用户名: 密码: 验证码:
雾状介质中放电修整金刚石砂轮技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对基于光学投影或图像在线检测的精密曲线磨床一般不使用工作液的特殊要求,本文提出了以雾状介质作为工作介质的放电修整金刚石砂轮技术。雾中放电修整金刚石砂轮技术是一种新型的特种加工修整超硬磨料砂轮技术。该修整技术减少了对液体介质的依赖,符合绿色制造的潮流,容易实现自动化,可应用于精密磨床的在线修整,具有广阔的应用前景。本文采用放电蚀除砂轮材料机理研究、有限元数值模拟和实验研究相结合的方法,对放电选择性去除砂轮材料基本原理、放电修整砂轮表面瞬态温度场、砂轮表面形貌控制技术等进行了系统的研究,为开发低成本、高效率、适应性广、工业化应用程度高的超硬磨料砂轮电加工修整技术打下理论基础。
     对雾气中电火花放电蚀除材料机理进行了全面的研究。以气体介质电导和击穿机理为基础,详细分析了雾状介质的电导与击穿机理。雾状工作介质是连续状气体和微细工作液滴混合物,由于电场畸变,雾状介质中电火花放电的击穿电压降低为纯气体击穿电压的1/3左右。从雾状介质的击穿和放电通道形成、能量转换分布和传递、电蚀产物的抛出与极间介质消电离几个方面阐述砂轮表面材料的抛出机理,建立了单脉冲火花放电材料融熔抛出的物理模型。该模型把雾状介质中单个脉冲放电蚀除材料的过程分为三个阶段:电离准备阶段、放电热蚀阶段和消电离抛出阶段。
     针对传统电火花放电修整非导电和弱导电超硬磨料砂轮的局限性,提出通过辅助放电材料实现雾中放电修整非导电金刚石砂轮的技术方案。建立了放电去除砂轮表面金属结合剂和树脂结合剂以使金刚石磨粒突出的物理模型。详细分析了金刚石磨粒与结合剂两种材料热电物理性能差异,从材料学、传热学和电火花加工学三个方面,阐述了放电修整金刚石砂轮的选择性蚀除砂轮组成材料以实现砂轮整形或修锐的基本原理。并通过运动放电点热源作用于砂轮表面的温度分布解析计算,从理论上验证了放电修锐金刚石砂轮选择性去除结合剂的可行性。
     采用参数化编程建立了放电修整青铜结合剂金刚石砂轮三维瞬态温度场模型并对其进行了较为全面的数值模拟研究,得到了得到了青铜结合剂熔融和金刚石磨粒修整过程温度场的分布和变化规律。模拟结果表明,青铜结合剂熔融层和金刚石磨粒不同层面的最高温度均随着峰值电流的升高而升高;脉冲宽度对青铜结合剂和金刚石磨粒最高温度的影响不明显;青铜结合剂熔池的半径和深度随着峰值电流和脉冲宽度的升高而加大;青铜结合剂熔融层最高温度及达到蚀除温度的结合剂深度随着砂轮移动速度的增加而减小。利用所建立的金刚石砂轮温度场的计算机仿真系统可以对砂轮修整过程进行工艺参数调整及优化,为后续青铜结合剂和树脂结合剂金刚石砂轮的修整实验奠定了基础,有利于实现高效去除青铜和树脂结合剂且避免过高温度使金刚石颗粒石墨化丧失磨削工作能力的修锐目标。
     在理论分析砂轮材料选择性去除机理和放电修整砂轮温度场数值模拟基础上,在电火花成形机床上对青铜基金刚石砂轮和树脂结合剂砂轮进行了一系列不同工艺参数的放电修锐实验。实验研究了放电峰值电流、脉冲宽度、砂轮移动速度、工作介质、开路电压等工艺参数对砂轮表面形貌及修整效率的影响。利用KEYENCE三维数字显微镜观察电火花修锐前后金刚石砂轮表面的微观形貌。修锐前后金刚石砂轮表面的表面峰点高度用Vecco公司生产的Dektak6M探针表面轮廓仪来测量。不同工作介质实验结果表明,雾状乳化液修锐的砂轮表面形貌最佳,空气中修锐的砂轮表面金刚石磨粒石墨化现象最严重且修整效率低。在雾状乳化液中放电修锐青铜基金刚石砂轮实验结果表明,放电峰值电流和砂轮运动速度是影响砂轮表面形貌及金刚石磨粒性能的主要因素,放电脉冲宽度对砂轮表面金刚石磨粒形状特征的影响作用不明显,峰值电流和脉冲宽度影响是修整效率的主要因素,开路电压对砂轮表面形貌和修整效率均没有影响。
     放电修锐树脂结合剂砂轮实验结果表明:本文提出的树脂结合剂砂轮表面涂覆一层辅助放电材料后再进行表面放电修整的技术方案是可行的;放电修锐工艺参数对树脂结合剂砂轮表面轮廓形貌和修整效率的影响规律与对放电修锐青铜结合剂的影响规律基本一致;但由于树脂结合剂的碳化分解温度远远低于青铜结合剂的熔点,因此适合修整的放电峰值电流Ie为1~3A。通过对比不同修锐工艺参数修锐后青铜金刚石砂轮的磨削力可知,砂轮磨削能力主要取决于磨粒裸露高度、工作磨粒数量及是金刚石磨粒形状的完整性。本实验中所用金刚石砂轮磨粒的合理裸露高度为:35μm~50μm。
A novel truing and dressing method on superabrasive grinding wheel, namely mist-jetting electrical discharge truing and dressing (MEDD), has been proposed in this paper. MEDD process eliminates vast dielectric liquid and produces less corrosion and pollution to function units in contrast with conventional EDD. It is a green manufacturing technology and has an extensive application prospects on truing/dressing system on-line of precision grinding machine. In this paper, the mechanism of the selective removal of the bond, the transient temperature fields as well as wheel surface profiles and topography control technologies of MEDD process have been systematically studied combining methods of theoretical analysis, FEM numerical simulation and experimental study .It will have an important theoretical value and practical significance not only for the cost reducing and increasing efficiency but also for promoting the development and application of MEDD technology on preparation of superabrasive grinding wheels.
     The author proposed a complete study on the material removal mechanism of EDM with misted dielectric. The conductance and disruption of misted dielectric are analyzed systematically on the basis of gas medium. Electric field distortion is caused within misted dielectric for the reason that misted dielectric is composed of continuous gas and tiny liquid drops. Consequently, the disruption voltage is about a factor of three than that for gas medium. The material removal mechanism of EMDD process is analyzed on four aspects, which are the disruption of misted dielectric and formation of discharge channel, the conversion of discharge energy, the materials' shoot off and deionization process and a model of single pulse discharge is established. The model shows that the process of material removal for a single pulse discharge includes three stages, ionizing, electrical discharge, and de-ionizing.
     Conventional EDD technology shows important limitations that it is only applicable to metal-bonded wheels. This paper proposed novel MEDD technology which could truing/dressing non-electrical superabrasive grinding wheels such as resin-bonded diamond wheel and vitrified CBN wheel by means of covering electrical material on the surface of wheel. The principle of removing metal-bond and resin bond during MEDD process is illustrated. The thermal and electrical physical properties differences between bonds and diamond abrasives are analyzed. At the same time, the mechanism of selective removal of the bond and revealing diamond grains is completely clarified on three aspects, which are material science, conduction of heat and electrical discharge machining theory. The calculattion results of temperature distribution indicate that MEDD technology is feasible for metal-bonded and resin-bond superabrasive grinding wheel.
     Three-dimensional finite element model of transient temperature fields in MEDD process has been built up and relatively comprehensive numerical simulation has been carried out with parametric programming methods. The temperature distribution and variation rules of bronze-bond and diamond grain have been obtained. Simulation results indicated that the maximal temperature of bronze-bond and diamond grains at different layers increase with discharge current. It also reveals that the depth and width of bronze-bond crater increase with the discharge current and pulse duration. However, the maximal temperature of bronze-bond and diamond grains does not increase too much with the growth of pulse duration. At the same time, the maximal temperature of bronze-bond and the depth of molten bronze-bond go down as the speed of grinding wheel increases. The simulation model is benefit to quality forecast, parameter regulation and optimization in the process of truing and dressing bronze-bond diamond grinding wheel. It also helps to avoid that high temperature make diamond grain graphitization or the temperature is not high enough to remove the metal bond well. The simulation model can keep from the blindness to true and dress diamond wheel directly.
     A series of dressing experiments were carried out on a TROOP434 Die-Sinking Electrical Discharge Machine according to bond selective removal mechanism and temperature fields numerical simulation results. The influence of process parameters including discharge current, pulse duration, speed of wheel, discharge voltage and different dielectric fluid on dressing quality and efficiency was systematically studied with experiments. The condition of the wheel before and after MEDD was analyzed by studying the wheel surface topography. Wheel surface topographies before and after dressing were observed by optical microscope (model: KEYENCE VH-8000 Digital HD); a Dektak 6M profilometer has been used in this work to quantify the grit protrusion before and after dressing. Different dielectric experiments results showed that wheel surface topography with emulsion mist is the best, and that the dressing quality and efficiency of experiments with gas were the worst. Dressing bronze-bond diamond wheel experiments results indicated that discharge current and speed of grinding wheel had direct influence on the wheel surface topography and the performance of diamond grains. As well as, pulse duration had less influence on the wheel surface topography. The experiments results also revealed that discharge current and pulse duration were chief parameters which can affect dressing efficiency, and that discharge voltage had no influence on dressing quality and efficiency.Dressing resin-bond diamond wheel experiments results indicated that the EMDD method proposed in this paper has been applicable to non-electrical bond wheels. Simultaneity, dressing process parameters have the same influence on dressing quality and efficiency as dressing bronze-bond diamond wheel experiments. However, the appropriative discharge current in dressing resin-bond diamond wheel process was much less than one in dressing bronze-bond diamond wheel for the reason that the decomposing point of resin-bond is 200-400℃is less than melting point of bronze-bond. The results of grinding forces measurement showed that the performance of wheel depended on the protrusion height of diamond grain and the number of cutting grains on the wheel surface. The appropriate protrusion height of diamond wheel used in experiments was 35μm~50μm.
引文
[1]滕燕,盖玉先,董申.超精密磨削中的超硬砂轮修整技术[J].航空精密制造术, 2000, 36(1): 17-20
    [2]惠军涛,邓小玲,范全堂.超硬材料砂轮的修整技术.矿山机械,2004,(2):52-53
    [3]莫时雄.超硬磨料砂轮修整与ELID修磨技术.金刚石与磨料磨具工程,2003,137 (5):64-65.
    [4]朱从容.超高速磨削及其关键技术.机械工艺师,2002,(1): 5-8.
    [5]李伯民,赵波.实用磨削技术[M].北京:机械工业出版社,1996:106
    [6]蔡光起,冯宝富.磨削磨料加工技术的最新发展.航空制造技术,2003,(4):31-35.
    [7]樊全堂,赵波,超硬磨料砂轮修整技术的新发展.焦作工学院学报,2003,22(1):43- 47.
    [8]崔恒泰,夏锐,邱丽花.陶瓷CBN砂轮的修整对磨粒分布状态和磨削效果的影响.金刚石与磨料磨具工程,1996(1) :19-22
    [9]吴小玲,杨茂奎,任敬心,康仁科.陶瓷结合剂CBN砂轮的修整.工具技术,1997(5): 23-26.
    [10]朴承镐.超微粒金刚石砂轮精密修整技术.光学技术,1995,(1):24-30
    [11]郭隐彪,杨继东,梁锡昌.杯状砂轮修整器对CBN砂轮的修形及磨削.制造技术与机床,1999, (2): 33-35.
    [12]阎秋生,田中宪司,庄司克雄.小直径CBN砂轮的磨削特性研.制造技术与机床,1999 (9): 34-36
    [13]李亚非,赵文祥,王西彬.GC杯形砂轮修整碟形金刚石砂轮实验研究.金刚石与磨料磨具工具,2004,137(5):28-30
    [14]张丙鹏,赵文祥,王西彬等.金刚石微粉烧结棒和D、GC杯型砂轮修整碟型金刚石砂轮对比研究.金刚石与磨料磨具工程,2005,145(5):13-17
    [15]赵文祥,庞思勤等.D杯形砂轮修整碟形金刚石砂轮试验研究.金刚石与磨料磨具工程,2006, 153(3):30-34
    [16] Xiaoping Li. A free-abrasive machining approach to dressing of resin-bonded CBN grinding wheels. Materials Processing Technology, 1995, 48: 223-230
    [17]蔡光起,巩亚东,宋贵亮译.磨削机理与应用[M].沈阳:东北大学出版社, 2002, 8
    [18] Han Huang. Effect of truing/dressing intensity on truing/dressing efficiency and grinding performance of vitrified diamond wheels. Journal of Materials Processing Technology, 2001, 117: 9-14.
    [19]王先逵,应宝阁.金刚石微粉砂轮软弹性修整研究Ⅰ—软弹性修整法及其机理.金刚石与磨料磨料工程,1995, 90(6):7-11
    [20]王先逵,应宝阁.金刚石微粉砂轮软弹性修整研究Ⅱ—软弹性整形的特点及砂带选择.1996, 91(1):10—13.
    [21] Mingxia Ma, Baoge Ying, Xiankui Wang. Soft-elastic dressing of fine grain diamond wheels. Journal of Material Processing Technology, 2000, 103: 194-199
    [22] Nankov M. Supersonic Activation of Cup–Shaped Diamond Disk Grinding. ISME, 1989: 89-24.
    [23]何琦.特种加工在修整金属结合剂砂轮中的应用.江苏理工大学学报,1998,19 (6): 21-24
    [24]樊全堂,赵波.砂轮磨削的超声修整效果.机械研究与应用,2003,16(1):21-23.
    [25]马新毅,赵波.超声振动修整砂轮的效果.新技术新工艺,2003,4:19-20.
    [26]樊全堂,路龙海.超声振动修整砂轮系统的阻抗分析.现代制造工程,2003, (7):75 -77
    [27] S.Hirasi, T.Aoki, S.Ithon, H. Fukatsu. Develompent of Uibration Lap Dressing Equipment .The 3rd International Conference on Abrasive Technology (ABTEC’99) - Current Development and Applications, 1999, (11): 223-226
    [28] R Murata, K Okano, C Tsutsumi. Grinding of structural ceramics. Grinding Symposium PED, 1985, (16) : 261-272
    [29] H Ohmori, T Nakagawa. Mirror surface grinding of siliconwafers with electrolytic in-process dressing, Annals of the CIRP ,1990,39 (1) : 329-332;
    [30]大森整.非球面しこス.およびに金型のELID镜面研削.机械と工具,1992,(12):42-47
    [31]大森整.ELIDにより高硬度材の高能率研削.机械と工具,1993,(11):34-42
    [32] H. S. Lim , K . Fathima, A. Senthil Kumar , M . Rahman. A fundamental study on the mechanism of electrolytic in-process dressing (ELID) grinding. International Journal of Machine Tools & Manufacture, 2002, 42: 935-943.
    [33] D. Kramer, F. Rehsteiner. A New Method for Grinding of Modern High-Performance Cutting Materials to Highest Quality . Annals of the CIPP, 1999, 48: 265-268.
    [34]李长河,修世超,蔡光起.超硬磨料砂轮修锐技术最新进展.工具技术,2005,9(3):7-9
    [35] H Ohmori, T Nakagawa. Analysis of mirror surface generation of hard and brittle materials by ELID grinding with superfine grain metallic bonded wheels, Annals of the CIRP, 1995,44(1): 287-290.
    [36] B.P Bandyopadhyay, H Ohmori, I.Tahahashi, Efficient and stable grinding of ceramics by electrolytic in-process dressing, Journal of Material Processing Technology, 1997, 66:18-24.
    [37] B.P Bandyopadhyay, H Ohmori, I. Tahahashi, Ductile regime bonded wheels , International Journal of Machine Tools & Manufacture ,1998,38:747-762;
    [38] K. Fathima, A. Senthil Kumar, M.Rahman, H.S. Lim, A study on wear mechanism and wear reduction strategies in grinding wheels used for ELID grinding. Wear, 2003, 254:1247-1255.
    [39]张飞虎,朱波等.ELID—硬脆材料精密和超精密加工的新技术.宇航材料工艺, 1999,(1):51-55
    [40]王先逵,刘为刚,应宝阁.超硬磨料磨具修整技术的发展.磨料磨具磨削,1994.3 (81):30-32
    [41]朱波,袁哲俊,张飞虎,赵清亮.ELID超精密磨削钢结硬质合金及其表面质量分析.中国机械工程,2000,(8):866-868
    [42]张飞虎,张春河,欧海涛.在线电解修整镜面磨削中砂轮耐用度的研究.哈尔滨工业大学学报,1999,31(6):9-11.
    [43]史兴宽,原京庭,任敬心.铸铁结合剂微粉金刚石砂轮的在线电解修整的试验研究.航空学报,1997,18(5):611-615.
    [44]关佳亮,郭东明,袁哲俊.钢结硬质合金的精密镜面磨削技术的研究.中国机械工程.2000, 11(3):288-289
    [45]关佳亮,郭东明,袁哲.ELID镜面磨削砂轮氧化膜生成机理.中国机械工程,1999, 10(6):630- 633.
    [46]张春河,林彬,韩建华.ELID超精密镜面磨削过程中磨削力变化规律的试验分析.航空精密制造技术,1998,34(1):8-11.
    [47] Suzuki K, Mori N, Uematsu T, et al. A Schema of Electrodischarge Trueing Process by Twin- Electrode Methode. Proceedings of the Spring Meeting of Japan Sociaty of Precision Engineering, 1985: 515-578
    [48] Eun-Sang Lee, Sang-Ook Ahn. Precision surface grinding of Mn–Zn ferrite with in-process electro -discharge dressing (IEDD).International Journal of Machine Tools & Manufacture,1999,39:1655–1671
    [49] E.-S. Lee, Precision Grinding of Mn-Zn Ferrite with In-Process Electro-Discharge Dressing. Int J Adv Manuf Technol, 2000,16:314–321
    [50] E.Ya. Grodzinskii. A New Grinding Process Using Metal Bonded Wheels [J].Proc. of6th ISME, 983: 294-303
    [51] Jose A. Sanchez, Naiara Ortega·etc. Analysis of the electro discharge dressing (EDD) process of large-grit size cBN grinding wheels. Int J Adv Manuf Technol, 2005
    [52] N. Ortega, J.A. Sánchez, J. Aranceta, etc. Optimisation of grit protrusion in the electro-discharge dressing process of large grit size CBN grinding wheels. Journal of Materials Processing Technology, 2004, 149: 524–529
    [53] J. Tamaki, K. Kondoh, T. Iyama, Electrocontact discharge dressing of metal-bonded diamond grinding wheel utilizing a hybrid electrode, J. Jpn. Soc. Precision Eng.1999, 65 (11) :1628–1632.
    [54] J. Xie, J. Tamaki In-process evaluation of grit protrusion feature for fine diamond grinding wheel by means of electro-contact discharge dressing Journal of Materials Processing Technology , 2006, 180:83–90
    [55] Hans Kurt Tonshoff, Thomas Friemuth. In-process dressing of fine diamond wheels for tool grinding Precision Engineering, 2000, 24:58–61
    [56] Brian K. Rhoney, Albert J. Shih et Wire electrical discharge machining of metal bond diamond wheels for ceramic grinding International Journal of Machine Tools & Manufacture, 2002, 42: 1355–1362
    [57] B.K. Rhoney, A.J. Shih, R.O. Scattergood. Wear mechanism of metal bond diamond wheels trued by wire electrical discharge machining, Wear, 2002, 252: 644–653.
    [58]王艳,胡德金等.基于气中放电辅助修整金刚石砂轮的试验研究.机械工程学报,2006, 42(7) : 222–226.
    [59] Yan Wang, Xiao-jun Zhou, De-jin Hu. An experimental investigation of dry-electrical discharge assisted truing and dressing of metal bonded diamond wheel International Journal of Machine Tools & Manufacture, 2006, 46:333–342
    [60]王家金.激光加工技术[M].北京:中国计量出版社,1992
    [61] Westkamper E. Grinding Assisted by N d: YAG Lasers. Annals of the CIRP, 1995, 44 (1): 317- 320
    [62]康仁科,史兴宽,任敬心等.激光修整金刚石砂轮的研究.西北工业大学学报,1999, 17(4):624 -628
    [63]康仁科,超硬磨料砂轮应用中关键技术的研究.西北工业大学博士论文, 1999
    [64]陈根余,谢小柱,李力钧等.超硬磨料砂轮修整与激光修整新进展.金刚石与磨料磨具工程, 2002,128(2):8-12
    [65] N. Ramesh Babu, V.Radhakrishnan, S.Murti. Investigation on Laser Dressing ofGrinding Wheels-Part I: Preliminary Study. Transaction of ASME, Journal of Engineering for Industry, 1989, 111(8): 244-252
    [66] N. Ramesh Babu, V. Radhakrishnan. Investigation on Laser Dressing of Grinding Wheels -PartⅡ: Grinding Performance of a Laser Dressed Alumi-num Oxide Wheel. Transaction of ASME , Journal of Engineering for Industry , 1989,111(8):253 - 261.
    [67] N. Ramesh Babu ,V. Radhakrishnan. Influence of Dressing Feed on the Performance of Laser Dressed Al2O3 Wheel in Wet Grinding. International Journal of Machine Tools & Manufacture, 1995, 35(5):661 - 671.
    [68] Toshikatsu Nakajima , Kazuhito , Ohashi, Li Xi Sun. Dressing of resinoid Bond Wheel with Moving Heat Source ( 1st Report )-Transaction of Wheel Source with a Single Pulse Irradiation of YAG Laser.精密工学会志,1993,59(12):1967 - 1972.
    [69] Toshikatsu Nakajima, Kazuhito, Ohashi ,and Daisuke Yagi ,Dressing of resinoid Bond Wheel with Moving Heat Source(3st Report )-Improvement of Dressing Effect with Q-switched YAG Laser.精密工学会志, 1993,59(12):1153 - 1157.
    [70] E.Westkmper, J.Freytag, U. Harbs. Dressing of Resin-Bonded CBN Grinding Wheels by Means of a Pulsed Nd:YAG Solid-State Laser. Proceedings of the LANE’94, 1994, 1:491-500.
    [71] E.Westkmper. Grinding Assisted by Nd :YAGLasers. Annals of the CIRP, 1995, 44(1): 317-320.
    [72]陈明,李晓天,孙方宏.激光技术在砂轮修锐中的应用.制造技术与机床,2000 (9):23-25
    [73]康仁科,原京庭,史兴宽等.超硬磨料砂轮的激光修锐技术研究.中国机械工程, 2000, 11(5): 493-496
    [74]左敦稳.金刚石砂轮的CO2脉冲激光修锐实验.机械工程学报,1999,35(2):42-45
    [75]陈根余,彭凯,李力钧等.脉冲激光烧蚀树脂CBN砂轮的数值模拟研究.中国机械工程.2000, 16(6): 557-561
    [76] X.-Z. Xie, G.-Y. Chen, L.-J. Li Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser. Optics & Laser Technology, 2004, 36: 409– 419.
    [77] K. C. Yung ,G. Y. Chen,L. J. Li. The laser dressing of resin-bonded CBN wheels by a Q-switched Nd: YAG laser. Int J Adv Manuf Technol, 2003, 22: 541–546
    [78] Chunhe Zhang , Yung C. Shin. Wear of diamond dresser in laser assisted truing and dressing of vitrified CBN wheels. International Journal of Machine Tools &Manufacture, 2003, 43: 41–49.
    [79] C. Zhang, Y.C. Shin A novel laser-assisted truing and dressing technique for vitrified CBN wheels International Journal of Machine Tools & Manufacture, 2002, 42: 825–835
    [80]胡德金,蔡兰蓉,贾妍.超硬磨料砂轮电加工修整技术及其最新进展.2007年中国机械工程学会年会论文集, 2007.
    [81]邹峰,于爱兵,王长昌.金属基金刚石砂轮修整技术的研究进展.精密制造与自动化, 2003, 154(2):12-15
    [82]苏宏华,徐鸿钧.金属结合剂金刚石砂轮制造技术新发展.金刚石与磨料磨具工程2003,13(4): 19-22
    [83]彭庚新,陈根余,黄菊生等.高速超高速磨削与超硬磨料砂轮及其修整的研究.湖南工程学院学报, 2003, 13(1): 32-36
    [84]冯宝富,蔡光起.超高速磨削的发展及关键技术.机械工程师,2002,(1):5-7
    [85]李长河,修世超,蔡光起.高速超高速磨削工艺及其实现技术.金刚石与磨料磨工具,2004,14 (4):16-20
    [86]吴彦农,叶伟昌.单层超硬磨料砂轮的发展与应用.现代制造工程,2002,(9):3-6
    [87]孟中岩,姚熹等.电介质理论基础[M].北京;国防工业出版社,1980
    [88]高树香,陈宗柱.气体导电[M].南京:南京工学院出版,1988
    [89]解广阔.高压静电场[M].上海:上海科学技术出版社,1962
    [90]李明辉.电火花加工理论基础[M].北京:国防工业出版社,1989
    [91]赵万生.先进电火花加工技术[M].北京:国防工业出版社,2003
    [92]蔡兰蓉,贾妍,胡德金.金属基金刚石砂轮的电火花修锐机理研究.稀有金属材料与工程,2008, 37(1): 48-51
    [93] J.G.林哈脱.等离子物理学[M].上海科学技术出版社,1962,12
    [94]斋藤长男,小林和彦.放電加工の加工原理と加工特性.三菱電機技报,41(10)
    [95]侯镇冰,何绍杰,李恕先.固体热传导[M].上海:上海科学技术出版社,1984,12
    [96]方啸虎.超硬材料科学与技术[M].北京,中国建材工业出版社,1998,4
    [97]王秦生.超硬材料制造[M].北京,中国标准出版社, 2002, 3
    [98]万隆,陈石林,刘小磐.超硬材料与工具[M].北京:化学工业出版社, 2006, 4
    [99]《机械工程材料性能数据手册》编委会.机械工程材料性能数据手册[M].北京:机械工业出生社,1995.835
    [100]蔡兰蓉,贾妍,胡德金.电火花修整金刚石导电砂轮温度场分析和实验研究.中国机械工程,2008,19(9):1009-1012
    [101]杨世铭.传热学基础.北京:高等教育出版社,1990.29-79
    [102] ANSYS Theory Manual,Release 6.0.ANSYS Inc.,USA,2001:100-120
    [103]田洪宇,陆纪培.电火花加工表面残余应力的理论和实验研究.电加工,1993(1):16-22
    [104]王艳,胡德金,邓琦林等.金刚石砂轮的激光修整技术.上海交通大学学报,2004,38(7):1069-1072
    [105]李力钧,付杰才.磨削力的数学模型的研究.机械工程学报, 1981, 17 (4):12-19
    [106] S.Malkin, N.H.Cook. Trans ASME Series B, 93, 4, 1971
    [107]任敬心,康任科,史兴宽.难加工材料的磨削.北京,国防工业出版社, 1999
    [108]任敬心,华定安等.金属切削.上海,上海交通大学出版社, 1986
    [109] Kistler corp.力传感器说明资料. 2005
    [110]吴崎.高硬度回转球面精密磨削技术的研究.博士学位论文,上海交通大学, 2007
    [111]上海司太立公司.热喷涂材料性能手册. 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700