow and ice on the environmental behaviour of hydrophobic organic chemicals [J]. Environmental Toxicology and Chemistry,1998,17: 2148-2158.
    White, W B, Groundwater flow in karst aquifers. In:Delleur, J. W. (Ed.), The Handbook of Groundwater Engineering [J]. CRC Press, Boca Raton, FL,1998,18(1):18-36.
    Wilcke W, Muller S, Kanchanakool N, et al. Polycyclic aromatic hydrocarbons (PAHs) in hydromorphic soils of the tropical metropolis Bangkok[J]. Geoderma,1999,91(3-4):297-309.
    Wu S P, Tao S, Zhang Z H, et al. Distribution of particle-phase hydrocarbons, PAHs and OCPs in Tianjin, China [J]. Atmospheric Environment,2005,39(38):7420-7432.
    Wu Y, Zhang J, Zhu Z J. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China [J]. Marine Pollution Bulletin,2003,46(5):619-625.
    Xia G S, Pignatello J J. Detailed sorption isotherms of polar and apolar compounds in a high-organic soil [J]. Environmental Science & Technology,2001,35(1):84-94.
    Xing B S, Pignatello J J. Dual-mode sorption of low-polaritycompounds in glassy poly (vinyl chloride) and soil organic matter [J]. Environmental Science & Technology,1997,31(3):792-799.
    Yan W, Chi J S, Wang Z Y, et al. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Daya Bay, South China[J]. Environmental Pollution,2009,157(6): 1823-1830.
    Yang D, Qi S H, Zhang Y, et al. Levels, sources and potential risks of polycyclic aromatic hydrocarbons(PAHs) in multimedia environment along the Jinjiang River mainstream to Quanzhou Bay, China[J]. Marine Pollution Bulletin,2013,76(1-2):298-306.
    Yunker M B, Macdonald R W, Goyette D et al, Natural and Anthropogenic inputs of Hydrocarbons to the Strait of Georgia [J]. Science of the Total Environment,1999,225 (3):181-209.
    Yunker M B, Snowdon L R, MacDonald R W, et al. Polycyclic Aromatic Hydrocarbon Composition and Potential Sources for Sediment Samples from the Beaufort and Barents Seas[J]. Environmental Science & Technology,1996,30 (4):1310-1320.
    Yunker MR, Macdonald RW, Vingarzan R, etal. PAHs in the Fraser River catchment:a critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry,2002,33(4): 489-515.
    Zhang H B, Luo Y M, Wong M H, et al. Distributions and concentrations of PAHs in HongKong Soils [J]. Environmental Pollution,2006,141(1):107-114.
    Zhang YX, Tao S, Cao J, Coveney RM. Emission of polycyclic aromatic hydrocarbons in China by county[J]. Environmental Science & Technology,2007,41(3):683-687.
    Zhang YX, Tao S. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China [J]. Environmental Pollution,2008,156(3):657-663.
    Zhou J L, Fileman T W, Evans S, et al. The partition of fluoranthene and pyrene between suspended particles and dissolved phase in the Humber Estuary:A study of the controlling factors [J]. Science of the Total Environment,1999,244:305-321.
    Zhou J L, Fileman T W, Evans S. Fluoranthene and pyrene in the suspended particulate matter and surface sediments of the Humber Estury, UK [J]. Marine Pollution Bulletin,1998,36(8):587-597.
    Zhou J L, Maskaoui K. Distribution of Polycyclic aromatic hydrocarbons in water and surface sediments from Da ya Bay, China [J]. Environmental Pollution,2003,121(2):269-281.
    奥拉马.中国南部天坑群中多环芳烃和有机氯农药的分布、来源及其迁移特征[D].武汉:中国地质大学,2007,25-30.
    陈椽,张明时,杨加文,等.黔南州土壤中多环芳烃的污染现状及来源分析[J].生态环境学报,2009,18(3):929-933.
    陈静,王学军,等.天津地区土壤多环芳烃在剖面中的纵向分布特征[J].环境科学学报,2004,24(2):286-290.
    陈静,王学军,陶澍,天津地区土壤中有机碳和粘粒对PAHs纵向分布的影响[J].环境科学研究,2005,18(4):79-83.
    崔学慧,李炳华,陈鸿汉.太湖平原城近郊区浅层地下水中多环芳烃污染特征及污染源分析[J].环境科学,2008,28(7):1806-1810.
    邓琼.成都东郊大气颗粒物(TSP)中多环芳烃(PAHs)的污染研究[D].成都:成都理工大学,2010.
    段菁春,毕新慧,谭吉华,等.广州秋季不同功能区大气颗粒物中PAHs粒径分布[J].环境科学,2006,27(4):624-630.
    段永红,陶澍,王学军,等.天津表土中多环芳烃含量的空间分布特征与来源[J].土壤学报,2005,24(6):942-947.
    付允.西南岩溶区农田土壤中有机氯农药的分布及来源初探—以重庆青木关地下河流域为例[D].重庆:西南大学,2012.
    龚平,王传飞,王小萍,等.青藏高原大气多环芳烃分布及其不完全燃烧来源分析[J].第四届中国科学院博士后学术年会暨工业经济与可持续发展学术会议论文集,2012,中国浙江杭州.
    胡建.贵阳市大气—水体—土壤环境中多环芳烃的研究[D].贵阳:中国科学院地球化学研究所,2005.
    胡雄星,周亚康,韩中豪.黄浦江表层沉积物中多环芳烃何分布特征及来源[J].环境化学,2005,24(6):703-706.
    胡英,祁士华,兰兰,等.岩溶地下河中HCHs和DDTs的分布特征与健康风险评价[J].中国环境科学,2010,30(6):802-807.
    蒋秋静,李跃宇,胡新新,等.太原市多环芳烃(PAHs)排放清单与分布特征分析[J].中国环境科学,2013,33(1):14-20.
    孔祥胜,祁士华,Oramah I T,等.大石围天坑群地下河沉积物中PAHs的污染特征[J].环境科学与技术,2011,34(8):42-48.
    孔祥胜,祁士华,Oramah I T,等.广西大石围天坑群地下河水中多环芳烃的污染特征[J].环境科学,2011,32(4):1081-1087.
    孔祥胜,祁士华,黄保健,等.广西乐业大石围天坑群多环芳烃的干湿沉降[J].环境科学,2012,33(3):746-753.
    孔祥胜,祁士华,蒋忠诚,等.广西大石围巨型漏斗土壤中多环芳烃与环境因素[J].环境科学,2012,33(11):3905-3915.
    孔祥胜,祁士华,孙骞,等.广西大石围天坑中多环芳烃的大气传输与分异[J].环境科学,2012,33(12):4212-4219.
    孔祥胜,祁士华.典型岩溶区多介质中多环芳烃的环境存在特征—以广西大石围天坑群为例[J].中国岩溶,2013,32(2):182-188.
    孔祥胜.典型岩溶巨型漏斗中持久性有机污染物的环境行为研究[D].武汉:中国地质大学,2012.
    李军,张干,祁士华,等.广州市大气中多环芳烃分布特征、季节变化及其影响因素[J].环境科学, 2004,25(3):7-13.
    刘春慧,田福林,陈景文,等.正定矩阵因子分解和非负约束因子分析用于大辽河沉积物中多环芳烃源解析的比较研究[J].科学通报.2009,54(24):3817-3822.
    刘丰,刘静玲,陈秋颖,等.海河南系表层沉积物中多环芳烃的污染特征与生态风险评价[J].科学通报,2013,58(12):1109-1116.
    刘敏,候立军,邹慧仙,等.长江口潮滩表层沉积物中多环芳烃分布特征[J].中国环境科学,2001,21(4):343-346.
    刘书臻.环渤海西部地区大气中的PAHs污染[D].北京:北京大学,2008.
    刘现明,徐学仁,张笑天,等.大连湾沉积物中PAHs的初步研究[J].环境科学学报,2001,21(4):507-509.
    刘增俊,滕应,黄标,等.长江三角洲典型地区农田土壤多环芳烃分布特征与源解析[J].土壤学报,2010,47(6):1110-1117.
    鲁如坤.土壤农业化学析[M].北京:中国农业科技出版社,2000.
    吕金刚,毕春娟,陈振楼,等.上海市崇明岛农田土壤中多环芳烃分布和生态风险评价[J].环境科学,2012,33(12):4270-4275.
    罗孝俊,陈社军,麦碧娴,等.珠江及南海北部海域表层沉积物中多环芳烃分布及来源[J].环境科学,2005,26(4):129-134.
    罗孝俊,陈社军,余梅,等.多环芳烃在珠江口表层水体中的分布与分配[J].环境科学,2009,29(9):2385-2391.
    马万里,李一凡,孙德智,等.哈尔滨市大气中多环芳烃的初步研究[J].中国环境科学,2010,30(2):145-149.
    毛海红.岩溶水文地质系统中有机氯农药的迁移机理初探—以重庆雪玉洞水文地质系统为例[D].重庆:西南大学,2012.
    欧冬妮,刘敏,许世远,等.长江口滨岸水和沉积物中多环芳烃分布特征与生态风险评价[J].环境科学,2009,30(10):3043-3049.
    欧冬妮,刘敏,许世远,等.多环芳烃在长江口滨岸颗粒物—水相间的分配[J].环境科学,2009,30(4):1126-1132.
    欧冬妮.长江口滨岸多环芳烃PAHs多相分布特征与源解析研究[D].上海:华东师范大学,2007.
    祁土华,张干,刘建华,等.拉萨市城区大气和拉鲁湿地土壤中的多环芳烃[J].中国环境科学,2003,23(4):349-352.
    沈慧中,王戎,陶澍.近50年全球大气多环芳烃排放清单[A].第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C],2011,94.
    史兵方,杨秀培,刘细祥.土壤中多环芳烃的分布特征及其来源分析[J].农业环境科学学报,2010, 29(5):904-909
    孙娜,陆晨刚,高翔,等.青藏高原东部土壤中多环芳烃的污染特征及来源解析[J].环境科学,2007,28(3):664-668.
    孙小静,石纯,许世远,等.上海北部郊区土壤多环芳烃含量及来源分析[J].环境科学研究,2008,21(4):140-144.
    孙玉川,沈立成,袁道先.表层岩溶带土壤中多环芳烃分布特征及来源解析[J].中国岩溶,2013,32(1):79-86.
    孙玉川.有机氯农药和多环芳烃在表层岩溶系统中的迁移、转化特征研究[D].重庆:西南大学,2012.
    田福林.受体模型应用于典型环境介质中多环芳烃、二嗯英和多氯联苯的来源解析研究[D].大连:大连理工大学,2009.
    王英辉,祁士华,李杰,等.广西岩溶洞穴大气中有机氯农药分布与传输[J].环境科学,2010,31(3):586-590.
    王英辉,祁士华,李杰,等.广西桂林人岩洞岩溶洞穴中土壤有机氯农药的分布特征[J].地质通报,2007,26(11):1470-1475.
    王英辉.喀斯特洞穴中持久性有机污染物分布与传输动力学研究[D].武汉:中国地质大学,2007.
    王震.辽宁地区土壤中多环芳烃的污染特征、来源及致癌风险[D].大连:大连理工大学,2007.
    韦丽丽,郭芳,王健哲,等.柳州岩溶地下河水体有机氯农药分布特征[J].中国岩溶,2011,30(1):16-21.
    习芦敏,袁东星,欧阳通,等.厦门岛表土中多环芳烃来源分析及健康风险评估[J].厦门大学学报:自然科学版,2008,47(3):451-456.
    徐建国,朱恒华,徐华,等.济南泉域岩溶地下水有机污染特征研究[J].中国岩溶,2009,28(3):249-254.
    许士奋,蒋新,王连生,等.长江和辽河沉积物中的多环芳烃类污染物[J].中国环境科学,2000,20(2):128-131.
    杨芳.大气颗粒物中多环芳烃的时空分布及来源解析[D].长沙:湖南大学,2010.
    杨磊,陆徐荣,陆华.某岩溶水源地地下水中有机氯农药的分布特征[J].地质科技情报,2010,29(5):102-106.
    杨梅,蒲俊兵,张俊鹏,等.重庆典型岩溶区地下河表层沉积物OCPs初步研究[J].环境工程学报,2009,3(7):1340-1344.
    杨梅,张俊鹏,蒲俊兵,等.重庆典型岩溶区地下河水体有机氯农药污染初步研究[J].中国岩溶,2009,28(2):144-148.
    杨梅.典型岩溶区地下河有机污染物控制因素及运移特征研究-以重庆南山岩溶槽谷区为例[D]. 重庆:西南大学,2010,36-54.
    袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988.
    袁道先,朱德浩,翁金桃,等.中国岩溶学[M].北京:地质出版社,1994:127-164.
    袁道先.论岩溶水的不均匀性[A].岩溶地区水文地质及工程地质工作经验汇编[C].北京:地质出版社,1978:1-19.
    张迪瀚,马永亮,贺克斌,等.北京市大气颗粒物中多环芳烃(PAHs)污染特征[J].环境科学,2006,7(7):1269-1275.
    张路,范成新,秦伯强,等.太湖宜漂河水系沉积物中多环芳烃来源解析[J].地球化学,2003,32(2):124-130.
    张天彬,万洪富,杨国义,等.珠江三角洲典型城市农业土壤及蔬菜中的多环芳烃分布[J].环境科学学报,2008,28(11):2375-2384.
    张天彬,杨国义,万洪富,等.东莞市土壤中多环芳烃的含量、代表物及其来源[J].土壤,2005,37(3):265-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700