用户名: 密码: 验证码:
黄牛VEGF、VEGF-B、Flt-1基因遗传变异、克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦川牛、南阳牛和郏县红牛品种是中国优秀的地方黄牛品种,原为役用,现向肉役兼用乃至肉牛方向培育。传统的肉牛育种方法周期长,效率低。况且肉牛的许多经济性状属多基因控制的数量性状,常规的育种手段很难取得突破性的进展。近年来发展起来的分子标记辅助选择(marker-assisted selection,MAS)技术,由于直接在DNA水平上对肉牛性状的基因型进行选择,不仅弥补了传统育种技术中选种准确率低的缺点,而且提高了育种效率。转基因技术还能根据人们的需求创造出一些非常规性的畜牧产品。因此,在DNA水平上寻找与肉牛经济性状紧密连锁的分子标记,研究优良基因的功能,采用现代分子育种新技术结合常规育种,是加快中国肉牛品种培育的大趋势。
     研究表明血管内皮生长因子A(Vascular endothelial growth facto-Ar,VEGF-A)、血管内皮生长因子B(vascular endothelial growth factor-B,VEGF-B)和它们的受体FMS样酪氨酸激酶(Fms-like tyrosine kinase,Flt-1)基因的单核苷酸多态性(single nucleotide polymorphisms,SNPs)标记与人类疾病易感性有关,也与动物生长性状关系密切;但在畜禽遗传标记方面缺乏系统研究。
     本研究以秦川牛、南阳牛、郏县红牛3个品种共675头黄牛为试验材料,采用PCR-SSCP及DNA测序技术首次检测了VEGF、VEGF-B和其受体Flt-1基因的编码区及其周边的非编码区共42个位点的遗传变异,并将发现的19个SNPs不同的基因型与南阳牛的生长性状进行了关联分析;首次以实时荧光定量PCR技术研究了VEGF和VEGF-B基因在黄牛不同组织、不同发育时期的mRNA表达规律;首次克隆了黄牛VEGF基因完整CDS区序列,并成功实现了该基因在原核细胞表达。这些结果为黄牛分子辅助标记和功能验证及转基因育种奠定了基础。本研究得到以下重要结果:
     (1)黄牛VEGF基因遗传变异及其与南阳牛生长性状的关联
     检测了3个黄牛品种VEGF基因外显子及其周边内含子共6个位点的遗传变异,发现了3个新的SNPs: rs10960392(56765T﹥C),rs11075091(76860A﹥G),rs109288296(6893T﹥C)。其中1个SNP (6765T> C)位于内含子2。另外2个SNPs(6860A>G,6893T> C)位于外显子3,表现出强烈的连锁不平衡,仅引起同义突变。以此定义了3种单倍型:A(C-A-T), B(T-A-T),C(C-G-C),组成6种基因型:AA(C-A-T/C-A-T),AB(C-A-T/T-A-T),BB(T-A-T/T-A-T),AC (C-A-T/C-G-C),CC (C-G-C/C-G-C),BC(T-A-T/C-G-C)。
     使用单标记混合模型的关联分析法对SNP不同基因型与南阳牛0、6、12、18和24月龄的生长性状(体重、体高、体长、胸围和坐骨端宽)进行关联分析,结果发现南阳牛TC基因型(rs109603925,n=89)的初生重、6月龄体重、胸围明显高于TT(n = 6)与CC(n = 176)基因型个体(P﹤0.05),但第12,第18和24月龄之间性状差异不显著(P﹥0.05)。这些结果表明VEGF基因内含子2上的一个SNP (rs109603925)影响黄牛的早期生长发育。该SNP位点有望成为DNA分子标记,应用于黄牛的分子育种。
     (2)黄牛VEGF-B基因遗传变异及其与南阳牛生长性状的关联检测了3个黄牛品种VEGF-B基因编码区及其侧翼区共6个位点的遗传变异,发现了4种新的SNPs:ss251344001(782 A>G),ss251344002(1002 -- >CT),ss251344003(1079 C>T),ss251344004(2129 G>A)。将南阳牛不同时期(0、6、12、18和24月龄)的生长性状(体重、体高、体长、胸围、坐骨端宽)与4个SNPs组成的基因型进行关联分析,结果发现ss251344002(1002 -- >CT)SNP标记组成的3种基因型中,6月龄和12月龄的南阳牛,CT/CT(n = 89)和--/CT(n=107)基因型个体比--/--(n=79)基因型个体的体重更大(P﹤0.05)。而在18和24月龄的南阳牛中,这种差异并不显著(P﹥0.05)。这些结果表明该基因是分析牛早期生长发育潜在的候选基因。该SNP位点(ss251344002)可以作为辅助选择黄牛生长发育性状的分子标记。
     (3)黄牛Flt-1基因遗传变异及其与南阳牛生长性状的关联
     检测了3个黄牛品种Flt-1基因编码区及其侧翼区共30个位点。发现了12个SNPs:ss184956516(2260A﹥G);ss184956517(32255C>A); ss184956518(43654G>C); ss184956519(44409C>G),ss251343993(68859G>A),ss251343994(68872G>A),ss251343995(78152C>G),ss251343996(86197A>T),ss251343997(91417G>C),ss251343998(128783C>G),ss251343999(133972A>G),ss251344000(145849C>T)。其中4个SNPs位于内含子,8个位于外显子。Flt- 1基因(XP_001249769.2)外显子区域的8个SNPs均引起同义突变。使用单标记混合模型的关联分析法对SNPs不同基因型与南阳牛不同生长时期各性状进行了关联分析,发现12个SNPs位点的基因型并没有显著影响南阳牛不同生长时期的生长性状。故初步认为Flt - 1基因的SNPs不能作为辅助选择黄牛生长发育性状的分子标记。
     (4)黄牛VEGF和VEGF-B基因的组织表达
     以实时荧光定量PCR技术研究了VEGF和VEGF-B基因mRNA在黄牛不同年龄,不同组织的表达规律,发现VEGF、VEGF-B基因在黄牛的心、肝、脾、肺、肾、肌肉组织均有广泛的表达谱,但表达丰度最高的都是肌肉组织。黄牛胚胎时期大部分组织的表达量均高于成年组织。这些结果为黄牛分子育种奠定了分子生物学基础。
     (5)黄牛VEGF基因CDS区的克隆及原核表达
     克隆了黄牛VEGF基因CDS区的全序列,并构建了重组表达载体pET-28a-VEGF。经过IPTG诱导,在原核细胞BL21中表达出了目的蛋白。探索了目的蛋白在大肠杆菌中的最佳表达条件:37℃,IPTG浓度0.1 mmol/L,诱导3 h是最佳表达条件。本研究实现了VEGF在原核细胞BL21的大量表达,此结果为后续在真核细胞上功能验证及黄牛转基因育种奠定了基础。
Qinchuan, Nanyang and Jiaxian Red cattle are excellent local cattle breeds in China. Originally, these three cattle breeds were evolved from draft animals, in recent years, these breeds were used for draft and meat dual-purpose, but now were used solely for beef cattle type. It would take several more years with low efficiency to develop beef cattle breed by conventional breeding strategy. It is very difficult to make great genetic progress in bovine quantitative traits using conventional breeding approaches, because many economic traits in beef cattle are quantitative traits, which are controlled by multiple genes. In recent years, the marker-assisted selection (MAS) can improve the breeding efficiency in beef cattle and compensate for the low rate of accuracy in bovine conventional breeding strategy because MAS is directly based on genotypes and DNA level. While, transgenic technology can also create some of unconventional livestock products according to the needs of people. It is very important for the marker-assisted selection technology to identify the suitable candidate markers correlated with economically relevant traits and investigate the function of genes at a molecular level in these breeds. This is a trend to speed up the cultivation and breeding of Chinese beef cattle breeds using the combination of modern molecular breeding technology and conventional breeding technology.
     Many reports suggested the Vascular endothelial growth factor-A (VEGF-A), Vascular endothelial growth factor-B (VEGF-B), and their receptor Fms-like tyrosine kinase (Flt-1) gene were associated with animal growth traits. Many polymorphisms of VEGF, VEGF–B and Flt-1 gene have been detected in their coding and surrounding DNA sequences in humans, and these polymorphisms could be regarded as a major genetic risk factor for certain diseases. To date, few polymorphisms within these genes have been reported in livestock.
     PCR-SSCP and DNA sequencing methods were for the first time employed to screen the genetic variation of 42 loci from VEGF, VEGF–B and Flt-1 gene in 675 individuals belonging to three Chinese indigenous cattle breeds including Qinchuan, Jiaxian Red and Nanyang breed. We have detected 19 single nucleotide polymorphisms (SNPs) from their coding and surrounding DNA sequences of VEGF, VEGF–B and Flt-1 gene and evaluated the association between genotypes of 16 SNPs and the growth traits in Nanyang cattle breed. The mRNA expression level of VEGF and VEGF-B gene were for the first time examined in bovine different tissues and different embryonic development periods using real-time quantitative PCR analysis. The full CDS sequence of bovine VEGF gene was cloned. The recombinant plasmid pET-28a-VEGF induced by IPTG have for the first time successfully expressed the target protein in Escherichia coli BL21 (DE3). These results provide a basis for the breeding strategies through MAS, functional verification and transgenic breeding in Chinese domestic cattle. The results are as follows.
     (1) Association of polymorphisms of the VEGF with growth traits in Nanyang breed
     The genetic variation of 6 loci of VEGF gene were detected in 675 individuals belonging to three Chinese indigenous cattle breeds including Qinchuan, Jiaxian Red and Nanyang breed. Three new SNPs were found in three Chinese cattle breeds: rs109603925(6765T﹥C), rs110750917(6860A﹥G), rs109288296(6893T﹥C). One SNP (6765T﹥C) was detected in intron2 and the other two SNPs (6860A﹥G, 6893T﹥C) were in exon3 with strong linkage disequilibration. However, two synonymous mutations of exon3 were identified. Three haplotypes were described as: A(C-A-T), B(T-A-T)and C(C-G-C). The three haplotypes constituted six genotypes, including AA (C-A-T/C-A-T), AB (C-A-T/T-A-T), BB (T-A-T/T-A-T), AC (C-A-T/C-G-C), CC (C-G-C/C-G-C) and BC (T-A-T/C-G-C). The relationship between the different genotypes of each SNP and the various traits recorded (birth weight, body weight, body height, body length, heart girth and height at the hip cross) in Nanyang cattle breed (0, 6, 12, 18 and 24 month old) was evaluated using a single-marker mixed-model association analysis. Nanyang cattle with the TC genotype of rs109603925 (n = 89) showed higher birth weight, 6-month-old body weight and heart girth than those with the TT (n=6) and CC genotype (n=176) (p﹤0.05). At the traits of 12, 18, and 24 months, the difference was not significant between the above three genotypes in Nanyang samples (p﹥0.05). The analysis showed that the SNP (rs109603925) in intron 2 of the VEGF gene was significant contribution to early development of Chinese cattle. These findings indicated that this SNP can be a molecular marker and will be utilized to the molecular breeding strategies through marker assisted selection (MAS) in Chinese cattle.
     (2) Association of SNPs of the bovine VEGF-B gene with growth traits in Nanyang breed
     We analyzed the genetic polymorphism of 6 loci of the coding and surrounding DNA sequences of bovine VEGF–B gene in three Chinese indigenous cattle breeds. Four novel SNPs were detected in three breeds: ss251344001(782A>G), ss251344002(1002-->CT), ss251344003 (1079C>T), ss251344004(2129G>A). In this study, Association analysis between 4 SNPs and growth traits (birth weight, body weight, body height, body length, heart girth, hucklebone width) were analyzed in Nanyang cattle at 6, 12, 18 and 24-month-old respectively. Nanyang cattle at 6, 12-month-old with the CT/CT (n = 89) and --/CT genotype of ss251344002 (n=107) showed heavier body weight than those with the --/-- genotype (n=79) (p﹤0.05). However, at 18 and 24-month-old, the difference between three genotypes was not significant (p﹥0.05). These results suggest that VEGF-B is a potential candidate gene for bovine growth traits and the SNP (ss251344002) is a molecular marker which contributes to early development of Chinese cattle.
     (3) Association of SNPs in the Flt-1 gene with growth traits in Nanyang breed
     We analyzed, for the first time, the genetic variation of 30 loci of the coding region and the non-coding region of bovine Flt-1gene in three Chinese cattle breeds. Twelve novel SNPs were detected in bovine Flt-1gene in the three breeds: ss184956516(2260AG), ss184956517(32255C>A), ss184956518(43654G>C), ss184956519(44409C>G), ss2513 43993(68859G>A), ss251343994(68872G>A), ss251343995(78152C>G), ss251343996 (86197A>T), ss251343997(91417G>C), ss251343998(128783C>G), ss251343999(133972 A>G), ss251344000(145849C>T). Of which, four SNPs were located in introns and eight SNPs in exons of bovine Flt-1gene. All the eight SNPs studied here in exon regions of Flt-1 gene (XP_001249769.2) cause eight synonymous mutations. The relationship between the different genotypes of each SNP and the various traits recorded was evaluated using a single-marker mixed-model association analysis. Statistical results showed no significant association between the Flt-1 polymorphism and growth traits in Nanyang breed. We concluded that the identified SNPs of the Flt-1 gene were not considered as a DNA marker for bovine growth traits in marker-assisted selection.
     (4) Tissue expression of VEGF and VEGF-B gene in Chinese cattle
     The mRNA expression of VEGF and VEGF-B gene were examined in bovine different tissues during embryonic development periods in Chinese cattle by real-time quantitative PCR technology. The results showed that both VEGF and VEGF-B gene had a wide tissue distribution in heart, liver, spleen, lung, kidney and skeletal muscle tissues in Chinese cattle. We found that both VEGF and VEGF-B had the highest expression value in skeletal muscle. Both VEGF and VEGF-B mRNA expression abundance during different tissues of embryonic development stage were significantly higher than that in adults. The result of the tissue expression of VEGF and VEGF-B could provide a basis for molecular breeding of Chinese cattle.
     (5) Cloning and prokaryotic expression of the bovine CDS of VEGF gene
     We have cloned the full CDS sequence of the bovine VEGF gene, and constructed prokaryotic expression recombinant plasmid vector of pET-28a-VEGF. The recombinant plasmid pET-28a-VEGF induced by IPTG have successfully expressed the target protein in Escherichia coli BL21(DE3) after optimizing the expression condition. The optimized induction condition was: at 37℃induced with 0.1 mmol/L IPTG for 3 h.
     The results showed that VEGF protein formed inclusion bodies in bacterial expression system, suggesting that this assay can be used to purify VEGF protein and hence provide a basis for studying the applications of VEGF protein in eukaryote expression, gene functional verification and transgenic breeding in Chinese cattle.
引文
常振华,卫利选,何诚,郭本玲,蓝贤勇,陈宏,雷初朝. 2010.黄牛Y-STR与Y-SNPs遗传多样性与起源研究. Animal Biotechnology Bulletin, 12(1): 117
    陈付英,陈宏,雷初朝,王新庄,牛晖,王居强. 2007.郏县红牛CLPG基因的SNP及对生长发育性状的影响.畜牧兽医学报,38(12): 1290~1293
    陈宏,邱怀,詹铁生,贾敬肖. 1993.中国四品种黄牛性染色体多态性的研究.遗传, 15(4): 14~17
    陈宏,张英汉.2002.秦川牛肉用选育及其技术策略.黄牛杂志, 28(2): 1~4
    陈幼春. 1990.黄牛生态种特征及其利用方向.中国农业科学院畜牧研究所编,北京:农业出版社: 3~7
    邓桂馨,张银花,梁鸿斌. 2007.肉牛CAST基因分子多态性与肉品质性状相关性的研究.北京农学院学报, 22 (3): 25~27
    樊月圆,昝林森,王洪宝,杨彦杰. 2010. PLIN基因多态性与秦川牛胴体、肉质性状的相关性研究.畜牧兽医学报, 41(3): 268~273
    韩瑞华,昝林森. 2009.秦川牛及其杂种牛UCP3基因SNPs检测及其与胴体、肉质性状的相关性.畜牧兽医学报, 40(6): 806~812
    韩瑞华. 2008.秦川牛及其杂种牛UCP3、IGF2、CAPN1基因多态性与胴体、肉质性状关系研究. [硕士学位论文].杨凌:西北农林科技大学
    韩瑞丽. 2010.鸡visfatin和PRDM16基因遗传变异及其效应与表达研究. [博士学位论文].杨凌:西北农林科技大学
    郝瑞杰. 2009.秦川牛PACAP基因多态性及其与部分生长性状的关联研究. [硕士学位论文].杨凌:西北农林科技大学
    胡怡菲. 2010.秦川牛GH和GHR基因多态性及其与部分体尺性状的关联研究. [硕士学位论文].杨凌:西北农林科技大学
    黄萌,许尚忠,昝林森,等. 2007.牛MyoD1基因遗传变异及其对胴体性状的影响.中国畜牧兽医, 34(9):40~43
    黄萌. 2008.肉牛RXRG和MyoD1基因的克隆、SNPs筛查及其与肉质和双胎性状的关联分析. [硕士学位论文].杨凌:西北农林科技大学
    黄明睿,王锋,许若军.瘦蛋白生物学特性及其在代谢与繁殖中的作用. 2000. [J].畜牧与兽医, 32(6): 40~43
    雷初朝,陈宏,杨公社,宋林生,雷雪芹,孙维斌,李瑞彪,刘小林. 2004.中国部分黄牛品种mtDNA遗传多态性研究.遗传学报, 31 (1): 57~62
    雷雪芹,陈宏,袁志发,徐廷生,雷初朝,孙维斌. 2004.牛FSHR基因第10外显子单核苷酸多态性及其与双胎性状的关系.中国生物化学与分子生物学报, 20 (1): 34~37
    李峰,刘波.2000.中国优良黄牛品种-南阳牛.家畜生态, 21(4): 44~46
    李宁. 2005.基因组学技术在动物遗传育种中的应用.华南农业大学学报, 26(增刊): 12~19
    刘波,陈宏,蓝贤勇,雷初朝,张志清,张润锋. 2005.秦川牛及其杂种牛POU1F1基因多态与生长性能相关性.中国农业科学, 38(12): 2520~2525
    刘素梅,赵淑萍,杨望,隋爱华,吕振华,刘相萍,马德花,孙芳. 2007.应用实时荧光定量RT-PCR检测宫颈癌及其外周血中VEGF表达的研究.现代医学生物进展, 7(8):1161~1165
    毛海霞,陈宏,陈付英,张春雷,王新庄,王居强. 2008.郏县红牛DGAT2基因多态性与生长性状的相关性分析.遗传, 30(3): 329~332
    邱昌伟,王亨,陈双燕,林德贵,宋筱瑜,王金秋. 2007.实时荧光定量PCR对犬乳腺肿瘤组织VEGF-C基因的定量检测研究.甘肃农业大学学报, 42(4)11~15
    邱怀,秦志锐,陈幼春. 1986.中国牛品种志,上海科学技术出版社
    孙维斌,陈宏,雷雪芹,雷初朝,张英汉,李瑞彪,昝林森,胡沈荣. 2003. IGFBP3基因多态性与秦川牛部分屠宰性状的相关性.遗传, 25(5) : 511~516
    孙志娟,黄之瑜. 2001.肥胖的研究进展.生理科学进展, 32(1): 39~44
    田璐,许尚忠,岳文斌,李俊雅,高雪,任红艳. 2007. MyoD基因对肉牛胴体性状影响的分析.遗传, 29(3): 313~318
    王利华,周丹.类胰岛素生长因子(IGF)生理及在畜牧业中的应用. 2001. Livestock and poultry industry, 10: 14~15
    王卓. 2008.秦川牛H-FABP、A-FABP和E-FABP基因SNPs及其与部分肉用性状关联分析. [硕士学位论文].杨凌:西北农林科技大学
    辛亚平.中国部分黄牛群体Y染色体微卫星多态性与分子进化及生产性能关系初步研究[博士学位论文].杨凌:西北农林科技大学.
    杨安钢(主编). 2008.生物化学与分子生物学试验技术.北京:高等教育出版社: 71~72
    杨大鹏. 2009. Calsarcin-1、GHRH基因多态性与4个黄牛品种生长及肉质性状的关联分析[硕士学位论文].杨凌:西北农林科技大学
    杨彦杰,昝林森,王洪宝. 2009.秦川牛脂联素基因SNPs检测及其与胴体、肉质性状的相关性.遗传, 31(10): 1006~1012
    于汝梁,辛彩云,陈琳. 1993.黄牛Y染色体多态性及品种起源演变的探讨.中国农业科学, 26(5): 61~67
    昝林森,田万强,刘永峰. 2010.我国肉牛良繁体系现状与方略,中国畜牧业通讯, 14: 22~24
    张春雷,王艳红,陈宏,雷初朝,房兴堂,王居强,马桂变,牛晖,肖杰. 2009.牛POMC基因多态性及其与南阳牛生长性状的相关分析.遗传, 31(12): 1221~1225
    张存芳. 2008.黄牛PTHRP、GHRH和GHRHR基因SNP及其与生长性状关联分析.[硕士学位论文].杨凌:西北农林科技大学
    张金玉,秦立红,张国梁,赵玉民,张嘉保,赵志辉. 2010.不同品种牛IGF-I基因5′调控区序列的多态性分析.中国农学通报, 26(21): 33~36
    张路培,张小辉,许尚忠. 2007.牛GDF9和BMP15基因遗传变异与双胎性状的关系研究.畜牧兽医学报, 38(8): 800~805
    张润锋,陈宏,雷初朝,张春雷,张海军,鲍斌,陈付英,王轶敏,牛晖,王新庄. 2007. 3个黄牛品种的myostatin 5′调控区多态与生长性状的相关分析.畜牧兽医学报, 38(12): 1273~1278
    张英汉. 2001.论肉用、役用经济类型划分的意义和方法(BPI指数).黄牛杂志, 27(2): 1~5
    张志清,陈宏,刘波,雷初朝,张润锋,蓝贤勇.晋南牛父系和母系起源研究.中国农学通报, 21(9): 7~9
    赵高锋,陈宏,雷初朝,张春雷,张丽,蓝贤勇,房兴堂,康湘涛. 2007.秦川牛GHR基因SNPs及其与生长性状关系的研究.遗传, 29(3): 319~323
    钟昕. 2010.黄牛BMP2、BMP4、及BMPR-B基因的多态性及其与体尺性状的关联分析. [硕士学位论文].杨凌:西北农林科技大学
    周国利,朱奇,郭善利,吴玉厚. 2005.鲁西黄牛H-FABP基因的多态性及其与肉质性状关系的分析.西北农业学报, 14(3): 5~7
    朱燕,罗欣,徐幸莲. 2006.黄牛最长肌中capn1 mRNA表达与嫩度的关系.南京农业大学学报, 29(2): 89~93
    Alitalo K, Tammela T, Petrova TV. 2005. Lymphangiogenesis in development and human disease. Nature,438: 946~953
    Andersson L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet. 2: 130~138
    Autiero M, Luttun A, Tjwa M, Carmeliet P. 2003. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost, 1: 1356~1370
    Banos G, Woolliams JA, Woodward BW, Forbes AB, Coffey MP. 2008. Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. J Dairy Sci, 91(8): 3190~3200
    Barendse W, Reverter A, Bunch RJ, Harrison BE, Barris W, Thomas MB.2007 A validated whole genome association study of efficient food conversion in cattle. Genetics,176: 1893~1905
    Barkley MD, Riggs AD, Jobe A, Burgeois S. 1975.Interaction of effecting ligands with lac repressor and repressor~operator complex. Biochemistry, 14(8):1700~1712
    Bell CE, Lewis M. 2001.The Lac repressor: a second generation of structural and functional studies. Curr Opin Struct Biol, 11(1): 19~25
    Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, Mould A, Cahill MM, Tonks ID, Grimmond SM, Townson S, Wells C, Little M, Cummings MC, Hayward NK, Kay GF. 2000. Mice lacking the vascular endothelial growth factor-B gene (VEGFb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res, 86(2): E29~35
    Berry D. Report on the potential of genomic selection in Irish dairy cattle. Genomic selection in Ireland EB/OL . 2007-02 http //www.icbf.com/publications/files/Genomic selection in Irish dairy cattle
    Blott S, Kim JJ, Moisio S, Schmidt-Küntzel A, Cornet A, Berzi P, Cambisano N, Ford C, Grisart B. 2003. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics, 163(1): 253~266
    Broxmeyer HE, Cooper S, Li ZH. 1995. Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor. Int J Hematol, 62: 203~215
    Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Winkelman-Sim DC, Schmutz SM. 2002. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet Sel Evol, 34: 105~116
    Cai X, Chen H, Wang S, Xue K, Lei C.2006. Polymorphisms of two Y chromosome microsatellites in Chinese cattle. Genet Sel Evol,38:525~534
    Cai X, Chen H, Lei C, Wang S, Xue K, Zhang B. 2007. mtDNA diversity and genetic lineages of eighteen cattle breeds from Bos taurus and Bos indicus in China. Genetica, 131(2):175~183
    Cao H, Urban JF Jr and Anderson RA 2008. Insulin increases tristetraprolin and decreases VEGF geneexpression in mouse 3T3-L1 adipocytes, Obesity (Silver Spring), 16(6): 1208~1218
    Carano RA, Filvaroff EH. 2003. Angiogenesis and bone repair. Drug Discov Today 8: 980~989 Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F. 2000. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto~paracrine role during endochondral bone formation. J Cell Sci, 113: 59~69
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. 1996.
    Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380: 435~439
    Cho S, Park TS, Yoon DH, Cheong HS, Namgoong S. 2008.Identification of genetic polymo- hisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle. BMB Rep, 41: 29~34
    Chu MX, Liu ZH, Jiao CL, He YQ, Fang L, Ye SC, Chen GH, Wang JY. 2007. Mutations in BMPR~IB and BMP~15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries). J Anim Sci, 85(3): 598~603
    Clauss M, Gerlach M, Gerlach H. 1990.Vascular permeability factor: a tumor-erived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med, 172: 1535~1545
    Conn G, Bayne ML, Soderman DD, Kwok PW, Sullivan KA, Palisi TM, Hope DA, Thomas KA. 1990.Amino acid and cDNA sequence of a vascular endothelial cell mitogen homologous to platelet~derived growth factor. Proc Nat1 Acad Sci USA, 87(7): 2628~2632
    Curi RA, Palmieri DA, Suguisawa L, de Oliveira HN, Silveira AC,Lopes CR. 2006. Growth and carcass traits associated with GH1/AluI and POU1F1/HinfI gene polymorphisms in Zebu and crossbred beef cattle. Genet Mol Biol, 29: 56~61
    Davis GH. 2005. Major genes affecting ovulation rate in sheep. Genet Sel Evol, 2005, 37 (Suppl. 1): S11~S23
    De Roos AP, Hayes BJ, Spelman RJ, Goddard ME. 2008. Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics, 179(3): 1503~1512
    De Roos AP, Schrooten C, Mullaart E, Calus MP, Veerkamp RF. 2007. Breeding value estimation for fat percentage using dense markers on Bos taurus autosome 14. J Dairy Sci,90(10):4821~4829
    De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N and Williams LT1992. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science, 255(5047):989~991
    Dekkers JC, Hospital F. 2002. The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet, 3 (1): 22~32
    Dekkers JC. 2004. Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. J. Anim. Sci, 82(E. Suppl.): E313~E328
    De Vries C, Escobedo JA, Ueno H, Houck KA, Ferrara N,Williams LT. 1992. The fms-like tyrosine kinase, a receptor for vascularendothelial growth factor. Science, 255: 989~991
    Di Stasio L, Sartore S, Albera A. 2002. Lack of association of GH1 and POU1F1 gene variants with meat production traits in Piemontese cattle. Anim Genet, 33 (1): 61~64
    Donovan DM, Kerr DE, Wall RJ. 2005. Engineering disease resistant cattle. Transgenic Research, 14(5):563~567
    Douvaras P, Antonatos DG, Kekou K, Patsilinakos S, Chouliaras G, Christou A, Andrikou A, Kanavakis E. 2009. Association of VEGF gene polymorphisms with the development of heart failure in patients after myocardial infarction. Cardiology, 114(1): 11~18
    Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM. 2000. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol, 151: 879~889
    Fan YY, Zan LS, Fu CZ, Tian WQ, Wang HB, Liu YY, Xin YP. 2010. Three novel SNPs in the coding region of PPARγgene and their associations with meat quality traits in cattle. Mol Biol Rep, 38(1): 131~137 Farnir F, Grisart B, Coppieters W, Riquet J, Berzi P, Cambisano N, Karim L, Mni M, Moisio S, Simon P,
    Wagenaar D, Vilkki J, Georges M. 2002. Simultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14. Genetics, 161: 275~287
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MW. 1996. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380(6573): 439~442
    Ferrara N, Davis-Smyth T. 1997. The biology of vascular endothelial growth factor. Endocr Rev, 18: 4~25 Ferrara N, Gerber HP, Le Couter J. 2003. The biology of VEGF and its receptors. Nature Med, 9(6): 669~676.
    Ferrara N, Henzel WJ. 1989. Pituitary follicular cells secrete a novel parin-binding growth factor specific for vascular endothelial cells. B&hem Biophys Res Commun, 161: 851~859
    Ferrara N, Houck K, Jakeman L, Leung DW. 1992. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocrinol Rev, 13: 18~32 Ferrara N. 2004.Vascular endothelial growth factor: basic science and clinical progress.Endocr Rev, 25(4): 581~611
    Ferrara N, Mass RD, Campa C, Kim R. 2007. Targeting VEGF-A to treat cancer and age- related macular degeneration. Annu. Rev. Med, 58: 491~504
    Fitzsimmons CJ, Schmutz SM, Bergen RD, McKinnon JJ .1998. A potential association between the BM1500 microsatellite and fat deposition in beef cattle. Mamm Genome, 9: 432~434 Folkman J, Shing Y. 1992. Angiogenesis. J Biol Chem, 267:10931~10934
    Fries R, Eggen A, Womack JE. 1993. The bovine genome map. Mamm Genome , 4:405 Ren G, Chen H, Zhang LZ, Lan XY, Wei TB, Li MJ, Jing YJ, Lei CZ and Wang JQ. 2010. A coding SNP of LHX4 gene is associated with body weight and body length in bovine. Molecular Biology Reports,37(1):417~422
    Gao X, Shi MY, Xu XR, Li JY, Ren HY, Xu SZ. 2009. Sequence Variations in the Bovine IGF-I and IGFBP3 Genes and Their Association with Growth and Development Traits in Chinese Beef Cattle. Agricultural Sciences in China, 8(6): 717~722
    Gao X, Xu XR, Ren HY, Zhang YH, Xu SZ. 2006. The effects of the GH, IGF-I and IGF-IBP3 gene on growth and development traits of Nanyang cattle in different growth period. Yi Chuan, 28(8): 927~932
    Garner A.1994. Vascular diseases. In Gamer A, Klintworth GK, eds. Pathobiology of Occular Disease. A Dynamic Approach. 2nd Edition, New York, Marcel Dekker, 1625~1710.
    Gautier M, Faraut T, Moazami-Goudarzi K, Navratil V, Foglio M, Grohs C, Boland A, Garnier JG, Boichard D, Lathrop GM, Gut IG, Eggen A.2007. Genetic and haplotypic structure in 14 European and African cattle breeds. Genetics, 177: 1059~1070
    Ge W, Davis ME, Hines HC, Irvin KM, Simmen RC. 2001. Association of a genetic marker with blood serum insulin-like growth factor-I concentration and growth traits in Angus cattle. J Anim Sci. 79(7): 1757~1762.
    Gerbens F, de Konig DJ, Harders FL, Meuwissen TH, Janss LL et al. 2000. The effect of adipocyte and heart fatty acid-binding protein gene on intramuscular fat and back fat content in Meishan crossbred pigs. J Anim Sci, 78: 552~559
    Gerbens F, Verburg FJ, Van Moerkerk HT, Engel B, Buist W. 2001. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J Anim Sci, 79: 347~354
    Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller G-A, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N 1999a. VEGF is required for growth and survival in neonatal mice. Development, 126: 1149~1159
    Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N. 1999. VEGF is required for growth and survival in neonatal mice. Development, 126(6):1149~1159
    Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. 1999b. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med, 5: 623~628
    Greenwood, T. A. and J. R. Kelsoe. 2003. Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics, 82(5): 511~520
    Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, Biglioli P, Capogrossi MC. 2003. Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol, 163(4): 1417~1428
    Giantonio BJ, Catalano PJ, Meropol NJ, O'Dwyer PJ, Mitchell EP, Alberts SR, Schwartz MA, Benson AB. 2007. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. Journal Clinical Oncology 25(12): 1539~1544
    Gilbert W, Maxam A. 1973. The nucleotide sequence of the lac operator. Proc Natl Acad Sci U S A, 70(12): 3581~3584
    Ginja C, Penedo MC, Melucci L, Quiroz J, Martínez López OR, Revidatti MA, Martínez-Martínez A, Delgado JV, Gama LT.2010. Origins and genetic diversity of New World Creole cattle: inferences from mitochondrial and Y chromosome polymorphisms.Anim Genet,41:128~141
    
    Goddard ME. Hayes B, McPartlan H, Chamberlain A J. 2006. Can the same genetic markers be used in multiple breeds? Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, CD-ROM communication , 22~16
    G?therstr?m A, Anderung C, Hellborg L, Elburg R, Smith C, Bradley DG, Ellegren H. 2005. Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe. Proc Roy Soc Biol,272:2345~2350
    Greenaway J, Gentry PA, Feige JJ, LaMarre J, Petrik JJ. 2005. Thrombospondin and vascular endothelial growth factor are cyclically expressed in an inverse pattern during bovine ovarian follicle development. Biol Reprod, 72(5): 1071~1078
    Grimmond S, Lagercrantz J, Drinkwater C, Silins G, Townson S, Pollock P, Gotley D, Carson E, Rakar S, Nordenskj?ld M, Ward L, Hayward N, Weber G. 1996. Cloning and characterisation of a novel human gene related to vascular endothelial growth factor. Genome Res, 6(2): 124~131
    Guan L, Kaback HR. 2006. Lessons from lactose permease. Annu Rev Biophys Biomol Struct, 35: 67~91 Guillaume F, Fritz S, Boichard D, Druet T. 2008. Estimation by simulation of t he efficiency of the French marker~assisted selection program in dairy cattle. Genet Sel Evol, 40: 91~102
    Gunasekaran K, Ma B, Nussinov R. 2004. Is allostery an intrinsic property of all dynamic proteins? Proteins, 57(3): 433~443
    Guo Y, Chen H, Lan X, Zhang B, Pan C, Zhang L, Zhang C, Zhao M. 2008. Habier D, Fernando RL, Dekkers JC. 2007. The impact of genetic relationship information on genome~assisted breeding values. Genetics, 177(4): 2389~2397
    Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Yl?-Herttuala S, Lindahl P, Eriksson U. 2010. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature, 464(7290): 917~921
    Haskell RE, Bowen RA. 1999. Efficient production of transgenic cattle by retroviral infection of early embryos. Mol Reprod Dev, 40(3): 386~390 Hill WG and Robertson A. 1968. Linkage disequilibrium in finite populations. Theor Appl Genet, 38: 226~231
    Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. 1991. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mel Endocrinol, 5: 1806~1814
    Ibeagha-Awemu EM, Kgwatalala P, Zhao X. 2008. A critical analysis of production-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mamm Genome, 19(9): 591~617
    Iyer S, Scotney PD, Nash AD, Ravi Acharya K. 2006. Crystal structure of human vascular endothelial growth factor-B: identification of amino acids important for receptor binding. J Mol Biol, 359(1): 76~85
    Jacob F. and Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol, 3, 318~356
    Kapelański W, Grajewska A, Kury? J, Bocian M, Wyszyńska-Koko J,Urbański P. 2005. Polymorphism in the coding and non-coding regions of the MyoD gene family and meat quality in pigs. Folia Biologica, 53 (Supplement 1): 45~49
    Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT. 1989. Vascular permeability factor, an endothelial cell mitogen related to platelet derived growth factor. Science, 246(4935): 1309~1312
    Kern D, Zuiderweg ER. 2003. The role of dynamics in allosteric regulation. Curr Opin Struct Biol, 13(6):748~757
    Khatkar MS, Thomson PC, Tammen I, Raadsma HW. 2004. Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol, 36: 136~190
    Kirkpatrick BW. 1992. Identification of a conserved microsatellite site in the porcine and bovine insulin-ike growth factor-I gene 5' flank. Anim Genet, 23(6): 543~548
    Kolbehdari D, Schaeffer LR, Robinson JA. 2007. Estimation of genome-wide haplotype effects in half-sib designs. J Anim Breed Genet, 124(6): 356~361
    Kononoff PJ, Deobald HM, Stewart EL, Laycock AD, Marquess FL. 2005. The effect of a leptin single nucleotide polymorphism on quality grade, yield grade, and carcass weight of beef cattle. J Anim Sci, 83(4): 927~932.
    Koohmaraie M. 1996. Biochemical factors regulating the toughening and tenderization process of meat. Meat Sci, 43: S193~S201
    Kowanetz M, Ferrara N. 2006. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res, 12: 5018~5022
    Krawczak M., Thomas N .S. T., Hundrieser B., Mort M., Wittig M., Hampe J and Cooper D. N. 2006. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing; Human Mutation, 28:150~158
    Kuroiwa Y, Kasinathan P, Sathiyaseelan T, Jiao JA, Matsushita H, Sathiyaseelan J, Wu H, Mellquist J, Hammitt M, Koster J, Kamoda S, Tachibana K, Ishida I, Robl JM.2009.Kuroiwa Y, Kasinathan P, Sathiyaseelan T, et al. Antigen-specific human polyclonal antibodies from hyperim- munized cattle. Nat Biotechnol, 27(2):173~181
    Lagercrantz J, Farnebo F, Larsson C, Tvrdik T, Weber G, Piehl F.1998. A comparative study of the expression patterns for VEGF, VEGF-b/vrf and VEGF-c in the developing and adult mouse. Biochim Biophys Acta, 1398(2): 157~163
    Lagercrantz J, Larsson C, Grimmond S, Fredriksson M, Weber G, Piehl F.1996.Expression of the VEGF-related factor gene in pre-and postnatal mouse. Biochem Biophys Res Commun, 220(1): 147~152
    Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y. 2006. Generation of cloned transgenic pigs rich in omega~3 fatty acids. Nat Biotechnol, 24(4): 435~436
    Lai SJ, Liu YP, Liu YX, Li XW, Yao YG. 2006. Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation. Mol Phylogenet Evol, 38: 146~154
    Lai X, Lan X, Chen H, Wang X, Wang K, Wang M, Yu H, Zhao M. 2009. A novel SNP of the Hesx1 gene in bovine and its associations with average daily gain. Mol Biol Rep, 36(7): 1677~1681
    Lande R, Thompson R.1990. Efficiency of marker~assisted selection in the improvement of quantitative traits. Genetics, 124(3): 743~756
    Lei CZ, Chen H, Zhang HC, Cai X, Liu RY, Luo LY, Wang CF, Zhang W, Ge QL, Zhang RF, Lan XY, Sun WB. 2006. Origin and phylogeographical structure of Chinese cattle. Anim Genet, 37(6): 579~582
    Leung DW, Cachianes G, Kuang W-J, Goeddel DV, Ferrara N. 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 246: 1306~1309
    Lewis, M. 2005. The lac repressor. C. R. Biol, 328: 521~548
    Li F, Chen H, Lei CZ, Ren G, Wang J, Li ZJ, Wang JQ. 2010. Novel SNPs of the bovine GAD1/gad67 gene and their association with growth traits in three native Chinese cattle breeds. Mol Biol Rep, 37(1): 501~505
    Li X, Aase K, Li H, von Euler G, Eriksson U. 2001. Isoform-specific expression of VEGF-B in normal tissues and tumors. Growth Factors, 19(1): 49~59
    Liang R, Liu X, Liu J, Ren Q, Liang P, Lin Z, Xie X. 2007. A T7-expression system under temperature control could create temperature-sensitive phenotype of target gene in Escherichia coli. J Microbiol Methods, 68(3): 497~506
    Liu Y, Zan L, Zhao S, Xin Y, Li L, Cui W, Tang Z, Li K.2010.Molecular characterization, polymorphism of bovine ZBTB38 gene and association with body measurement traits in native Chinese cattle breeds. Mol Biol Rep, 37(8): 4041~4049
    MacLeod, I. M., Hayes, B. J., Goddard, M. E. 2006. Efficiency of dense bovine single-nucleotide polymorphisms to detect and position quantitative trait loci. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production. Belo Horizonte, Brazil,8: 13~18
    MacNeil MD, Grosz MD 2002. Genome-wide scans for QTL affecting carcass traits in Hereford×composite double backcross populations. Journal of Animal Science, 80: 2316~2324-
    Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE .2002. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone, 30: 472~477
    Meuwissen T. 2007. Genomic selection: Marker-assisted selection on a genome wide scale. J Anim Breed Genet, 124: 321~322
    Meuwissen TH, Goddard ME. 2000. Fine-mapping of quantitative trait loci using linkage disequilibria with closely linked markers. Genetics, 155: 421~430
    Meuwissen TH, Hayes BJ, Goddard ME. 2001. Prediction of total genetic value using genome- wide dense marker maps. Genetics, 157(4): 1819~1829
    Monod, J, Changeux JP, Jacob, F. 1963. Allosteric proteins and cellular control systems. J Mol Biol, 6: 306~329
    Muir WM. 2007. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet, 124(6): 342~355
    Murani, E., S. Ponsuksili, H. M. Seyfert, X. M. Shi and K. Wimmers. 2009. Dual effect of a single nucleotide polymorphism in the first intron of the porcine Secreted phosphoprotein 1 gene: allele-specific binding of C/EBP beta and activation of aberrant splicing. BMC Mol. Biol., 10(1): 96
    Nakanishi K, Watanabe C. 2009. Single nucleotide polymorphisms of vascular endothelial growth factor gene intron 2 are markers for early progression of diabetic retinopathy in Japanese with type 1 diabetes. Clin Chim Acta, 402(1-2): 171~175
    Nash AD, Baca M, Wright C, Scotney PD. 2006. The biology of vascular endothelial growth factor-B (VEGF-B). Pulm Pharmacol Ther, 19(1): 61~69
    Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. 1999. Vascular endothelial growth factor (VEGF) and itsreceptors. FASEB J, 13(1): 9~22
    Neufeld G, Kessler O, Herzog Y. 2002. The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF. Adv Exp Med Biol, 515: 81~90
    Nielsen HM, Sonesson AK, Yazdi H, Meuwissen TH. 2009. Comparison of accuracy of genome- wide and BLUP breeding value estimates in sib based aquaculture breeding schemes. Aquaculture, 289(3-4): 259~264
    Nkrumah JD, Li C, Yu J, Hansen C, Keisler DH, Moore SS. 2005. Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behaviour, and measures of carcass merit. J Anim Sci., 83: 20~28
    Li F, Chen H, Lei CZ, Ren G, Wang J, Li ZJ and Wang JQ. 2008. Novel SNPs of the bovine LEPR gene and their association with growth traits. Biochem Genet, 46(11~12): 828~834
    Olofsson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K, Eriksson U. 1996. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 93(6): 2576~2581
    Olofsson B, Pajusola K, von Euler G, Chilov D, Alitalo K, Eriksson U. 1996. Genomic organization of the mouse and human genes for vascular endothelial growth factor B (VEGF-B) and characterization of a second splice isoform. J Biol Chem, 271(32): 19310~19317
    Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. 2006. VEGF receptor signaling-in control of vascular function. Nat Rev Mol Cell Biol, 7(5): 359~71
    Ortega N, Wang K, Ferrara N, Werb Z, Vu TH 2010. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation. Dis Model Mech, 3(3-4): 224~235
    Paavonen K, Horelli-Kuitunen N, Chilov D, Kukk E, Pennanen S, Kallioniemi OP, Pajusola K, Olofsson B, Eriksson U, Joukov V, Palotie A, Alitalo K.1996. Novel human vascular endothelial growth factor genes VEGF-B and VEGF-C localize to chromosomes 11q13 and 4q34, respectively. Circulation, 93(6): 1079~1082
    Page BT, Casas E, Heaton MP, Cullen NG, Hyndman DL et al. 2002. Evaluation of single~nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J Anim Sci, 80: 3077~3085
    Page BT, Casas E, Quaas RL, Thallman RM, Wheeler TL et al.2004.Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample in?uential industry sires. J Anim Sci, 82: 3474~3481
    Palmiter RD, Brinster RL, Hammer RE, et al. 1982. Dramatic growth of mice that develop from eggs microinjected with metallothionein growth hormone fusion genes. Nature, 300(5893): 611~615 Pan C, Lan X, Chen H, Guo Y, Shu J, Lei C, Wang X. 2008. A TaqI PCR-RFLP detecting a novel SNP in exon 2 of the bovine POU1F1 gene. Biochem Genet, 46(7-8): 424~432
    Pang Y, Wang J, Zhang C, Lei C, Lan X, Yue W, Gu C, Chen D, Chen H. 2011. The olymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle. Mol Biol Rep, 38(2): 755~759
    Pang Y, Wang J, Zhang C, Lei C, Lan X, Yue W, Gu C, Chen D, Chen H. 2011. The olymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle.Mol Biol Rep, 38(2): 755~759
    Park JE, Chen HH, Winer J, Houck KA, Ferrara N. 1994. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem, 269(41): 25646~25654
    Peng H, Usas A, Olshanski A, Ho AM, Gearhart B, Cooper GM and Huard J. 2005. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. Journal of Bone and Mineral Research, 20(11): 2017~2027
    Pereira AP, de Alencar MM, De Oliveira HN, Almeida DR. 2005. Association of GH and IG-1 polymorphisms with growth traits in a synthetic beef cattle breed. Genet Mol Biol, 28: 230~236
    Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, CD-ROM communication no, 20~40
    Quinn T, Peters KG, deVries C, Ferrara N, Williams LT.1993. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Nat1 Acad Sci, USA, 90: 7533~7537
    Red-Horse K,Crawford Y,Shojaei F,Ferrara N. 2007. Endothelium-microenvironment interactions in the developing embryo and in the adult. Dev Cell, 12: 181~94
    Ren G, Chen H, Zhang LZ, Lan XY, Wei TB, Li MJ, Jing YJ, Lei CZ, Wang JQ. 2010. A coding SNP of LHX4 gene is associated with body weight and body length in bovine Mol Biol Rep, 37: 417~422
    Renaville R, Gengler N, Parmentier I, Moryiaux F, Massart S. 1997. Pit-1 gene HinfI RFLP and growth traits in double-muscled Belgian Blue cattle. J Anim Sci, 75(Suppl 1): 146
    Riggs AD, Suzuki H, Bourgeois S. 1970. Lac repressor-operator interaction. I. Equilibrium studies. J Mol Biol, 48(1): 67~83
    Robinson CJ, Stringer SE. 2001. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci, 114(Pt 5): 853-865
    Roderick SL. 2005. The lac operon galactoside acetyltransferase. C R Biol, 328(6): 568~575
    Salter DW, Smith EJ, Hughes SH, et al. 1987.Transgenic chickens: insertion of retroviral genes into the chicken germ line. Virology, 157(1): 236~240
    Sambrook J and Russell DW. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
    Schaeffer L R. 2006. Strategy for applying genome-wide selection in dairy cattle. Anim Breed Genet, 123: 218~223
    Schenkel FS, Miller SP, Ye X, Moore SS, Nkrumah JD, Li C, Yu J, Mandell IB, Wilton JW, Williams JL. 2005. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J Anim Sci., 83: 2009~2020
    Schlee P, Graml R, Schallemberger E, Schams D, Rottmann O et al.1994. Growth hormone and insulin~like growth factor-1 concentrations in bulls of various growth hormone genotypes. Theor Appl Genet., 88: 497~500
    Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. 1983. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219: 983~985
    Serena Zacchigna, Even K ?stli, Nikola Arsic, Lucia Pattarini, Mauro Giacca, Srdjan Djurovic. A novel myogenic cell line with phenotypic properties of muscle rogenitors. J Mol Med, 86(1): 105~115
    Sherman EL, Nkrumah JD, Murdoch BM, Li C, Wang Z , Fu A, Moore SS. 2008. Polymorphisms andhaplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associationswith measures of growth, performance, feed efficiency, andcarcass merit in beef cattle. J Anim Sci, 86(1): 1~16
    Silvestre JS, Tamarat R, Ebrahimian TG, Le-Roux A, Clergue M, Emmanuel F, Duriez M, Schwartz B, Branellec D, Lévy BI. 2003. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res, 93(2):114~123
    Soares CR, Gomide FI, Ueda EK, Bartolini P. 2003,Periplasmic expression of human growth hormone via plasmid vectors containing the lambdaPL promoter: use of HPLC for product quantification. Protein
    Engineering,16 (12): 1131~1138 Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. 1998. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform~specific receptor for vascular endothelial growth factor. Cell, 92(6): 735~745
    Solberg TR, Sonesson AK, Woolliams JA, Meuwissen TH. 2008. Genomic selection using different marker types and densities. J Anim Sci, 86(10): 2447~2454
    Solberg TR, Sonesson AK, Woolliams JA, Odegard J, Meuwissen TH. 2009. Persistence of accuracy of genome-wide breeding values over generations when including a polygenic effect. Genet Sel Evol, 41:53
    Stone RT, Kappes SM, Beattie CW. 1996. The bovine homolog of the obese gene maps to chromosome 4. Mamm Genome, 7(5): 399~400
    Street J, Bao M, DeGuzman L, Bunting S, Peale Jr FV, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, Van Bruggen N, Redmond HP, Carano RA, Filvaroff EH. 2002. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci, 99: 9656~9661
    Swain JF, Gierasch LM. 2006. The changing landscape of protein allostery. Curr Opin Struct Biol, 16(1): 102~108
    Takahashi H, Shibuya M. 2005.The vascular endothelial growth factor VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond),109(3): 227~241
    Tambasco DD, Paz CCP, Tambasco-Studart M, Pereira AP, Alencar MM et al. 2003. Candidate genes for growth traits in beef cattle crosses Bos taurus 9 Bos indicus. J Anim Breed Genet, 120: 51~54 Tammela T, Enholm B, Alitalo K, Paavonen K. 2005.The biology of vascular endothelial growth factors. Cardiovasc Res, 65: 550~563
    Tang K, Breen EC, Gerber HP, Ferrara NM and Wagner PD. 2004. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiological Genomics, 18(1): 63~69
    Taniguchi Y, Itoh T, Yamada T, Sasaki Y. 2002. Genomic structure and promoter analysis of the bovine leptin gene. IUBMB Life, 53(2): 131~135
    Tasaki Y, Nishimura R, Shibaya M, Lee HY, Acosta TJ, Okuda K. 2010. Expression of VEGF and its receptors in the bovine endometrium throughout the estrous cycle: effects of VEGF on prostaglandin production in endometrial cells.J Reprod Dev, 56(2):223~229
    Tebbe CC, Schmalenberger A, Peters S, Schwieger F. 2001. Single strand conformation polymorphism (SSCP) for microbial community analysis. in: P.A. Rochelle (Ed.), Environmental Molecular Microbiology: Protocols and Applications, Horizon Scientific Press, Wymondham, pp. 161~175
    Thomas MG, Enns RM, Shirley KL, Garcia MD, Garrett AJ, Silver GA. 2007. Associations of DNA polymorphisms in growth hormone and its transcriptional regulators with growth and carcass traits in two populations of Brangus bulls. Genet Mol Res, 6: 222~237
    Tisher E, Mitchell R, Hartmann T. 1991. The human gene for vascular endothelial growth factor. J Biol Chem, 266: 11947~l1954
    Urbański P, Kury? J. 2004. New SNPs in the coding and 5' flanking regions of porcine MYOD1 (MYF3) and MYF5 genes. J Appl Genet, 45(3): 325~329
    VanRaden PM , Van Tassell CP , Wiggans GR , Sonstegard TS , Schnabel RD , Taylor J F, Schenkel FS. 2009. Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci, 92: 16~24
    Viitala S, Szyda J, Blott S, Schulman N, Lidauer M, M?ki-Tanila A, Georges M, Vilkki J. 2006. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics, 173(4):2151~2164
    Vincenti V, Cassano C, Rocchi M, Persico G.1996. Assignment of the vascular endothelial growth factor gene to the humam chromosome 6-21.3. Circulation, 93: 1493~1495
    Wang J, Li ZJ, Lan XY, Hua LS, Huai YT, Huang YZ, Ma L, Zhao M, Jing YJ, Chen H, Wang JQ. 2010. Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations with growth traits. Mol Biol Rep, 37(1): 571~577
    White SN, Casas E, Wheeler TL, Shackelford SD, Koohmaraie M. 2005. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include Bos indicus,Bos taurus, and crossbred descent. J Anim Sci, 83: 2001~2008
    Wyszyńska-Koko J, Kury? J. 2005. A novel polymorphism in exon 1 of the porcine myogenin gene. J Appl Genet, 46(4): 399~402
    Xu S.2007. An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics, 63(2): 513~521
    Xue K, Chen H, Wang S, Cai X, Liu B, Zhang CF, Lei CZ, Wang XZ, Wang YM, Niu H. 2006. Effect of genetic variations of the POU1F1 gene on growth traits of Nanyang cattle. Yi Chuan Xue Bao, 33(10): 901~907
    Yamada Y, Takakura N, Yasue H, Ogawa H, Fujisawa H, Suda T. 2001. Exogenous clustered neuropilin 1 enhances vasculogenesis and angiogenesis Blood, 97: 1671~1678.
    Yamashita H, Kamada D, Shirasuna K, Matsui M, Shimizu T, Kida K, Berisha B, Schams D, Miyamoto A. 2008. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol Reprod Dev, 75(9): 1449~1456
    Yang D, Chen H, Wang X, Tian Z, Tang L, Zhang Z, Lei C, Zhang L, Wang Y. 2007. Association of polymorphisms of leptin gene with body weight and body sizes indexes in Chinese indigenous cattle. J Genet Genomics, 34(5): 400~405
    Yang DY, Chen H, Wang XZ, Tian ZH, Tang LG, Zhang ZF, Lei CZ, Zhang LZ, and Wang YM 2007. Association of Polymorphisms of Leptin Gene with Body Weight and Body Sizes Indexes in Chinese Indigenous Cattle. Journal of Genetics and Genomics (Formerly Acta Genetica Sinica), 34(5): 400~405
    Yu Y, Nie L , He Z Q ,Wen J K, Jian C S , Zhang Y P. 1999. Mitochondrial DNA variation in cattle of SouthChina : origin and introgression. Animal Genetics, 30 : 245~250
    Zacchigna S, ?stli EK, Arsic N, Pattarini L, Giacca M, Djurovic S. 2008.A novel myogenic cell line with phenotypic properties of muscle rogenitors. J Mol Med, 86(1): 105~115
    Zelzer E, Mamluk R, Ferrara N, Johnson RS, Schipani E, Olsen BR. 2004. VEGFA is necessary for chondrocyte survival during bone development. Development,131(9): 2161~2171
    Zhang B, Chen H, Hua L, Zhang C, Kang X, Wang X, Pan C, Lan X, Lei. 2008. Novel SNPs of the mtDNA ND5 gene and their associations with several growth traits in the Nanyang cattle breed. Biochem Genet, 46(5-6): 362~368
    Zhang C, Liu B, Chen H, Lan X, Lei C, Zhang Z, Zhang R. 2009a. Associations of a HinfI PCR- RFLP of POU1F1 gene with growth traits in Qinchuan cattle. Anim Biotechnol, 20(2): 71~74
    Zhang C, Wang Y, Chen H, Lan X, Lei C. 2007. Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal Biochem, 365(2): 286~287
    Zhang CF, Chen H, Zhang LZ, Zhao M, Guo YK, Zhang CL, Lan XY and Hu SR. 2008. Association of polymorphisms of the GHRHR gene with growth traits in cattle (Brief report) Arch. Tierz Dummerstorf, 51(3): 300~301
    Zhang CF, Chen H, Zhang LZ, Zhao M, Guo Yk, Zhang CL, Lan XY, Hu SR. 2008. Association of polymorphisms of the GHRHR gene with growth traits in cattle, Arch. Tierz., Dummerstorf , 51(3): 300~301
    Zhang CL, Wang YH, Chen H, Lan XY, Lei CZ, Fang XT. 2009b. Association between variants in the 5'-untranslated region of the bovine MC4R gene and two growth traits in Nanyang cattle. Mol Biol Rep, 36(7): 1839~1843
    Zhang Q, Chen H, Zhao S, Zhang L, Zhang L, Li F and Wang X. 2009. Single nucleotide polymorphisms and haplotypic diversity in the bovine PRKAB1 gene. Mol Biotechnol, 43(3): 193~199
    Zhao Q, Davis ME, Hines HC. 2004. Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle. J Anim Sci, 82: 2229~2233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700