用户名: 密码: 验证码:
突变体黑羽鹌鹑的纯化及其MHC class Ⅰ基因多态性与免疫功能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究系统、详实地阐述了鹌鹑生产中新发现的突变体黑羽鹌鹑的羽色遗传机制、公母鹑基因型的判定及纯化过程。突变黑羽基因h位于常染色体上,黑羽公母鹑的基因型分别确定为hhZ~(YB)Z~(YB)和hhZ~(YB)W;黑羽基因h与栗羽、白羽及黄羽基因的互作关系有别于日本鹌鹑黑羽突变体的羽色遗传,是鹌鹑羽色研究中的新进展;通过纯化、扩繁,培育出了黑羽鹌鹑家系群体,该结果对蛋用鹌鹑新品系的培育及自别雌雄配套系制种具有重要应用价值。通过不同试验对这一突变体的生理生化指标、生长发育规律及生产性能等种质特性进行了系统研究,与其他品系鹌鹑相比突变体黑羽鹌鹑的种质特性没有发生显著变化,为进一步合理开发利用这一突变体的种质资源提供了依据。通过PCR技术首次克隆了突变体黑羽鹌鹑MHC classⅠ基因1367 bp的基因片段,并对其基因结构进行了分析,结果显示该片段上有6个外显子,5个内含子,第4外显子具有较高的多态性。对MHC classⅠ基因第4外显子的296bp片段进行多态性分析显示,该片段上有18个突变位点,计算其杂合度H、多态信息含量PIC可知,这18个位点均为多态基因座,其中6个位点导致了氨基酸的改变。为探讨黑羽鹌鹑MHC与其免疫功能的关系,采用试验鹌鹑感染新城疫病毒F48E9后产生的抗体与第4外显子多态性进行关联分析的方法,寻找到抗病力强的基因型,第2、4、6、13、14、15突变位点各基因型之间抗体水平差异显著或极显著,这些基因可作为抗病力的主要候选基因,为鹌鹑抗病育种提供免疫遗传学基础。
As one kind of extremely complex cell membrane protein with high polymorphism in coded immune system, MHC (major histocompatibolity complex) plays a very important role to pass antigen in the body’s immune system. The research of MHC, from which some major issues in immunology are desired to be solved, creates new research fields in immunogenetics. Nowadays, measures such as improvement of raise management, immunifaction, quarrantine of sick birds are used to prevent and cure poultry diseases, but sometimes the effect is not desirable. Numerous researches showed that MHC is closely related to different disease resistance, susceptibility, and production traits, which affects specific and nonspecific immunity of diseases. MHC is important genetic markers of poultry breeding because of its MHC to pass on to offspring stably. And consequently, it becomes a research focus in the genetic field in terms of disease control and prevention. Most of research works aim to improving economic benefit by chioce to strengthen production performance, which results in the side effect decrease of disease resistance. Subsequently, one important purpose of breeding work is to improve the disease resistance and to produce breeds of high resistance immunity. At present, wide and numerous study of MHC in mammalian has been done, which mainly takes chicken as the research object. The quail is an important productive and experimental animal, and quail breeding is known as the future of poultry raising in the 21~(th) century, but there is no relevant research reports in China and relevant research abroad just focuses on Japanese quail. Based on above reviews, it’s significant to study the polymorphism of MHC genes and disease resistances of the quail. The main results of this research are shown as follow:
     1. With the mutant black-feather quails discovered from hybrizing matching between maroon-feather, white-feather and yellow-feather quails as the experimental material, the research shows that, by hybridization and backcross experiments, the newly-discovered black-feather gene h is located in euchromosome. There is a cross-talk between black-feather gene h and gene locus of B/b and Y/y in sex chromosomes Z. The genotype of male and female of black-feather quails are identified as hhZ~(YB)Z~(YB) and hhZ~(YB)W respectively. The black-feather gene h is different from the Genetic mechanisms of the mutant Japanese black-feather quails, which is the new progress in the study on genetic development of quail’s feather. Black-feather quails are purified by three kinds of hybridization and self-bred line experiments, and genealogy of black-feather quails is constructed, which provides an important theoretical basis for cultivating new quail strains for eggs and commercial strains of autosexing breed.
     2. Twenty-six quails were tested to get blood physiological indexes, and the results can be summarized as below: hemoglobin (HGB) and mean corpuscular hemoglobin concentration (MCHC) are very significant different between male and female quails; packed-cell volume (PCV), total white blood cells (TWBC), and mean corpuscular hemoglobin (MCH) are significant different between male and female quails; biochemical indexes, including total protein (TP), albumin (ALB), globulin (GLO), and triglycerides (TG) are very significant different between male and female quails; sodium (Na)and chloride (Cl) are also significant different between male and female quails; but other indexes are not significant different. Compared with other poultry, there are limited changes in physiological and biochemical characteristics for the mutant black-feather quails.
     3. The study aimed to research the hatching performance、growth during 0-10 weeks and feed utilization of mutant black-feather quails. The results show that better hatching effect are distributed at the egg weight between 10.4 and 11.3 gram, egg shape index between 0.77 and 0.81;There are not the siginificant difference btween male and female in early ages,they exit significant difference in the 4th week,and extremely significant difference from the 5th to 10th weeks(P<0.01). Female quails reach sexual maturity at about 7-8th weeks, and male quails delay one week. The weekly weight during former seven weeks is extremely significant correlation with cumulative feed intake.
     4. The five models Logistic, Gompertz, Von Bertalanffy, Brody, and Richards were applied to analyze the growth rule of mutant black-feather quails. The growth curve fitting and analysis were completed by using the body weight data of black-feather quails from 0 to 10 weeks, which included 100 single-feed male and female quails as well as 280 group-feed quails. The results show that there are preferable fitting degrees (R~2) for all of the five models. However, Gompertz indicates the highest fitting degree (0.999) and smaller residual sum of square (E). So Gompertz should be the best option to analyze the growth curve of black-feather quails. The turning-point week age are 2.255 weeks, 2.809 weeks, and 2.731 weeks, and turning-point body weight are 45.041 gram, 58.016 gram , and 53.851 gram for single-feed male, female black-feather quails and group-feed black-feather quails respectively.
     5. Forty-eight mutant black-feather quails were raised at a single cage for each one to investigate the production parameter including age at first egg, primary egg weight, the laying rate, average egg weight, and feed conversion. The results are shown as below: the age at first egg of mutant black-feather quails is 53 days, which is later than other strains; primary egg weight is 8.9 gram;the average laying rate from the age at the first egg to 15~(th) week is 81%;the average egg weight is 10.9 gram, which is suited for the machining demands;the average feed-gain ratio is 3.01±0.31 from the age at the first egg to 15~(th) weeks.
     6. According to GenBank MHC class I mRNA gene sequences of the Japanese quails, the genomic DNA of mutant black-feather quails was refined, from which the PCR was used to clone 1367 base pair fragment of MHC classⅠgene. The results of the gene structure analysis are shown as below: the gene fragments located in 1-241 bp, 391-658bp, 732-873 bp, 954-983 bp, 1143-1175 bp, and 1318-1359 bp are 3~(rd), 4~(th), 5~(th), 6~(th), 7~(th), and 8~(th) exons, whose sizes are 241 bp, 268 bp, 106 bp, 30 bp, 33 bp, and 42 bp respectively; the fragments located in other areas are 3~(rd), 4~(th), 5~(th), 6~(th), and 7~(th) introns, whose sizes are 149 bp,73 bp, 116 bp, 159 bp, and 143 bp respectively; there are many mutations in 4~(th) exon. This experiment also shows that the polymorphism of the gene exon 4 is higher than exon 5, 6, 7, and 8. These results would be helpful to strengthen the molecular biological basis for disease resistance in quail breeding.
     7. Eighty healthy quails of 40 days were injected with Newcastle Disease Virus (F48E9) for three times, and significant different immunity was shown for this virus among all quails. Subsequently, F48E9 Virus was isolated from sick quails. Genomic DNA was extracted from blood of sick quails. The DNA sequences of 64 quails were detected from exon 4 by PCR products with direct sequenced method. Polymorphism analysis indicated that there were 18 mutational sites in this fragment, 8 A/G mutant sites, 5 T/C mutant sites, 1 G/C mutant site, 1 A/G/C mutant site, 2 G/C/T mutant sites, and 1 A/G/T mutant site. The results show that all mutant sites are the bases alternative sites, and all these sites contain heterozygous sites; all of 18 mutant sites are polymorphic loci by calculating its heterozygosity, polymorphism information content. Corelative analysis between the antibody level in sick quails and the polymorphism in exon 4 shows that there are significant or very significant different in antibody level within genotypes of 2,4,6,13,14,15 mutant sites, so these genes can be used as main candidate genes to improve disease resistance of quails.
引文
[1]庞有志,赵淑娟.鹌鹑羽色遗传的研究及应用[J].遗传,2003,25 (4): 450~454.
    [2] Minvielle F. The future of Japanese quail for research and Production [J].World’s Poult Science Journal, 2004, 60:500-507.
    [3] Minvielle F,Hirigoyen E,Boulay M. Associated effects of the roux plumage color mutation on growth, carcase traits, egg production and reproduction of Japanese quail[J]. Poultry Science, 1999, 78(11):1479-1484.
    [4]庞有志,宋东亮.蛋用鹌鹑自别雌雄配套系生产的遗传基础[J].中国家禽, 2001, 23(6):37~38.
    [5]庞有志,宋东亮,邓雯,等.黄羽鹌鹑自别雌雄配套系的杂交效果试验[J].西北农林科技大学学报(自然科学版), 2002, 30(5):51~55.
    [6]邱莫寒,朱庆.家禽MHC概况及其在抗病育种中的应用[J].畜禽业,2006,210(22):6~8.
    [7]李尚民,原新廷,戴国俊,等.鸡主要组织相容性复合体与抗病育种[J].猪与禽,2007,27(2):70~72.
    [8]魏笑笑,王宝维,杨志刚,等.家禽MHC的结构与遗传效应[J].家畜生态学报,2006,27(6):193~196.
    [9]李杰,吴南屏. HIV-l Nef下调MHC-Ⅰ分子研究进展[J].国际流行病学传染病学杂志,2009.,36(4):255~258.
    [10]徐怀亮,汪宴廷,程安春,等.猕猴MHC-DPB1基因外显子2多态性研究[J].遗传,2010,32(6):588~598.
    [11]肖一红,刘光亮,王群,等.猪MHC-Ⅰα生物素化序列融合基因的构建、表达与纯化[J].中国兽医学报,2008,28(4):456~460.
    [12] Hughes A L,Friedman R.Genome size reduction in the chicken has involved massive loss of ancestral protein-coding genes[J].J Mol Biol Evol,2008,25(12):2681~2688.
    [13] Westerdahk H,Wittzell H,Von Schantz T.MHC diversity in two passerine Birds : no evidence for a minimal essential MHC[J].Immunogenetics, 2000,52(1-2):92~100.
    [14] Kaufman J,Milne S,Gobel T W,et al.The chicken B locus is a minimal essential major histocompatibility complex[J].Nature,1999,401(6756):923~925.
    [15] Collins RW.Human MHC classI chain related(MIC)genes:their biological func -tion and relevance to disease and transplantation[J].Eur J Immunogenet, 2004,31:105-114.
    [16] Bjorkman PJ,Saper MA,Samraoui B,et al .Structure of the human c lassI histocompatibility antigen,HLA-A2[J].Nature,1987,329:506-512.
    [17] Ehst B D .Development of a novel transgenic mouse for the study of interactions between CD4+ and CD8+ T cells during graft rejection[J].AmJ Transplant,2003,3(11):1355-62.
    [18] Patrik C.The major histocompatibility complex in swine[J]. Immunological Review,1999,167:179-192.
    [19] Arantza S P.Infection with foot-and mouth disease virus results in a rapid reduction of MHCclassI surface expression[J].Jounral of general virology, 1998,78:433-436.
    [20]夏春.一新MHCI类等位基因存在于低等脊推动物:虹鳟[J].科学通报,2001:46(2): 121-124.
    [21]夏春.白鲢MHCIɑ2基因克隆及序列分析[J].动物学报,1999 45(3): 345 -349.
    [22] Briles WE, Mc GW, Irwin MR.On multiple alleles effecting cellular antigens in the chicken[J].Genetics,1950,35:633-652.
    [23] Bodmer JG,Marsh SG,Albert ED,et al.Nomenclature for factors of the HLA system,1995[J].Eur J Immunogenet,1995,22:335-360.
    [24] Bjorkman PJ,Strominger JL,Wiley DC.Crystallization and X-ray diffraction studies on the histocompatibility antigens HLA-A2 and H LA-A28 from human cell membranes[J].J Mol Biol,1985,186:205-210.
    [25] Saper MA,Bjorkman PJ,Wiley DC.Refined structure of the human histocompatibility antigen HLA -A2 at2.6A resolution[J].J Mol Biol,1991, 219:277-319.
    [26] Handy DE, McCluskey J, Lew AM,et al.Signals controlling alternative splicing of major histocompatibilitcomplex H-2classI per-mRNA[J].Immuno–genetics,1988,28:81-90.
    [27] Berggard I,Beam AG.Isolation and properties of a low molecular weight beta-2-globulin occurring in human biological fluids[J].J Biol Chem, 1968,243:4095-4103.
    [28] Robinson PJ,Steinmetz M,Moriwaki K,etal.Beta-2 micorglobulin types in mice of wild origin[J].Immunogenetics,1984,20:655一665.
    [29] Elliott T.How do peptides associate with MHC class I molecules? [J] Immunol Today,1991,12:386-388.
    [30] Kozlowski S,Takeshita T,Boehncke WH,et al.Excess beta 2 microg- lobulin promoting functional peptide association with purified soluble classI MHC molecules[J].Nature,1991,349:74-77.
    [31] Elliott T,Cerundolo V ,Elvin J,et al.Peptide-induced conformational change of the classI heavy chain[J].Nature,1991,351:402-406.
    [32] Rock KL,Rothstein LE,Gamble SR,et al.Reassociation with beta 2 -microglo -bulin is necessary for Kb classI major histocompatibility complex binding of exogenous peptides[J].Proc Natl Acad Sci USA,1990, 87:7517-7521.
    [33]杨业华主编.分子遗传学[M].北京:中国农业出版社,2001.
    [34] Barth R,Counce S,Smith P,et al.Strong and weak histocompatibility gene differences in mice and their role in the rejection of homografts of tumors and skin[J].Ann Surg,1956,144:198-204.
    [35] Bouvier M,Wiley DC.Importance of peptide amino and carboxyl termini to the stability of MHC classI molecules.Science 1994,265:398-402. [34] Thorpe CJ.Outsize peptides bulge out of the groove[J].Immunol Today, 1993, 14: 51-52.
    [36] Thorpe CJ.Outsize peptides bulge out of the groove.Immunol Today, 1993, 14:51-52.
    [37] Ploegh H,Wats C.Antigen recognition[J].Curr Opin Immunol,1998,10: 57-58.
    [38] Androlewicz MJ,Cresswell P.Human transporters associated with antigen processing possess a promiscuous peptide-binding site[J]. Immunity, 1994, 1:7-14.
    [39] Neisig A,Wubbolts R,Zang X,et al.Allele-specific differences in the interaction of MHC classI molecules with transporters associated with antigenprocessing[J].J Immunol,1996,156:3196-3206.
    [40] Rock KL,Gramm C,Rothstein L,et al.Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC classI molecules[J].Cell,1994,78:761-771.
    [41] Matza D,Kerem A,Shachar I.Invariant chain, a chain of command[J]. Trends Immunol,2003,24:264-268.
    [42] Bisset LR,Rothen M ,Joller-Jemelka Hl.et al.Change in circulating levels of the chemokines macrophage inflammatory proteins I alpha and II beta, RANTES,monocyte chemotactic protein-1 and inierleukin-16 following treat -ment of severely im munodeficient HIV-infected individuals With indinavir [J].Aids,1997,11:485-491.
    [43] Amiel C,Darcissac E,Truong MJ,et al.Interleukin-16(IL-16)inhibits Human immunodeficiency virus replication in cells from infected sub -jects,and serum IL-16 levels drop with disease progression[J].J Infect Dis, 1999, 179:83-91.
    [44] Schwartz RH.T cell anergy.Annu Rev Immunol 2003,21:305-334.
    [45] Wood KJ,Prior TG.Gene therapy in transplantation[J].Curr Opin Mol Ther, 2001,3: 390-398.
    [46] Colonna M.Natural killer cell receptors specific for MHC classI Molecules [J].Curr Opin Immunol,1996,8:101-107.
    [47] Rolstad B, Seaman WE. Natural killer cells and recognition of MHC class I molecules:newper spectives and challenges in immunology [J]. Scand J Immunol,1998,47:412-425.
    [48] Mandelboim O, Pazmany L, Davis DM, et al. Multiple receptors for HLA-G on human natural killer cells[J].Proc Natl Acad Sci USA,1997, 94: 14666-14670.
    [49] Mikko S,Roed K,Schmutz S,et al.Monomorphism and polymorphism at Mhc DRB loci in domestic and wild ruminants[J].Immunol Rev,1999,167:169-178.
    [50]习欠云,李宁,唐玉新等.中国部份地方鸡种B-LβII基因分子遗传多态性研究[J].遗传学报,2001,28:7-14 .
    [51] Xu A,van Eijk MJ,Park C,et al.Lewin HA:Polymorphism in BOLA -DRB3 exon 2 correlates with resistance to persistent lymphocytosis Caused by bovine leukemia virus[J].J Immunol,1993,151:6977-6985.
    [52] Maillaid JC,Berthier D,ChantalI,et al.Selection assisted by a BoLA -DR/DQ haplotype against susceptib ility to bovine dermatophilosis [J]. Genet Sel Evol,2003,35 Suppl 1:S193-200.
    [53] Tissot RG,Beatie CW,Amoss MS,Jr .The swine leucocyte antigen ( SLA)Complex and Sinclair swine cutaneous malignant melanoma[J].Anim Genet, 1989,20:51-57.
    [54] Sharif S, Mallard BA, Wilkie BN, et al. Associations of the bovine major histocompatibility complex DRB3(BoLA-DRB3) with production t raits in Canadian dairy cattle[J].Anim Genet,1999,30:157-160.
    [55] Zhou H,Lamont SJ.Chicken MHC class I and II gene efects on antibody response kinetics in adult chickens.Immuongenetics[J] 2003,55:133~140.
    [56]李效峰,师守信,李海滨.香猪某些免疫学指标的测定明.实验动物科学与管理[J],1995,12 (1):21-23.
    [57]施启顺.畜禽某些疾病的遗传控制与抗病育种[J].中国畜牧杂志,2004,40 (2):36-39.
    [58] Hakan W, Thomas M, Helena W,et al. MHC variation in birds and reptiles [J].Genetica,1998,104(3),301-309.
    [59] Briles WE,Stone HA,Cole RK. Marek’s disease: efects of B histocompa -tibility alloaleles in resistant and susceptible chicken lines[J]. Science,1997,195:193一195.
    [60] Longenecker BM,Pazderka F,Gavora JS,et al.Lymphoma induced by herpesvinus:resistance ascosiation with a major histocompatibi1ity Gene [J].Immunogenetics,1976,3:401-407.
    [61] Bacon LD,Hunt HD,Cheng HH.Genetic resistance to Marek’s disease[J].Curr Top Microbiol Immunol,2001,255:121一141.
    [62] Girard-Santosuosso O,Lantier,et al.Heritability of susceptibllity to salmonella enteritidis t1d infection in fow1s and test of the ro1e of the chromosome carrying the NRAMPl gene[J].Genet Sel Evol,2002,34 (2):211-219.
    [63] Gruenheid S,Gros P.Genetic susceptibi1ity to intrace11ular infections: NramPl,macrophage function and divalent cation transoprt[J]. Curr Opin Micorobiol,2000 Feb,3(1):43-48.
    [64] Buschmann H,Krausslich H,Hermann H,et al.Quantitative immunological parameters in pigs-experience with the evaluation of immunocompetence porefil[J].ZTiERZ Zuchtungtsbiol,1985,102:189-199.
    [65] BiozziG,Mouton D,Stiffe1 C,et al.A major role of the macrophage in Quantitative genetic regulation ofimmunoresponsivenss and antiinfectious immunity[J].Advances in Immunology.1984,36:189一234.
    [66]张勤.第五届全国畜牧兽医青年科技工作者学术研讨会论文集[C].2004: 114-117.
    [67]王伦雄,王松药,徐士清,等.国内外猪种及其杂种的氟烷测验[J].浙江农业学报,1995,7(2):115一119.
    [68] Rohrer GA,Beatie CW.Genetic Influences on Susceptibility to Acquired Diseases in Diseaes of swine,Kohrer GA and Beattie CW(Ed.).Lowa sate Uinversity Press Ames[J].IA,eight edition,1999,pp:977-984.
    [69]吴艳,侯水生,刘小林等.MHC及其在肉鸡和蛋鸡中的不同[J].动物科学与医学,2004,21(4):38-39
    [70] Lamont SJ.Immunogenetics and the major histocompatibility complex veterinary [J].Immunology and Immunopathology,1991,30:121-127.
    [71]林常有.鸭MHCⅠ类分子cDNA克隆及其基因组结构[ C].北京:中国农业大学,2004.
    [72] Jia XH.Genomic organization and homologous modeling of structure of Wulong Goose MHC classⅠgene region [C].Proceedings of the 3rd World Waterfowl Conference,2005,156-160.
    [73]罗庆斌,沈翔,任广彩.鸡MHC-B-F基因外显子2、3的SNPs分析[J].养禽与禽病防治,2005,(10):6-9.
    [74]吴春梅.鸡MHCB-F区基因sNPs分子标记与免疫性状关系的研究[ D] .扬州大学硕士研究生论文,2007.
    [75] Zhou X,li CJ,Ei KL, et al.Patterns of variation of the major histocompa -tibility complex class IIB loci in Chinese goose (Anser Cygnoides) [J]. Immunogenetics, 2009, 61(6) ,443-450.
    [76] Kazuyoshi H, Takashi S, Shingo S, et al . The major histocompati -bility complex (Mhc) class IIB region has greater genomic structural flexibility anddiversity in the quail than the chicken [J].BMC Genomics , 2006, 7:322-337
    [77]胡团军.鹅MHC ClassⅠc DNA克隆、基因组结构、等位基因多态性分析[ D].中国农业大学研究生论文,2004.
    [78]李红霞,朱庆.鸡主要组织相容性复合体与抗病性研究[J ].畜禽业, 2001,138 (10):10~11.
    [79] Macklin KS , Ewald SJ , Norton RA. Major histocompatibility complex effect on cellulites among different chickens lines[J] . Avian Pathology,2002, 31:371~376.
    [80] Lavi Y,Cahaner A,Pleban T,et al.Genetic variation in major histo compa -tibility complex class I alpha2 gene among broilers divergently selected for high or low early antibody response to Escherichia coli [J].Poult Sci,2005,84(8):1199~208.
    [81] Cotter PF,Robert L,Taylor JR.Diffferential resistance to Staphy -lococcus aureus challenge in major histocompatibility(B)complex congenic lines[J].Poultry Science,1992,71:1873~1878.
    [82]常洪.中国家畜遗传资源研究[M].西安:陕西人民教育出版社, 1998:243-249.
    [83]常国斌,常洪,刘向萍等.鹌鹑的起源及演化[J].中国家禽, 2001,23(10):49~50.
    [84]常国斌.两种野生鹌鹑与家鹑进化趋异水平的研究[D].扬州大学博士论文, 2003,5:1~158.
    [85]谢成侠.中国养禽史[M].北京:中国农业出版社,1995,66- 67.
    [86]林其騄.鹌鹑高效益饲养技术[M].金盾出版社, 2000:14~21.
    [87]皮劲松,杜金平,申杰等.鹌鹑研究进展[J].安徽农业科学,2007,35(10):2926-2927.
    [88]徐伟.野生鹌鹑与家鹑结构基因座遗传共适性的研究[D].扬州大学硕士学位论文, 2003.
    [89]郑惠玲,常洪,Sano A等.鹌鹑同工酶多型性的研究[J].扬州大学学报(农业与生命科学版), 2002, 23(3):25-28.
    [90]庞有志.蛋用鹌鹑自别雌雄配套技术研究与应用[M].北京:中国农业出版社, 2009.
    [91] Truax RE, Johason WA. Genetics of plumage color in Japanese quail[J].Poultry Sci, 1979, 58:1~9.
    [92] Chikamune T. Studies on white-feathered and dark-featharde Japanese quail 2, The relation- ship to yellow plumage colour[J]. Japanese pourtly science, 1979, 16(3):100~104.
    [93] Fulton JE, Roberts CW, Cheng KM. Cinnamon: a mutant of Japanese quail[J]. Can Genetcyto, 1982, l(24):163~166.
    [94]程端仪,林其騄,慎伟杰.隐性白羽鹌鹑的发现及其应用研究[J].遗传, 1992, 14(4):23~25.
    [95]杜干英.隐性红羽鹌鹑性连锁遗传的研究[J].中国畜牧杂志, 1994, 30(2):28~31.
    [96]岳根华,李广宏.鹌鹑黄羽自别雌雄配套系的建立—鹌鹑黄羽隐性伴性基因的发现与鉴定[M].畜牧科技进展,北京:中国农业科技出版社, 1994:127~131.
    [97] Song DL, Pang YZ, Wang SC, et al. The breeding of yellow quail autosexing lines I. Detect- ion and certificafion of sex-linked recessive inheritance for yellow color of quail. Proceedin- gs of the 5th National Symposium on Animal Genetic Markers, Animal Biotechnology Bulletin[J]. 1996, 5, supple:102~106.
    [98]庞有志,宋东亮,陈家友等.蛋用鹌鹑伴性羽色基因互作与连锁的关系[J].遗传, 2001, 23(4):309~316.
    [99] Minuielle F. Genetic analyses of plumage color mutations on the Z chromosome of Japanese Quail[J]. Journal of Heredity, 2000, 91(6):499~501.
    [100] Nadeau NJ, Minvielle, FS. Characterizatoion of Japanese quail yellow as a genomic deletion upstream of the avian homlog of the mammalian ASIP (agouti) gene[J]. Genetics, 2008, 178:777~786.
    [101] Nadeau NJ, Mundy NI, Gourichon. Association of a single nucleotide substitution in TYRP1 with roux in Japanese quail (Coturnix japonica)[J]. Anim Genet, 2007, 38:609~-613.
    [102] Homma K, Jinno M, Sato K, et al. Studies on perfect and imperfect albinism in the Japanese quail[J]. Jap Zootech. Sci. 1968, 39:348~-352.
    [103] Homma K, Jinno M, Kito J. Studies on silver-feathered Japanese quail[J]. JapZootech. Sci. 1969, 40:129~130.
    [104] Minezawa M, Wakasugi N. Studies on a plumage mutant(black at hateh)in the Japanese quail[J]. Jpn Genet, 1977, 52:183~195.
    [105]程端仪,徐银学编译.日本鹌鹑羽色的遗传[J].中国家禽, 1990, 5:33~34.
    [106] Tsudzuki M, lto S, Sato K, et al. Fawn-2: A dominant plumage color mutation in Japanese quail[J].The Journal of Heredity,1996,87 (3):248-252.
    [107] Tsudzuki M, Nakane Y, Wada A. Dulute down lethal: a new lethal mutation in Japanese qu- ail[J]. Exp Anim, 1997, 46(1):93~94.
    [108] Minvielle F, Nnoue M, Mizutani M. Genetic anlyses of plunage color mutations on the Z chromosome of Japanese quail[J].Hered,2000,91: 499-501.
    [109]庞有志,吴胜军,赵淑娟,于美琴,张小辉,白俊艳.半同胞交配法测定鹌鹑性连锁羽色基因的交换值[J].生物学通报,2010,9:9~12.
    [110] Hiragaki T,Inoue MM,Miwa M,et al.Recessive black is allelic to the yellow plumage locus in Japanese quail and associated with a frameshift deletion in the ASIP gene[J]. Genetics,2008,17(8):771~775.
    [111] Tsudzuki M. Mutations of Japanese quail (Coturnix japonica) and recent advances of molecular genetics for this species[J].The Journal of Poultry Science, 2008,45:159~179.
    [112] Youzhi Pang,Shujuan Zhao,Yinxian Yun,et al.The analyses on genetics of plumage color in black mutant of egg quailⅠcross test between black mutant and yellow quail[J].Animal Biotechnology Bulletin,2008, (10):682~691.
    [113]宋东亮,陈家友,徐恒玉等.栗、白、黄3种鹌鹑羽色的基因和表型关系及应用的研究[J].经济动物学报,2000, 4(4):43-48.
    [114] Fujiwara A, Mizutani M, Ono T, et al.“Ressive Black”: A Plumage Color Mutan in Japanese Quail[J]. Journal of Poultry Science. 2005, 42:64-69.
    [115] Wakasugi N, Kondo K. Breeding methods for maintenance of mutant genes and establishme- nt of strains in the Japanese quail[J]. Exp Anim, 1973, 22:151-158.
    [116] Karash WB,Campo AD, Brase IE,et al.Heaith evaluation of free-raning and hand-reared macaws (Ara spp.)in Peru[J]. Journal of Zoon and Wildlife Medicine, 1997, 28(9):368-377.
    [117]曹梦,范启鹏,初蔚琳等.鸡血液生理生化指标的全自动检测及其与生产性能的相关分析[A].第十次全国畜禽遗传标记研讨会论文集[C].2006,30(5):191-194.
    [118]冷超,韩凌霞,于海波等.不同周龄BWEL2SPF种鸡生理生化指标的测定[J].中国比较医学杂志,2007,17(12):697-701.
    [119]王荫槐,孙淑华,王玉琢等.已知菌Wistar大鼠血液血清生化正常值的测定[J].北京实验动物科学,1992,9(12):11-13.
    [120]顾为望,王洪涛,张嘉宁等.封闭群FMMU白化豚鼠与短毛三色豚鼠血液成份比较[J].中国实验动物学报,1997,5 (9):23-28.
    [121]申晓莉,图雅,贾斌等.日本鹌鹑的部分血液生理生化指标[J].石河子大学学报(自然科学版),2008,26(2):209-211.
    [122]韩庆,张彬,夏维福等.笼养灰胸鸡血液生理生化指标的测定[J].经济动物学报,2004,8(3):148-150.
    [123]刘燕,刘孟洲.合作猪血液生理生化指标特性的研究[J].中国畜牧兽医,2007,34(7):52-55.
    [124] Plilar LM,Victoria BM,Manuel IS,et al.Hematological,protein electro -phoresis, biochemistry, and cholinesterase values of free-living black stork nestliness (Clonia Nigra) [J]. Journal of Wildlife Disease, 2005, 41(2):379-386.
    [125]曾丹,乔红光,宁中华.不同阶段矮小型褐壳蛋鸡血液生理生化指标测定[J].中国畜牧兽医,2010,37(9):25-28.
    [126]王武康,朱吉,夏美芳.学院472名教职工血糖、血脂水平测定[J].江南学院学报,2000,15(2):84-86.
    [127]耿照玉,张云芳,陈兴勇等.海南文昌鸡生理常数及血液生理生化指标的测定[A].第十一次全国家禽学术讨论会论文集[C].中国.青岛,2003:146-147.
    [128]宋东亮,范伟杰.蛋用鹌鹑生长发育的整齐度及其对生产性能的影响[J].中国家禽,2006,28(1):24-25
    [129]黄峰,常洪,常国斌等.野生日本鸣鹑与家鹑杂交F1代的生长发育及繁殖习性研究[J] .西北农业学报,2006,15(4):43-47
    [130]宋东亮,庞有志,孙玉贵.黄羽鹌鹑生产性能观察[J].中国家禽,1998,20(10):39-40.
    [131]阮桂文,陈毅兴,刘良锦等.鹌鹑在不同条件下的生长发育与产蛋率的研究[J].玉林师范学院学报(自然科学), 2006, 27(5):106-115.
    [132]林其騄.鹌鹑高效益饲养技术[M].金盾出版社, 2000.
    [133]刘梅,齐建华.不同营养水平对蛋鹌鹑生产性能的影响[J].畜牧与兽医,1991,23(2):79—8O.
    [134]刘卫东,宋素芳.饲料营养水平对鹌鹑产蛋性能的影响[J].中国饲料,2004(2):20-21.
    [135]王得芹,王金文.不同营养水平对海兰白蛋鸡育雏期增重及效益的影响[J].山东家禽。2001(5):3-4.
    [136]杨翠军,葛剑,谷子林.不同性别河北柴鸡早期生长规律及其生长曲线拟合[J].基因组学与应用生物学,2009,28(5):929-933.
    [137]唐登华,殷裕斌,杨文祥. 3个不同品系蛋鹌鹑早期生产性能的研究[J].湖北农学院学报,2001,3 (21):223-225.
    [138]肖慎华,闻涛,虞德兵等.樱桃谷鸭生长曲线拟合与比较分析[J].畜牧与兽医,2008,40(11):45-47
    [139]马发顺,袁雪浈,杨丽娜.罗斯308肉鸡生长模型建立及最佳上市日龄研究[J].中国家禽,2009,31(21):41-42
    [140]刘海斌,吴占福,闫贵龙等.塞北乌骨鸡生长发育规律及生长曲线拟合研究[J].畜牧与兽医,2008,40(6):55-56
    [141]唐雪峰,李建柱,赵聘等.淮南麻鸭生长发育规律及生长曲线拟合研究[J].河南农业科学,2010(2):105-107
    [142]张学余,韩威,李国辉.白耳黄鸡的生长曲线拟合与比较分析[J].贵州农业科学,2010,38(9):160-162
    [143]殷裕斌,张德江.不同光色对蛋鹌鹑生产性能的影响[J].湖北农学院学报,2000,20(3):220-222.
    [144]向钊,张毅,周萍等.不同选配方式对蛋鹌鹑生产性能的影响[J].中国畜牧杂志,2009,45(7):10-12.
    [145]阮桂文,陈毅兴,刘良锦等.鹌鹑在不同条件下的生长发育与产蛋率的研究[J].玉林师范学院学报(自然科学), 2006, 27(5):106-115.
    [146]王庆,刘朝阳,白秀娟.单笼饲养下鹌鹑主要生产性能的初步研究[J].饲料工业,2000,3(5):58-60.
    [147]申杰,杜金平等.蛋用鹌鹑神丹黄羽系与南农黄羽系此较试验[J].湖北畜牧兽医,2009,(4):8-9.
    [148]易华锋,周萍,张毅等.三品系鹌鹑蛋重蛋形与孵化的比较[J].畜牧市场,2008,8:125-127.
    [149]华时尚.栗、黄羽蛋鹑品系生产性能测定及自别配套研究[J].畜禽业,2005:25-26.
    [150]杜金平,申杰,皮劲松等.蛋用鹌鹑黄羽系选育研究[J].湖北农业科学,2007,46(6):960-962.
    [151]申杰,杜金平,皮劲松等.蛋用鹌鹑栗羽系的选育[J].安徽农业科学,2008,36(3):75-76.
    [152]宋东亮,庞有志,孙玉贵.黄羽鹌鹑生产性能观察[J].中国家禽,1998,20(10):39-40.
    [153]朱靖.蛋用鹌鹑羽色自别系配套及生产性能的测定[J].贵州畜牧兽医,2003,27(5):5-6.
    [154]武德岭.隐性白羽鹌鹑的饲养管理与生产性能[J].农村养殖技术,2000,(9):9.
    [155]赵淑娟,庞有志,宋东亮等.黄羽鹌鹑与其自别雌雄配套系杂种生产性能比较[J].黑龙江畜牧兽医,2003,(11):25-26.
    [156]马永华.提高鹌鹑产蛋率的技术措施[J].特种养殖,2009,5:32.
    [157]陈琼.提高鹌鹑产蛋的综合措施[J].特种经济动植物,2004,1:11.
    [158]马新红,亢娟娟,康相涛,等.鸡基因组DNA不同提取方法的比较研究[J].江西农业大学学报,2010,32(1):0181-0184.
    [159]贾晓辉,王宝维,王雷,等.五龙鹅MHC ClassⅠ基因克隆及同源建模研究[J].遗传,2006,28(9),1087-1092.
    [160] Kaufman J,Jacob J,Shaw I,et al.Gene organization determines evolution of function in the chicken MHC[J].Immunol Rev,1996,167:101-117.
    [161]林剑.免疫遗传学[M].北京:高等教育出版社,1997.
    [162]崔治中.我国家禽新城疫流行现状[J].中国家禽.2002.24(24):4-6.
    [163]张世栋,金维江.动物抗病育种研究进展[J].中国畜牧杂志.1999.35(4):55-57.
    [164]施启顺.家禽抗病育种研究进展[J].中国畜牧杂志.1995. (6):48-51.
    [165]房海,陈翠珍.鹌鹑对新城疫病毒的易感性试验[J].畜牧兽医学报.1993.24(2):148-154.
    [166]王廷富,房海,马吉飞.鹌鹑新城疫人工发病及其病理形态学观察[J].河北农业技术师范学院学报.1992.6(2):1-6.
    [167]庞有志,赵德明,李宏伟等.黄羽、栗羽及其杂种鹌鹑免疫群体对新城疫病毒的易感性试验[J].中国家禽.2007.29(13):10-12.
    [168]周秀红,祁克宗,朱良强等.人工诱发鸡新城疫的攻毒条件的比较研究[J].家禽科学.2005.8:10-12.
    [169]姚火春主编.兽医微生物学实验指导(第2版)[M].中国农业出版社.2002.
    [170]雷雪芹.牛羊多态性状的四种分子遗传标记研究[D].杨凌:西北农林大学,2005.
    [171]甘乾福.福建黄牛地方品种遗传多样性研究[D].福建:福建农林大学,2006.
    [172]布仁其其格.六个马品种的SSR遗传多样性分析[D].呼和浩特:内蒙古大学,2007.
    [173]徐日福.中国部分地方鸡种MHC B-LBⅡ、B-G基因变异及其群体遗传结构研究[D].武汉:华中农业大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700