用户名: 密码: 验证码:
气力式喷嘴雾化机理研究及水煤浆气化喷嘴的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雾化是指通过一定的方式将连续流动的液体破碎、分裂,最终形成具有一定尺寸分布的不连续雾状液滴。在工农业生产及航空、军事等领域,雾化得到广泛的应用。气力式雾化一般用来雾化高粘度燃料(如水煤浆、重油等),研究气力式喷嘴雾化特性及机理,具有非常重要的意义。气化喷嘴是水煤浆气化技术的核心设备,其性能、使用寿命将直接影响到整个装置的运行质量,装置的大部分技术经济指标都与喷嘴有关。目前工业化运行装置上的喷嘴形式均是三通道喷嘴。虽较好的实现了结构与材料的统一,但是存在性能不够理想,寿命较短的缺点。开发一种新型的气化喷嘴,将具有非常现实的意义。
     本文首先介绍了水煤浆气化技术现状及存在的问题;介绍了国内外各种水煤浆气化喷嘴的结构及特点;指出水煤浆气化对喷嘴的要求,并提出了用两通道部分内混式喷嘴作为气化喷嘴的想法。
     其次,介绍了试验台架系统及相关测量仪器、设备,简要介绍了喷嘴雾化方式及雾化机理研究现状。研究了两通道外混式喷嘴平行冲击及30度冲击时的雾化特性;分别研究了圆射流在无雾化介质气体及有雾化介质气体时的失稳、变形、破裂及雾化过程;研究了两通道部分内混式喷嘴的雾化特性;研究了三通道喷嘴的雾化特性,并对各种喷嘴雾化性能进行了对比。
     最后,简单介绍了水煤浆的气化理论,特别计算了水煤浆气化时的气耗率(氧气、水煤浆质量流量比)。对两通道部分内混式喷嘴进行了雾化试验,研究了结构尺寸对雾化性能的影响,并对其进行选型优化。还尝试用Fluent软件模拟了这种喷嘴雾化时的内外流场。
Atomization is a process that the continuous liquid is distorted, breaks up, and finally becomes separated droplets with certain size distribution. Sprays are widely used in vary fields such as industry, agriculture, aviation, military and so on. High viscosity fuels (such as CWS, heavy oil) are usually atomized by air-blast atomizers. It is very important to study the characteristic and mechanism of the air-blast atomization. As key equipment in CWS gasification technologies, the characteristic and life-span of the fuel burner plays an important role in the operation. Most technical indexes of the gasification are related to the burner. At present, all the fuel atomizers (or burners) used in gasification industrial applications are three-channel ones, which structures are well combined with materials. But the shortage of such burners is critical, saying, bad atomization characteristic and short life-span. It would be much of practical value to develop a new novel atomizer.
    First, this paper introduces the status quo of gasification technology for CWS, describes the characteristics as well as structures of some gasification atomizers home and abroad. The requirements of CWS gasification for the fuel burner are given. A new idea is given that a two-channel partial internal-mix atomizer should be a CWS gasification burner.
    Secondly, the test system and the relevant instruments and apparatuses are presented. The paper then tells us some of the atomizing types for sprays as well as the status quo of the study progress for atomization mechanism around the world. The atomization characteristics of the two-channel external-mix air atomizer (both parallel type and convergent type with 30 degree), the two-channel partial internal-mix atomizer, and the three-channel air-blast atomizer are investigated experimentally. The process of destabilization, distortion, breakup, and finally atomization for the round jet is observed when it is injected into a room either with or without atomizing gas medium.
    At last, the gasification theory for CWS is stated briefly. In special the oxygen-slurry ratio in gasification is calculated theoretically. Some atomization experiments of partial internal-mix air-blast atomizers are carried out in order to study the effects of both the structure and the sizes on the SMD. The ones which perform the best are thus selected. A trial is also carried out to simulate the internal and external flow fields of such atomizer using the Fluent software.
引文
[1] 范维唐,能源现状与发展趋势,云南节能通讯,2005.4,(7):1-6
    [2] 李丹,能源问题:煤炭、石油与天然气,中国科技财富,2005,(8):40-44
    [3] 岑可法等,煤浆燃烧、流动、传热和气化的理论与应用技术,杭州:浙江大学出版社,1995
    [4] Gasification markets and technologies-Present and Future. Report Prepared by US Department of Energy, 2002.
    [5] 于广锁等,气流床煤气化的技术现状和发展趋势,现代化工,2004.5,24(5):23-26
    [6] 于广锁等,气流床水煤浆气化技术的应用现状及开发进展,煤化工,2004.6(3):1-4
    [7] 金陵石化“水煤浆”工程投产,http://www.sina.cim.cn,2005.10.10,00:33 人民网.华东新闻
    [8] 王伟,有关水煤浆加压气化炉改进与发展的几个问题,全国煤气化技术通讯,2004(2):33-35
    [9] 魏欲晓,水煤浆气化技术的发展与其面临的问题,煤炭工程,2004(10):56-58
    [10] 王建平,制约德士古水煤浆气化制氨装置运行因素的分析,化肥设计,1998,36(3):10-14
    [11] 王旭宾,德士古煤气化工程技术问题的探讨,煤气与热力,2004.4,24(4):197-199
    [12] 王旭宾,德士古煤气化工艺烧嘴的探讨,上海化工,2000,25(11):15-18
    [13] 吴韬等,水煤浆气化过程研究及新喷嘴技术开发(上、下),上海化工,1999,24(10):15-16,27;1999,24(11):25-27,
    [14] 任建兴,水煤浆喷嘴技术的研究,浙江大学博士学位论文,1992.10
    [15] 姚悦,高粘度流体气力雾化机理及试验研究,浙江大学硕士学位论文,2006.2
    [16] Lefebvre,A.H. Atomization and Sprays.Hemispere. 1989
    [1] 岑可法等,煤浆燃烧、流动、传热和气化的理论与应用技术,杭州:浙江大学出版社,1997,P.850
    [2] 于广锁等,气流床煤气化的技术现状和发展趋势,现代化工,2004.5,24(5):23-26
    [3] 许令奇,德士古煤气化技术改造的几个思路,中氮肥,2003.5,(3),19-21
    [4] 金陵石化“水煤浆”工程投产,http://www.sina.com.cn,2005.10.10,00:33,人民网-华东新闻
    [5] 王旭宾,德士古煤气化工程技术问题探讨,化肥工业,2004,31(2),37-40
    [6] Process for the Gasification of a Liquid Carbonaceous fuel, 2776195, Jan.1,1957,Unite States Patent Office
    [7] Production of Synthesis Gas,3528930,Sept.15,1970, United States Patent Office
    [8] Synthesis Gas Generation,3705108,Dec.5,1972, United States Patent Office
    [9] Synthesis Gas Generation,3743606,July 3,1973, United States Patent Office
    [10] Burner for the Partial Oxidation of Slurries of Solid Carbonaceous fuels, 4364744, Ded.2 1982, United States Patent Office
    [11] Burner for Combusting Oxygen-Coal Mixture,4445444,May 1,1984, United States Patent
    [12] Coal Gasification Apparatus,4527997,Jul.9,1985, United States Patent Office
    [13] Coal Gasification Burner,JP4217704,Aug.7,1992,European Patent Office
    [14] 带有旋流器的三通道组合式水煤浆气化喷嘴,95111750.5,1996.6.26,中华人民共和国专利局
    [15] 五通道负荷可控式水煤浆气化喷嘴,97235458.1,1999.2.3,中华人民共和国国家知识产权局
    [16] 一种多原料浆气化喷,200420041980.1,2005.5.11,中华人民共和国国家知识产权局
    [17] 气液混合相气化喷嘴及使用方法,200410025866.4,2005.8.3,中华人民共和国国家知识产权局
    [18] 王旭宾,德士古煤气化工艺烧嘴的探讨,上海化工,2000,25(11):15-18
    [19] 于广锁等,气流床水煤浆气化技术的应用现状及开发进展,煤化工,2004,32(3):1-5
    [20] 吴韬等,水煤浆气化过程研究及新喷嘴技术开发(上),上海化工,1999,24(10):15-16
    [1] 李习臣,大型水煤浆喷嘴的开发与雾化机理研究,浙江大学硕士学位论文,2004.3
    [2] 姚悦,高粘度流体气力雾化机理及试验研究,浙江大学硕士学位论文,2006.2
    [3] 蔡武昌,孙淮清等。流量测量方法和仪表的选用,北京:化学工业出版社,2001
    [4] 梁国伟,蔡武昌等。流量测量技术及仪表。北京:机械工业出版社,2002
    [5] 邱栋梁,孙传友。差压式流量测量系统,石油仪器,2005.4,19(2):53-54
    [6] 汤良焕,气体流量测量的温度与压力补偿,自动化仪表,1999,20(9),1-2,6
    [7] 张海鹏,路军平等。气体流量测量时的密度补偿。测量与设备。2005,1,31-32。
    [8] 华自强,张忠进等。工程热力学,北京:高等教育出版社,2000
    [9] 曹建明,喷雾学,北京:机械工业出版社,2005.5
    [10] 陈惠钊,粘度测量,北京:中国计量出版社,1994.6
    [11] 李学刚,王以和等。测定表面张力装置的改进。分析测试仪器通讯。1995.03,5(3):133-136
    [12] 赵臣玺.表面活性剂物理化学.北京:北京大学出版杜.1991.13.
    [13] 杜巧云,葛洪,表面活性剂基础及应用.北京:中国石化出版社 1999
    [1] 曹建明,喷雾学,北京:机械工业出版社,2005.5
    [2] Cao J. On the Theoretical Prediction of Fuel Droplet Size Distribution in Nonreactive Diesel Spays. J. of Fluids Engineering, ASME Trans.,2002.124(1):182-185
    [3] Levy N, Amara S, Champoussin J C, Guerrassi N. Non-reactive Diesel Spray Computations Supported by PDA Measurement. SAE Paper970049,1997
    [4] Clare H, Gardiner J A, Neale M C. Study of Fuel Injection in Air Breathing Combustion Chambers. London: Experimental Methods in Combustion Research. 1964:5-20
    [5] Carey F H. The Development of the Spill Flow Burner and Its Control System for Gas Turbine Engines. J.R. Aeronaut Soc., 1954,58(7): 737-753
    [6] Lewis J D. Studies of Atomization an Injection Processes in the Liquid Propellant Rocket Engine. Combustion and Propulsion. London: Fifth AGARD Colloquium on High Temperature Phenomena. 1963.141-174
    [7] 梁彤,马素平,应用于喷雾降尘的喷嘴设计浅析,机械管理开发.2003(1):13-14
    [8] 周新建,引射雾化喷嘴螺旋导水芯孔径的确,农业机械学报.2002,33(5):136-137
    [9] 李习臣,大型水煤浆喷嘴的开发与雾化机理研究,浙江大学硕士学位论文,2004.3
    [10] 岑可法等,煤浆燃烧、流动、传热和气化的理论与应用技术。杭州:浙江大学出版社,1995
    [11] 黄镇宇,周志军等。撞击式多级雾化水煤浆喷嘴的试验研究,热力发电,2001,30(3):40-42
    [12] 章明川,吕勇。Y型喷嘴内部气液两相流动及液膜雾化的数学模型,燃烧科学与技术.2000,6(3):205-209
    [13] Robert H. Hickman, Fred P. Buckingmam, "Burner Development for Coal and Water Slurry Fuel".
    [14] 王达文,孙荣权.高雾化质量喷嘴的设计研究[J] 沈阳大学学报 2001,13(4):55-57.
    [15] 姚悦,高粘度流体气力雾化机理及试验研究,浙江大学硕士学位论文,2006.2
    [16] 王宗明,段希利,仇性启.气动旋流喷嘴燃烧特性实验研究[J]石油化工设备.2004,33(3).10-12.
    [17] 贺文智,吴文林,李福。高粘度物料雾化特性的实验研究[J]内蒙古石油化工 2000,22(8),34-38.
    [18] 刘联胜,傅茂林等。小流量气泡雾化喷嘴研究,燃烧科学与技术,2001,7(2):182-185
    [19] 刘联胜,傅茂林等。内超声气泡雾化喷嘴实验研究,燃烧科学与技术,2002,8(2):155-158
    [20] 包国平,邓龙国,气泡雾化油枪在煤粉炉上的应用,能源技术。2000,21(4).:215-218
    [21] 包国平,邓龙国,气泡雾化燃烧技术油枪在夏港电厂煤粉炉上的应用,中国电力,2000,33(12):10-12
    [22] 刘联胜,吴晋湘等,气泡雾化喷嘴混合室内两相流型及喷嘴喷雾稳定性,燃烧科学与技术,2002,8(4).:353-357
    [23] 安恩科,朱基木等,气泡雾化喷嘴的试验研究,发电设备,2002(6):11-14
    [24] Chin J S, Lefebvre A H. A Design Procedure for Effervescent Atomizer. J of Engineering for Turbines and Power, ASME Thras. 1995,117:266-271
    [25] Croesler T Lefebvre A H. Studies on Aerated-Liquid Atomization. International J. of Turbo and Jet Engines, 1989,(6): 221-229
    [26] Wang X F, Chin J S, Lefebvre A H. Influence of Gas-Injector Geometry on Atomization Performance of Aerated-Liquid Nozzles. International J. of Turbo and Jet Engine, 1989,(6): 271-279
    [27] 刘鸿,王家骅,超声波雾化喷嘴的试验研究,江苏工业学院学报,2005,17(1):31-33
    [28] 孙晓霞,超声波雾化喷嘴的研究进展,工业炉,2004,26(1):19-23,32
    [29] W.A.Sirignano, C.Mehring. Review of Theory of Distortion and Disintegration of Liquid Streams[J].Progress in Energy and Combustion Science,2000,26:609-655
    [30] 曹建明,喷雾学研究的国际进展,长安大学学报(自然科学版),2005.1,25(1):82-87
    [31] 曹建明,马志义。喷雾中液滴破碎机理的研究,车用发动机,1997,(4):11-14
    [32] Hinze, J.O., Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Process. AICHE J., 1955,1 (3): 289-295
    [33] Reitz R D, Bracco F V. Mechanism of Atomization of a Liquid Jet [J]. Phys. Fluids. 1982,25:1730-1742
    [34] Lin S P, Lian Z W. Absolute instability of a liquid jet in a gas [J]. Phys. Fluids, 1989 ,A 1:490-493
    [35] Villermaux, E. Mixing and Spray Formation in Coaxial jets [J]. Prop. Power. 1998,14:807-817
    [36] 黄亚平,王应时,高丽君.水煤浆外混式气动雾化机理研究[J].工程热物理学报,1991,12(1):84-90
    [37] 田春霞,仇性启,崔运静.喷嘴雾化技术进展[J].工业加热,2005,34(4):40-43
    [38] Lefebvre,A.H.Atomization and Sprays.Hemispere.1989
    [39] 汪海清,刘长乐等。燃油喷射雾化机理的探讨,燃烧科学与技术,1995,1(3):281-285
    [40] Weber C. Disintegration of Liquid Jets. Z.Angrew.Math.Mech., 1931,11(2): 136-159
    [41] Haenlein. Disintegration of a Liquid Jet. NACA,1932,TN659
    [42] Ohnesorge W. Formation of Drops by Nozzles and the Breakup of Liquid Jets, Z.Angrew.Math.Mech., 1936, 16:255-358
    [43] 曹建明,射流雾化机理的研究,汽车运输研究,1997.12,16(4):49-53
    [44] Li X. Mechanism of Atomization of a Liquid Jet. Atomization and Sprays,1995,5:89-105
    [45] 史绍熙,郗大光。液体射流的非对称破碎,燃烧科学与技术,1996(3):1-8
    [46] 史绍熙,郗大光。液体射流结构特征的理论分析[J],燃烧科学与技术,1996,2(4):307~314
    [47] 杜青,史绍熙等。液体燃料射流最不稳定频率的理论分析(1)——液体燃料射流的最不稳定频率及无量纲数的影响,内燃机学报,2000,18(3):283-287
    [48] 杜青,史绍熙等。液体燃料射流最不稳定频率的理论分析(2)——液体燃料射流的最不稳定频率及无量纲数的影响,内燃机学报,2000,18(3):288-292
    [49] Michael Rachner, Julian Becker. Etc .Modeling of the Atomization of a Plain Liquid Fuel Jet in Crossflow at Gas Turbine Conditions. Aerospace Science and Technology, 2002, (6): 495-506
    [50] 曹建明,环状粘性液体层喷雾的形成与特点,西安公路交通大学学报,1997.3,17(1):54-59
    [51] 严春吉,解茂昭,空心圆柱形液体射流分裂与雾化机理的研究,水动力学研究与进展,2001.6,16(2):201-206
    [52] 严春吉,解茂昭,气动力对空心圆柱形液体射流分裂与雾化特性的影响,大连海事大学学报,1998.5,24(2):84-88
    [53] C.M.Varga, J.C.Lasheras and E.J.Hopfinger. Initial Breakup of a Small-diameter Liquid Jet by a High-Speed Gas Stream [J]. Fluid Mech,2003,497:405-434
    [54] 黄镇宁,张传名等。6t/h撞击式水煤浆喷嘴雾化特性试验研究,中国电机工程学报,2004.6,24(6):201-204
    [55] 于广锁等,气流床水煤浆气化技术的应用现状及开发进展,煤化工,2004.6,(3):1-5
    [56] 王建平,制约德士古水煤浆气化制氨装置运行因素的分析,化肥设计,1998,36(3):10-14
    [57] 王少云,杨永喆等。三通道空气气流式喷嘴的雾化特性,华东理工大学学报,2003.12,29(6):595-598
    [1] 王同章,煤炭气化原理与设备,北京:机械工业出版社,2001
    [2] 张东亮,中国煤气化工艺(技术)的现状与发展,煤化工,2004.4,(2):1-5
    [3] 丁振亭,德士古气化炉的应用与改进,化工设计,1995,(6):8-13
    [4] 于广锁等,气流床水煤浆气化技术的应用现状及开发进展,煤化工,2004.6,(3):1-5
    [5] 张素玲,水煤浆气化技术的特点及应用,山西化工,2003.2,23(1):53-55
    [6] 贺永德等,现代煤化工技术手册,北京:化学工业出版社,2004
    [7] 黎军,德士古水煤浆气化工艺概况,安徽化工,2001,(1):46-49
    [8] 吴韬等,水煤浆气化过程研究及新喷嘴技术开发(上、下),上海化工,1999,24(10):15-16,27;1999,24(11):25-27
    [9] 黄镇宇,张传名等,6t/h撞击式水煤浆喷嘴雾化特性试验研究,中国电机工程学报,2004.6,24(6):201-204
    [10] Tolpadi, A.K., D.L.Burrus, etc. Numerical Computation and Validation of Two-Phase Flow Downstream of a Gas Turbine Dome Swirl Cup. ASME-Journal of Engineering for Gas Turbines and Power, 1995, 117,704-712.
    [11] 严春吉,解茂昭等,粘性气体中粘性液体射流分裂与雾化机理研究,空气动力学学报,2004.12,22(4):422-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700