用户名: 密码: 验证码:
典型冶金物料的微波及组合干燥应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干燥工艺是冶金工业的重要工序,大多采用热风、燃气、蒸汽(过热蒸汽)、电加热等方式来进行加热,热源和物料之间的温度梯度是能量传递的原始推动力,这种由表及里的传热方式在脱除水分的同时需要对全部物料进行加热;而传质的推动力是物料内部与表面之间水分浓度的梯度,水分的蒸发从物料表面开始,内部的水分慢慢从内部扩散至表面,为加快干燥速率,则需要较高的外部温度来形成温度梯度。微波加热具有内部加热、选择性加热等优势。由于水分子的介电常数ε'高达60-78,远大于一般矿物及化合物,在微波干燥过程中,水分子总是优先吸收大量微波,在短时间内形成较大蒸汽压,迅速逸出物料表面,显著减少了干燥处理时间。这种干燥方式减少了对物料的整体加热,极大地降低了能耗;同时,由于内部加热的特点,在物料中形成由内而外的温度梯度,其方向与水分传输反向相同,极大的促进了水分子的传质过程,提高了干燥效率,因此,微波干燥工艺日益受到重视并得到快速发展。
     本论文以物料吸波性能的强弱,选取了钛精矿、无烟煤和高纯石英砂三种典型的冶金颗粒物料,开展了微波及微波-热泵组合干燥工艺研究,具体内容如下:
     (1)首先在20-100℃的干燥温度范围内,利用终端开路同轴反射法测定了三种典型颗粒物料无烟煤、钛精矿与高纯石英砂的反射系数的幅值和相位,并运用遗传算法和有限元分析计算得到三种物料的介电常数(ε)、介电损耗因子(ε)和损耗角正切(tanδ),研究结果表明:钛精矿的介电常数在6.23-13.24,介电损耗因子在0.79-6.56,属于强吸波性物料;无烟煤的介电常数在2.56-12.65之间变化,介电损耗因子在0.32-5.36,属于中强吸波性物料;高纯石英砂的介电常数在3.98-5.38之间变化,介电损耗因子在0.26-0.40,属于弱吸波性物质。并根据其吸波特性的不同,探索了其相适合的干燥设备和方法。
     (2)研究了微波干燥钛精矿的新工艺。在单因子实验的基础上,建立了可信的各因子与响应值的数学模型为:脱水率=100.11+26.40-1.56x2-11.66x3-1.75x,x2+14.00x1x3+1.OOx2x3-18.20x12-1.06x22-7.77x32并应用响应面法对微波干燥钛精矿的工艺条件进行了优化,分析结果表明:微波时间、物料量及料层厚度对无烟煤干燥影响的显著性顺序为微波时间>>物料量>料层厚度;微波时间,物料量,料层厚度对脱水率的影响不是简单的线性关系,一次项和二次项对脱水率影响显著,交互项影响较小。响应面法优化微波干燥钛精矿的最佳工艺条件为:微波时间135s,物料量164g,料层厚度20mm。此时脱水率的实际得率为99.99%。此时实验值与预测的偏差为0.01%。
     (3)研究了微波干燥无烟煤的新工艺。在单因子实验的基础上,建立了可信的各因子与响应值的数学模型为:脱水率=24.51+6.37x1+18.19x2-6.55x3+5.44x1x2+3.30x1x3-0.23x2x3-0.61x12+2.78x22+7.69x32并应用响应面法对微波干燥无烟煤的工艺条件进行了优化,由响应面分析表明:微波功率、微波时间及物料量对无烟煤干燥影响的显著性顺序为微波时间>>物料量>微波功率;结果表明微波时间,微波功率,物料量对脱水率的影响不是简单的线性关系,一次项和二次项对脱水率影响显著,交互项影响较小。微波干燥参数优化表明:在脱水率达到要求的条件下,在设计水平内预获得较高的干燥效率,其最佳工艺参数为微波功率682.07W、微波时间2.98min、物料量49.19g。此时的处理效率最高为1.452kg/kW·h。此时实验值与预测的偏差为+0.57%。
     (4)研究了微波-热泵联合干燥高纯石英砂的新工艺。开展了高纯石英砂的微波干燥条件试验,考察了物料量、初始含水率及微波功率对脱水率、湿基含水率和干燥效能的影响;开展了高纯石英砂的空气源热泵干燥条件试验,考察了物料量、风速、及初始含水率对脱水率、湿基含水率和干燥效能的影响;在上述微波、热泵单独干燥的基础上,建立了可信的各因子与响应值的数学模型为:湿基含水率=0.39-0.91x1-0.44x2+0.69x3+0.34x1x2-0.096x1x3-0.091x2x3+0.45x12+0.10x22+0.40x32能效比=0.65-0.21x1-0.021x2+0.24x3-0.002x1x2-0.065x1x3+0.003x2x3+0.059x12-0.00922-0.072x32并应用响应面法对微波-热泵联合干燥高纯石英砂的工艺条件进行了优化,结果表明各影响因子对湿基含水率与能效比的影响是复杂的非线性关系,并得出联合干燥的最佳工艺参数:物料量620g,微波处理时间为4.6minute,热风处理时间为9minute,此时实验值与预测的偏差为0.01%。
     (5)进行了无烟煤、钛精矿和高纯石英砂的微波干燥动力学研究。得到无烟煤的微波干燥速率常数与功料比的关系为:k=0.06102-4.09204 m/p+140.05833(m/p)2-1691.86413(m/p)3干燥活化能为31.30629W/g,指数前因子A0为0.04285;得到钛精矿的微波干燥速率常数与功料比的关系为:k=0.0652-1.35849m/p+11.64559(m/p)2-30.57185(m/p)3;干燥活化能为6.9600 W/g,指数前因子A0为0.0362。得到高纯石英砂的干燥活化能为6.9600W/g,指数前因子A0为0.0362。在功率密度大于1(1.000-4.167)的条件下活化能为0.279W/g,在功率密度小于1(0.429-1.000)的条件下活化能为3.493W/g。研究了微波干燥高纯石英砂的能效比,实际值和理论值都是随着含水率的降低而减少,所获得的能效比的实际值和理论值分别为3.92和7.14MJ/kg水。
     (6)结合微波、热泵干燥的特点,提出了高纯石英砂的微波-热泵组合干燥的技术构想,在热工计算的基础上设计与试制了高纯石英砂的微波-热泵组合干燥系统实验样机。实验研究结果表明,组合干燥的脱水能效可达0.7kg/kW·h以上,远高于单一热源干燥及常规干燥的能效。
Drying treatment using hot air, combustion gas, steam (superheated steam) or electric heating as heat source, is a very important process of metallurgy industry. The driving force for energy transfer is the temperature gradient between heat source and materials. Due to the conventional heating taking from the outside into the inside, it needs to heat up the whole material to remove water from the inside of material during drying process. The driving for mass transfer is the moisture concentration gradient between the inside and outside of material. The moisture is transferred from the inside to the surface of material, and then evaporated into atmosphere. For conventional drying process, it needs high external temperature to form a temperature gradient to speed up the drying process. Microwave irradiation has advantages for the internal and selective heating. The water specific dielectric constantεof 60-78 is much higher than common minerals or compounds, so the moisture always quickly absorb electromagnetic wave and is rapidly transferred to vapors. Hence, it can significantly reduce the drying time. The selective heating reduces the thermal loss of material integral heating and can significant reduce the energy consumption. Apart from this, an inside to outside temperature gradient is formed due internal heating characteristic of the microwave drying process. The temperature gradient has a same direction as that of moisture diffusion, which can promote the mass transfer and improve the drying efficiency. Therefore the microwave drying technology has been received much attention and obtained rapid development.
     In this thesis, three typical particle materials, i.e ilmenite concentrate, anthracite and silica sand assorted according to different microwave absorbing characteristic, were selected as experimental raw material. Microwave drying and microwave-heat pump combined drying were conducted, and the experimental details are as follow:
     (1) Firstly, Terminal Open Coaxial Reflection Method (TOCRM) was employed to measure the amplitude and phase of reflection coefficient of three particle materials, i.e. ilemenite concentrate, anthracite and silica sand, and then calculate the Specific Inductive Capacity (SIC)ε, Dielectric Dissipation Factor (DDF)εand Loss Tangent (LT) tanδof them through Genetic Algorithm (GA) and Finite Element Analysis (FEA). The experimental temperature range is from 20 to 100℃. The results show that ilmenite concentrate is a strong absorbing material, and theεandεare 6.23~13.24 and 0.79~6.56, respectively; the anthracite is a medium absorbing material, and theεandεare 2.56~12.65 and 0.32~5.36, respectively; the silica sand is a weakly absorbing material, and theεandεare 3.98~5.38 and 0.26~0.40, respectively. Different drying equipments and methods were explored according to different microwave absorbing characteristic.
     (2) Secondly, a new process of microwave drying of ilmenite concentrate was studied. In the basis of single factor experiments, a mathematical model was developed according to factors and response, as: Dehydratnratio=10011+2640x1-1.56x2-11.66x3-1.75x2x2+14.00x1x3+1.00x2x3-18/.20x12-1.06x22-7.77x23 The microwave drying process conditions were optimized by using Response Surface Method (RSM). The analysis results show that the significance of three variables are in reverse order:drying time>>sample mass>material thickness. The relation between microwave irradiation time, material thickness and sample mass with dehydration ratio is not a simple linear relation:the first and second order terms have significant effect on dehydration rate, and the interaction terms have negligible effect. The optimized conditions were in the following:microwave irradiation time of 135s, sample mass of 164g, and material thickness of 20mm. The maximal dehydration ratio was 99.99% under the optimized conditions, which has only a 0.01% deviation between experimental and predicted value.
     (3) Thirdly, a new process of microwave drying of anthracite was studied. In the basis of single factor experiments, a mathematical model was developed according to factors and response, as: Dehydratioratio=24.51+6.37x1+18.19x2-6.55x3+5.44x1x2+3.30x1x3-0.23x2x3-0.61x21+2.78x22+7.69x23 The microwave drying process conditions were optimized by using Response Surface Method (RSM), the analysis results show that The significance of three variables are in reverse order:drying time>>sample mass>microwave power. The relation between microwave irradiation time, material thickness and sample mass with dehydration ratio is not a simple linear relation; the first and second order terms have significant effect on dehydration rate, and the interaction terms have negligible effect. According to the required dehydration, a high drying efficiency should be achieved. The optimized conditions were in the following:power level of 682.07 W; drying time of 2.98 min; and sample mass of 49.19 g. The maximal effectiveness ratio is 1.452 kg/kWh under the optimized condition. The verification experiment indicated that the experimental results were in good agreement with the predicted values, which has only a+0.57% deviation.
     (4) Fourthly, a new process of microwave-heat pump combined drying of silica sand was studied. Condition experiments of microwave and heat pump drying of silica sand were conducted. The effect of sample mass, initial moisture content, microwave power level, hot air velocity on dehydration ratio, wet basis moisture content and drying efficiency were studied respectively. In the basis of single drying experiment by microwave irradiation or heat pump hot air, mathematical models were developed according to factors and response, as: moistureotent=0.39-0.91x1-0.44x2+0.69x3+0.34x1x2-0.069x1x2-0.091x2x3+0.45x21+0.10x22+0.40x23 and effective(?)srati=0.65-0.2x1-0.011x2+0.24x3-0.002x1x2-0.065x1x3+0.003x2x3+0.059x21-0.009x22-0.072x23 The combined drying process conditions were optimized by using Response Surface Method (RSM). The analysis results show that the relations between factors and responses are complex nonlinear relations. The optimized conditions were in the following:sample mass of 620g, microwave irradiation time of 4.6 min, heat pump drying time of 9 min. The obtained wet basis moisture content and effectiveness ratio are 0.7% and 0.85kg/kw.h, respectively, which has only a 0.01% deviation between experimental and predicted value.
     (5) Fifthly, microwave drying characteristic and kinetics of three typical powder materials were studied. The anthracite microwave relationship between drying rate constant and the Power ratio was:κ=0.06102-4.09204m/p+140.05833 (m/p)2-1691.86413 (m/p)3, drying activation energy is 31.30629W/g, pre-exponential factor A0is 0.04285; obtained ilmenite microwave relationship between drying rate constant and the Power ratio was: k=0.0652-1.35849m/p+11.64559(m/p)2-30.57185(m/p)3,drying activation energy is 6.9600W/g, pre-exponential factor A0is 0.0362; obtained high purity silica sand activation energy is 6.9600W/g, and pre-exponential factor A0 is 0.0362. If the power density is greater than 1 (1.000-4.167, the activation energy is 0.279W/g; if the power density is less than 1 (0.429-1.000), the activation energy is 3.493W/g. Due to microwave drying energy efficiency of high purity silica sand, the actual value and the theoretical values are lowered as the moisture content is reduced, and the EER obtained by the actual value and the theoretical values were 3.92 and 7.14MJ/kg, respectively.
     (6) To fully take advantage of microwave and heat pump, a novel combination drying system with microwave and air-source heat pump is also designed and built. A series of drying experiments on high purity silica sand were performed. The drying experiments of damp arenaceous quartz were also carried out. Experimental results indicate that the drying energy efficiency of the microwave and air-source heat pump is as high as 0.7 kilogram water per kW-h.
引文
[1]潘永康,王喜忠.现代干燥技术[M].北京:化学工业出版社,1998
    [2]王超,谭鹤群.我国干燥技术的研究进展及展望[J].农机化研究,2009,(12):221-224
    [3]Mujumdar AS, wu ZH. Thermal Drying Technologies:New Developments and Future R & D Potentialr[C]. Proceedings of the 5th Asia-Padfic Drying Conference, Hong Kong,2007: 1-8
    [4]斯派莎克工程[中国]有限公司.蒸汽和冷凝水系统手册[M].上海:上海科技文献出版社,2007
    [5]张璧光,谢拥群.国际干燥技术的最新研究动态与发展趋势[J].木材工业,2008,22(2):5-7
    [6]Mujumdar AS. Handbook of industrial drying[M]. CRCPress, BocaRaton, FL, USA, 2007
    [7]张璧光.我国木材干燥技术现状与国内外发展趋势[J].北京林业大学学报,2002,24(5/6):262-265
    [8]万永周,肖雷,陶秀祥等.褐煤脱水预干燥技术进展[J].煤炭工程,2008,(8):91-93
    [9]Weber S, Briens C, Berruti F, etal. Agglomerate stability in fluidized beds of glass beads and silica sand[J]. Powder Technology,2006,165 (3):115-127
    [10]Holstein WL. Performance of gas saturators in the presence of exit stream temperature gradients and implications for chemical vapor deposition saturator design [J]. Chemical Engineering Science,1994,49 (13):2097-2105
    [11]Thorpe GR. Moisture diffusion through bulk grain subjected to a temperature gradient[J]. Journal of Stored Products Research,1982,18 (1):9-12
    [12]牛忠霞,雷雪,张德伟.微波技术及应用[M].北京:国防工业出版社,2005
    [13]王子宇.微波技术基础[M].北京:北京大学出版社,2003
    [14]朱艳丽.微波干燥矿物的研究[D].昆明:昆明理工大学,2003
    [15]Metaxas AC, Meredith RJ. Industrial microwave heating. London:Peter Peregrinus, 1993
    [16]Kelly RM, Rowson NA. Microwave reduction of oxidised ilmenite concentrates[J]. Minerals Engineering,1995,8 (11):1427-1438
    [17]Elliot S. Physics and chemistry of solids. Chichester:Wiley,2000:537
    [18]Al-Harahsheh M, Kingman SW. Microwave-assisted Leaching A Review [J]. Hydrometallurgy,2004,73 (3-4):189-203
    [19]Hasted JB. Aqueous dielectrics [M]. London:Chapman and Hall,1973
    [20]Chan TT. Understanding microwave heating cavities archtech [M]. London, House, 2000:1-67
    [21]David EC, Diane CF, Jon KW. Processing Materials with Microwave Energy [J]. materials science and engineering a-structural materials properties micro structure and processing,2000,287 (2):153-158
    [22]黄铭.微波与颗粒物质相互作用的机理及应用研究[D].昆明理工大学,博士学位论文,2003年
    [23]Thostenson ET, Chou TW. Microwave proceeding of fundamental and application composites, Part A [J]. Applied Science and Manufacturing,1999,30 (9):1055-1071
    [24]Ford JD, Pei DCT. High Temperature Chemical Processing via Microwave Absorption [J]. Microwave Power,1967,2 (2):61-64
    [25]祝圣远.微波干燥过程二维传热传质理论分析与数值模拟[D].辽宁:东北大学,2004
    [26]王薇.加速微波技术在食品工业中的应用推广[J].食品与发酵工业,1996,(2):59-62
    [27]王绍林.微波食品工程[M].北京:机械工业出版社,1994:27-32
    [28]田红萍.胡萝卜渗透脱水和微波干燥组合实验研究[D].浙江大学,2003
    [29]Metaxas AC, Meredit RJ. Industrial Microwave Heating[M]. IEE Power Engineering Series,1983
    [30]Meredith RJ, Engineers'Handbook of Industrial Microwave Heating[M]. IEE Power Engineering Series,1998
    [31]Thuerry J, Les microondesetleurs effetssurla matiere. Application industrielle, agroalimentaire et medicales, Lavoisier Tec and doc[M]. Paris,1989
    [32]Orfeuil M. Electrothermie Industrielle[M]. Dunod, Paris,1981
    [33]Abdelghani-Idrissi MA. Experimental investigations of occupied volume effect on the microwave heating and drying kinetics of cement powder in a mono-mode cavity[J]. Applied Thermal Engineering,2001,21 (9):955-965
    [34]Campana LE, etal. Effect of microwave energy on drying wheat[J]. Cereal chemistry, 1986.63 (3):271
    [35]Campana LE, etal. Chemical and baking properties of wheat dried with microwave energy[J]. Cereal chemistry, Physical,1993,70 (6):760
    [36]Wadsworth J I et al. Rice Drying by Microwave Vacuum[J]. Rice J,1990,93 (6): 20-23
    [37]Robert V D, etal. Microwave in the food processing industry[M]. Augusta,1985
    [38]陈燕.荔枝、龙眼微波干燥的试验研究[D].华南农业大学:2003
    [39]郭胜利.复合肥料的微波干燥研究[D].郑州大学,2003
    [40]桂江生,应义斌.微波干燥技术及其应用研究[J].农机化研究,2003,(4):153-154
    [41]Kocakusak S,. Koroglu HJ, Tolun R. Drying of wet boric acid by microwave heating[J]. Chemical Engineering and Processing,1998,37 (2):197-201
    [42]甘正明,韩杰.氰化钠装置微波干燥系统的改造[J].石化技术与应用,2004,22(2):108-110,118
    [43]李新冬,赵玲.微波技术应用于褐铁矿干燥脱水的试验研究[J].中国资源综台利用,2006,24(6):9-10
    [44]朱艳丽,彭金辉,张世敏等.闪锌矿的微波干燥规律研究[J].昆明理工大学学报(理工版),2006,31(2):29-33
    [45]商连弟,赵燕禹,俞杰等.干燥方法对纳米氧化铝性能的影响[J].中国颗粒学会2006年年会暨海峡两岸颗粒技术研讨会论文集,2006,8
    [46]Mujumdar AS.干燥研究和发展中的创新技术和趋向[J].化工进展,1999(增刊):2-9
    [47]Idris A, khalid K, Omar W. Drying of silica sludge using microwave heating [J]. Applied Thermal Engineering,2004,24 (5-6):905-918
    [48]陈津,刘浏,曾加庆等.微波加热在含碳球团中应用的研究[J].工业加热,2001,(6):8-10
    [49]Nisher Perter. Determing the water content of aggregate and freshlymixed Concrete by the microwave methed[J]. Betouwerk Fertigteiltech,1998,64 (11):60-62
    [50]Sutton WH. Microwave of High Aluminum ceramic In Microwave Processing of Material [J]. Materal Research Society Pittsburgh,1988, (124):287-295
    [51]Suhm. Rapid microwave technology for drying sensitive products[J]. Am.Ceram.Soc.BoU,2000, (5):69-71
    [52]宫长,宋朝鹏,赵明月等.微波技术在烟草行业中的应用[J].中国烟草科学,2003,24(3):34-36
    [53]曾后生,许利琴,帅敏等.浅谈我国微波技术应用现状及前景[J].九江算专学报(自然科学版),2001,20(6):82-89
    [54]张柏清,黄志诚.微波干燥技术及其在陶瓷坯体干燥中的应用研究[J].中国陶瓷,2004,40(3):17-21
    [55]化春光,任广跃,朱文学.微波真空组合干燥技术的研究[J].干燥技术与设备,2009,7(2):57-62
    [56]李永祥崔建兰王建龙等.微波干燥RDX新技术研究[J].火炸药学报,2008,31(3):41-43,57
    [57]Bueno JL, Garcia A. Improving energy efficiency in combined microwae-convective drying[J]. Drying Technology,1998,16 (1-2):123-140
    [58]印崧,夏萍.微波和对流联合干燥的试验研究[J].林产工业,2008,35(1):20-23
    [59]赵厚林,丁慧博.微波技术与对流干燥器的组合应用研究[J].机电信息,2009,(29):55-56
    [60]孙恒,张洁,朱鸿梅等.微波泠冻干燥技术的发展和有待解决的问题[J].食品科学,2005,26(4):256-260
    [61]胡志超,陈有庆,谢焕雄等.微波真空冷冻干燥技术研究及应用现状[J].农机化研究,2009,31(9):6-9
    [62]徐艳阳,张敏,陈亦辉等热风和微波真空联合干燥甘蓝试验[J].无锡轻工大学学报,2006,22(6):64-66,95
    [63]史有高摘译.铜精矿干燥清洁工艺[M].有色冶炼,2002,31(5):50-53
    [64]Pollington SD, Bond G, Moyes RB, etal. The influence of microwaves on the rate of reaction of propan-1-01 with ethanoic acid[J]. Organic Chemistry,1991,56 (3):1313-1314
    [65]Dayal B, RaPole KR, Salen G, etal. Microwave-induced rapid synthesis of bile acidconjugates[J]. Synlett,1995:861-863
    [66]王立平,王镐,高颀等.我国钛资源分布和生产现状[J].稀有金属,2004,28(1):265-267
    [67]张林仙,吴晋沪,王洋.无烟煤焦气化过程中孔结构的变化及对气化反应性影响的研究[J].燃料化学学报,2008,36(5):530-533
    [68]李涛,周志强,彭灵芝.小颗粒无烟煤代替部分焦炭生产高碳铬铁的应用[J].铁合金,2009,40(6):11-14
    [69]顾小愚,钟心.无烟煤的物理性质对其型煤抗压强度的影响[J].煤炭转化,2009,32(2):71-74
    [70]邓国珠.钛冶金的进展和发展方向探讨[J].稀有金属,2002,26(5):391-396
    [71]制备高纯石英砂的方法[P].中国专利:200710132668.1
    [72]F维格里奥等.用草酸浸出法除铁以生产高纯石英砂的研究[J],国外金属矿选矿,2001,38(6):33-35,8
    [73]蒋述兴.普通石英砂与高纯石英砂的生产技术研究[J].矿冶工程,2001,21(3):36-38
    [74]Kemal Yildirim, Heechan Cho, Leonard G. Austin. The modeling of dry grinding of quartz in tumbling media mills[J]. Powder Technology,1999,105 (1-3):210-221
    [75]Feihu Du, Jingsheng Li, Xiaoxia Li, Zhizhen Zhang. Improvement of iron removal from silica sand using ultrasound-assisted oxalic acid[J]. Ultrasonics Sonochemistry,2011,18(1): 89-393
    [76]包申旭.超细高纯石英制备试验研究[D].武汉理工大学,2004
    [77]雷绍民,龚文琪,张高科.阴/阳离子捕收剂反浮选制备高纯石英砂研究[J],金属矿山,2002,9:25-29
    [78]张福存,李小静,周岳远.石英砂精制试验研究[J],非金属矿,2003,26(2):45-47
    [79]Magdalena,K.,Vaclav S, Ladislav K, Effect of expansion by instantaneous controlled pressure drop on dielectricproperties of fruits and vegetables[J]. Journal of Food Engineering,2011, (102):361-368
    [80]Walkiewicz JW, Kazonich G, McGill SL. Microwave Heating Characteristics of Selected Minerals and Compounds[J]. Mineral Metallurgy Processing,1988,5 (1):39-42
    [81]Chunpeng L, Yousheng X, Yixin H. Application of microwave radiation to extractive metallurgy[J]. Journal of Materials Science & Technology,1990,6 (2):121-124
    [82]Mason RL, Gunst R F, Hess J J. Statistical Design and Analysis of Experiments with Application to Engineering and Science, Second Edition [M]. (An International Thomason Publishing, Europe, London, IV7AA), Hoboken N J,2003
    [83]Bezerra MA, Santelli, RE, Oliverira P, etal. Response surface methodolody as a tool for optimization in analytical chemistry [J]. Talanta,2008,76(5):965-977.
    [84]杨同舟.食品工程原理[M].北京:中国农业出版社,2001:269-272
    [85]天津轻工业学院,无锡轻工业学院合编.食品工艺学:上册[M].北京:轻工业出版社,1985:106-112
    [86]Maskan M. Drying shrinkage and rehydration characteristics of kiwifruits during hotair and microwave drying [J]. Food Engineering,2001,48 (2):177-182
    [87]Maskan M. Kinetics of color change of kiwifruitsduring hot air and microwave drying[J]. Food Engineering,2001,48 (2):169-175
    [88]Szabo G, Rajko R, N emenyi M, etal. Modelling of combined hot-air convection drying of mush room[M]. Drying'2002 P roceedings of the 13th International Drying Symposium, Beijing, China,2002,1 (A):319-326
    [89]Kh raishehM A M, Cooper T J R, Magee T R A. Shrinkage characteristics of potatoes dehydrated under combined microwave and convective air conditions [J]. Drying Technology, 1997,15 (3&4):1003-1020
    [90]V enkatachalapathy K, Raghavan G S V. Microwave drying of whole, sliced and pureed straw berries[J]. Agricultural Engineering,2000,9(1):29-39
    [91]Cumbrera FL, Sanchez-Bajo F. The use of JMAYK kinetic equation for the analysis of solid-state reactions:critical considerations and recent interpretations[J]. The rmochimica Acta,1995,266 (15):315-330
    [92]Farjas J, Roura P. Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equations for non-isothermal experiments and its analytical solution[J]. Acta Materialia,2006,54(20): 5573-5579
    [93]Zhao HZ, Liu XH, Wang G.D. Progress in modeling of phase transformation kinetics[J]. Journal of Iorn and Steel Research, International,2006,13 (3):68-73
    [94]Ruitenberg G, Woldt E, Pefford-Long A K. Comparing the Johnson-Mehl-Avrami-Kolmogorov equations for isothermal and linear heating conditions[J]. Thermochimica Acta,2001,378 (1-2):97-105
    [95]王宝和.干燥动力学研究综述[J].干燥技术与设备,2009,7(1):51-56
    [96]伍飚,邱燕虹,徐志刚等.二醋酸纤维干燥动力学模型[J].合成纤维,2006,3(13):13-16
    [97]王宝和,王秀兰.氢氧化镁纳米棒的干燥速率曲线[J].干燥技术与设备,2010,8(1):20-24
    [98]诸爱士.洋葱薄层脱水动力学研究[J].浙江科技学院学报,2006,18(1):31-34
    [99]欧春艳,杨磊,李思东等.甲壳素红外干燥特性及动力学模型[J].研究农业工程学报2008,24(4):287-289
    [100]时新玲,张富仓,王国栋.土壤失水干燥的动力学实验研究[J].应用基础与工程科学学报,2009,14(3):
    [101]Mota CL, Dias A, Barroca MJ, etal. Convective drying of onion:Kinetics and nutritional evaluation[J]. Food and Bioproducts Processing,2010,88 (2-3):115-123
    [102]Ahmet Kaya, Orhan Aydin, Cevdet Demirtas. An experimental study on the drying kinetics of quince[J]. Desalination,2007,212 (1-3):328-343
    [103]Antonio Vega-Galvez, Elsa Uribe, Mario Perez, etal. Effect of high hydrostatic pressure pretreatment on drying kinetics, antioxidant activity, firmness and microstructure of Aloe vera (Aloe barbadensis Miller) gel[J]. LWT-Food Science and Technology,2011,44(2):384-391
    [104]Ioannou I, Guiga W, Charbonnel C, etal. Frozen mirabelle plum drying:Kinetics, modelling and impact on biochemical properties[J]. Food and Bioproducts Processing, Corrected Proof, Available online 10 July 2010
    [105]Nieto A, Castro MA, Alzamora SM. Kinetics of moisture transfer during air drying of blanched and/or osmotically dehydrated mango[J]. Journal of Food Engineering,2001,50 (3):175-185
    [106]Guine RPF. Drying Kinetics of Some Varieties of Pears Produced in Portugal[J]. Food and Bioproducts Processing,2005,83 (4):273-276
    [107]Tasirin SM, Kamarudin S.K, Jaafar K, etal. The drying kinetics of bird's chillies in a fluidized bed dryer[J]. Journal of Food Engineering,2007,79 (2):695-705
    [108]Chien HC, Chung LL, Michael C, etal. Drying kinetics and product quality of dried Chempedak[J]. Journal of Food Engineering,88 (4):522-527
    [109]Ahmet Kaya, Orhan Aydin. An experimental study on drying kinetics of some herbal leaves[J]. Energy Conversion and Management,2009,50 (1):118-124
    [110]Barrozo MAS, Henrique HM, Sartori DJM. The use of the orthogonal collocation method on the study of the drying kinetics of soybean seeds [J]. Journal of Stored Products Research,2006,42 (3):348-356
    [111]Mohammad AH, Ala'a H, Magee TRA. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration[J]. Chemical Engineering and Processing,2009,48 (1): 524-531
    [112]Ibrahim Doymaz. Convective drying kinetics of strawberry[J]. Chemical Engineering and Processing:Process Intensification,2008,47 (5):914-919
    [113]Maskan, M. Microwave/air microwave finish drying of banana[J]. Journal of Food Engineering,2000,44 (2):71-78
    [114]Karathanos VT, Belessiotis VG. Application of a thin-layer equation to drying data of fresh and semi-dried fruits [J]. Journal of Agricultural Engineering Research,1999,74 (4): 355-361
    [115]Pehlivan D, Tog rul IT. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process [J]. Journal of Food Engineering,2004,65 (3):413-425
    [116]Gokce Dadal, Dilek Klc Apar, Belma Ozbek. Microwave Drying Kinetics of Okra[J]. Drying Technology,2007,25 (5):917-924
    [117]李钒,张梅,王习东.微波在冶金过程中应用的现状与前景[J].过程工程学报,2007,7(1):186-193
    [118]Ayensu A. Dehydration of food crops using a solar dryer with convective heat flow [J]. Solar Energy,1997,59 (4-6):121-126
    [119]Diamante LM, Munro PA. Mathematical modeling of the thin layer solar drying of sweet potato slices[J]. Solar Energy,1993,51 (4):271-276
    [120]Zdemir MO, Devres YO. The thin layer drying characteristics of hazelnuts drying roasting[J]. Journal of Food Engineering,1999,42 (4):225-233
    [121]Henderson SM, Pabis S. Grain drying theory Ⅰ:temperature effect on drying coefficient [J]. Journal of Agriculture Research Engineering,1961, (6):169-174
    [122]Yaldiz O, Ertekin C, Zun HIU. Mathematical modeling of thin layer solar drying of sultana grapes [J]. Energy,2001,26 (5):457-465
    [123]Togrul IT, Pehlivan. Mathematical modeling of solar drying of apricots in thin layers[J]. Journal of Food Engineering,2002,55 (3):209-216
    [124]Wang CY, Singh RP. A single layer drying equation for rough rice[J]. The Arabian Journal for Science and Engineering,1978:278-301
    [125]Chandra PK, Singh RP. Applied Numerical Methods for food and agricultural engineers[M]. CRC Press, Boca Raton, FL,1995:163-167
    [126]Verma LR, Buckin RA, Endan JB, etal. Effects of drying air parameters on rice dying models[J]. The Arabian Journal for Science and Engineering,1985,28:296-301
    [127]Almubarak AA, Alsaeedi JN, Shoukry M. Effect of boundary layer on drying mechanisms of beach and desert sand[J]. European Journal of Soil Science,2008,59(4): 807-816
    [128]Kowalsko SJ, Musielak G., Banaszak J. Heat and mass transfer during microwave-convective drying[J]. American Institute of Chemical Engineers,2010,56(1): 24-35
    [129]Holtz E, Ahrne L, Karlsson TH, etal. The role of processing parameters on energy efficiency during microwave convective drying of porous materials [J]. Drying Technology, 2009,27 (2):173-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700