用户名: 密码: 验证码:
Th1/Th17在小鼠异种周围神经移植急性排斥反应中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周围神经损伤是临床的常见病、多发病,尤以神经缺损多见,如果不能及时修复缺损,恢复神经的连续性及完整性,会严重影响患者的感觉及运动功能。在临床大量的病例中,长段的周围神经缺损的神经断端不能直接端端缝合,通常需要自体神经移植或同种异体神经移植来桥接神经缺损。虽然自体神经移植被认为是修复神经缺损的最有效方法,但是却存在着一定的缺陷,如供体来源有限、供区的副损伤、瘢痕形成及神经瘤的形成等。同种异体神经移植也因其来源有限且存在一定的伦理问题,使其临床应用受到限制。为寻找修复周围神经缺损的有效方法,异种周围神经移植越来越受到人们的重视。
     与心脏、肾脏等大型实体器官移植不同,异种神经移植体作为受体自身轴突生长的暂时性引导通路,仅在移植后早期发挥作用。移植后,如果受体自身的神经已经完成再生,达到支配效应器官的目的,则移植体存在与否已无意义。因此,异种神经移植早期排斥反应对手术成功与否具有重要意义。目前研究认为,1型辅助性T淋巴细胞相关的细胞因子是移植排斥反应的主要细胞因子,可通过促进移植体抗原特异性的细胞毒性T细胞(CTL)和迟发型超敏性T细胞(TDTH)启动排斥反应,而Th2细胞则可抑制Th1细胞的分化及功能,抑制排斥反应。Th1/Th2轴作为移植排斥机制的核心已被大多数人接受。近年研究已经发现,Th17及其细胞因子IL-17在肾脏、心脏、肺及肝脏等器官的移植中也发挥了重要的作用。
     在异种周围神经移植中,Th17和Th1分别是通过何种途径产生移植排斥反应的?它们中到底哪一种在起主导作用呢?它们之间是否具有协同或者拮抗作用?通过中和抗体的特异性阻断,能否帮助移植体逃脱受体的免疫监控,从而避免排斥反应的发生呢?本研究应用大鼠到小鼠的异种周围神经移植动物模型210例,得到以下研究结果:
     1.异种周围神经移植后早期,神经移植物周围的单核细胞浸润显著增加,且IFN-γ+、IL-17+细胞浸润增加;血清中的IFN-γ、IL-17含量明显升高;脾脏淋巴细胞胞浆内的IFN-γ、IL-17升高;而IL-4在血清、脾脏淋巴细胞及神经移植物周围的变化均无统计学意义。
     2.在应用IFN-γ中和抗体之后,虽然脾脏中的IFN-γ、IL-17表达较未应用中和抗体的异种移植无明显差异,但神经移植物周围的单核细胞、IFN-γ+、IL-17+细胞浸润均明显减少。
     3.应用IL-17中和抗体之后,血清、脾脏及神经移植物周围的IFN-γ、IL-17均减少,且单核细胞浸润也减少。
     4.联合应用IFN-γ、IL-17中和抗体的结果与单独应用IL-17中和抗体的结果相似。
     5.IFN-γ、IL-17在异种周围神经移植早期的急性排斥反应中发挥重要作用,且Th17可不依赖于Th1而单独发挥作用;阻断IFN-γ和IL-17的效应后,可以有效地抑制异种周围神经移植早期急性排斥反应。
     本研究初步证实了Th1/Th17细胞介导了异种周围神经移植早期急性排斥反应,且Th17可不依赖于Th1而单独发挥作用;应用抗IFN-γ、IL-17中和抗体,可有效抑制异种周围神经移植早期急性排斥反应,从而为临床有效干预提供了可行性依据。虽然可以确定Th1及Th17在异种周围神经移植排斥反应早期发挥重要作用,但是两者之间的调节机制,以及与CD8+T淋巴细胞之间的关系、与固有免疫细胞之间是否存在其它的调节作用,尚有待进一步研究。
Peripheral nerve injuries are very commonly seen in the clinic. If they cannot be immediately repaired to recover continuity and integrity, they often result in motor and sensory deficits for patients. In many instances these injuries result in long nerve segment loss preventing the nerve ends from being directly sutured due to increased tension. In these cases grafts such as autografts and allografts must be used to bridge the long nerve gaps. Although autografts are recognized as the gold standard for nerve grafting, they have several limitations including limited donor source, functional loss in the distribution of the donor nerve, scarring, and painful neuroma formation. Allografts also have defects in limitations of source. In order to find a means of reconstructing injured nerves, peripheral nerve xenotransplantation has become an increasingly promising alternative.
     Compared with heart, renal and other organs transplantation, peripheral nerve xenografts are just as the tube for nerve regeneration and play the role at the primary period. If the injuried nerve have regenerated and controlled the muscle, whether the xenografts exist will not be important for recipients. The cytokines secreted by thl cells are recognized as the major factors, and can promote the transplant rejection induced by the specific CTL and TDTH. Th2cells can inhibit the function of Th1. Th1/Th2paradigm is the center of the rejection mechanism and has been accepted by researchers. Recent studies demonstrate that Thl7and IL-17take part in the rejection of renal, heart, lung and liver transplantation.
     During peripheral nerve xenotransplantation, what is the regulatory mechanism between Thl and Thl7; what kind of cells plays the major role; whether the rejection can be prevented by blocking the role of these two kinds of cells? I performed the peripheral nerve xenotransplantation from rats to mouse, and get the conclusion:
     1Compared with peripheral nerve autotransplantation, mononuclear cells invasion increased during peripheral never xenotransplantation acute rejection; IFN-γ+、IL-17+cells invasion also increased around the surrounding tissues of xenografts; the levels of IFN-γ、IL-17increased in serum; the expression of IFN-γ、IL-17in lymphocytes from spleen increased. The changes of IL-4had no significant differences.
     2After using IFN-y neutralizing antibodies, although there is no significant difference of IFN-γ、IL-17expression in serum and lymphocytes from spleen compared to the xenografts recipients without injecting neutralizing antibodies, IFN-γ+、IL-17+cells invasion decreased around the surrounding tissues of xenografts.
     3After using IL-17neutralizing antibodies,IFN-γ、IL-17decreased in serum, spleen and surrounding tissues of xenografts.
     4The results in xenografts recipients of IFN-γ and IL-17neutralizing antibodies mixed used were similar as the recipients with IL-17neutralizing antibodies single used.
     5IFN-γ and IL-17play the crucial role during the acute rejection of peripheral nerve xenotransplantation; Thl7can play the role respectively, and are not dependent Thl; the rejection of peripheral nerve xenotransplantation by blocking the function of IFN-γ and IL-17.
     This study is the primary research about the role of Thl/Thl7during acute rejection of peripheral nerve xenotranspantation, and about the mechanism of rejection after using IFN-γ and IL-17neutralizing antibodies. The conclusion can provide the data and method for preventing the rejection and clinical treatment. Although Thl and Thl7play the role during the rejection, the regulatory mechanism between these two kinds of cells and the relationship between innate and adaptive immune cells need to be further studied. I hope do my best for clinical use of peripheral nerve xeontransplantation.
引文
[1]. Speidel CC. Adjustments of Nerve Endings:Harvey Lecture. Bull N Y Acad Med,1942,18(10):625-653.[2]. Zhang Z, Soucacos PN, Bo J, et al.Evaluation of collateral sprouting after end-to-side nerve coaptating using a fluorescent double labeling technique. Microsurgery,1999,19:286-291.[3].朱庆棠,朱家恺,劳镇国,等.神经端侧吻合后侧支再生的形态学研究.中华显微外科杂志,1999,22:201-203.[4].王金武,范启申,周祥吉.神经端侧缝合再生的实验研究,中华显微外科杂志.1998,21:83-85.[5].陈统一,赵金忠,陈中伟.大鼠神经端侧缝合的实验研究,中华显微外科杂志,1998,21:86-89[6]. Viterbo F, Trindade JC, Hoshion K, et al. Two end to side neurorrhaphies and nerve graft with removal of end epineural sheath experimental study in rats. Br J Plast Surg,1994,47:75-77.[7].罗永湘,王体沛,方煌.神经端侧吻合的临床应用.中华显微外科杂志,1998,21:90-92.[8].田培文,朱明祥,刘丙锐.指固有神经转位端侧吻合修复指端感觉.实用手外科杂志,2002,16(1):22.[9].陈振兵,洪光祥,王发斌等.神经端侧吻合技术的临床应用,中华显微外科杂志,1997,20:136-137.[10]. Lundborg G, Zhao Q, Kanje M, et al. Can sensory and motor collateral sprouting be induced from infact peripheral nerve by end-to-side anatomizes. J Hand Surg Br,1994;19(3):277-282.[11]. Caplan J, Tiangco DA, Terzis J K. Effects of NGFⅡ in a new end-to-side mode. J Reconstr Microsurg,1999;15(5):351-358.[12]. Wall EJ. Stress-strain relaxation of a peripheral nerve. J Hand Surg,1991,16A:859.[13]. Olsson Y. Microenvironment of the peripheral nerves system under normal and pathological conditions. Crit Rev Neurobiol,1990,5:265.[14]. Ross MH. Perineurium:Evidence of concractile elements. Science,1969,165:604-606.[15]. Sunderland SS. Nerves and nerve injuries.2ed. Livingstong:Churchill,1978:52-96.[16]. Millesi H, Zoch C, Reihsner R, et al. Mechanical properties of peripheral nerves. Clin Orthop Rel Res,1995,314:76.[17]. Wood RJ, Adson MⅡ, Verbeck Ac, et al. Controlled expansion of peripheral nerves:Comparision of nerve grafting and nerve expansion repair for canine nerve defects. J Trauma,1990,31:686-689.[18]. Skonlis TG, Lovice D, VonFricken K, et al. Nerve expansion the optimal answer for the short nerve gap:Behavioral analysis. Clin Orthop Rel Res,1995,314:84-94.[19]Manders EK, Saggers GC, Sipio. Elongation of peripheral nerve and viscera??containing smooth muscle. Clin Plast Surg,1987,14:551.[20]. Milner RH. The effect of tissue expansion on peripheral nerves. Br J Plast Surg,1989,42:411.[21]. Gary DH, Charles W, Van W, Fei TK, et al. Peripheral nerve elongation with tissue expansion techniques. J Trauma,1993,34:401-405.[22]. Brien JP, Mackinnon SE.A model of chronic nerve compression in the rat. Ann Plast Surg,1987,19:30.[23]. Wood RJ, Adson MH, Vanbeek AL, et al. Controlled expansion of peripheral nerves:comparision of nerve grafting and expansion repair for canine sciatic nerve defects. J Trauma,1991,31:686-690.[24]. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Clin Orthop,1989,239:263.[25]. Brunette DM. Mechanical stretching increases the number of epithelial cells synthesizing DNA in culture. J Cells,1984,69:35.[26].裴明,张光健,尹峰等.周围神经纵向牵拉廷长的实验研究,中华骨科杂志,1998,18:226-230.[27].王书成,沈宁江,陈建.周围神经牵长效应的实验研究,中华显微外科杂志,1995,18:208-211.[28].王书成,王和驹,陈剑飞等.周围神经缺损的牵引延长直接缝合治疗,中国修复重建外科杂志,1998,12:135-137.[29]. Millesi H, Meissl G, Berger A. The interfascicular nerve-grafting of the median and ulnar nerves. J Bone Joint Surg Am,1972,54(4):727-750.[30].陈中伟.周围神经损伤基础与临床应用.1998,山东科学技术出版社.[31].严计赓,顾玉东.张力下神经缝合与移植的比较(实验研究).实验外科杂志,1984,6:86-89.[32]. Fawcett JW, Keynes RJ. Muscle basal lamina:a new graft material for peripheral nerve repair. J Neuro Surg,1986,65(3):354-363.[33].宋知非,顾玉东,吴敏明等.带血管的游离神经移植.上海第一医学院学报,1984,11:187-193.[34].钟汉柱.吻合血管的腓浅神经移植修复正中神经长段缺损.显微医学杂志,1985,8:22-24.[35].范启申,周祥吉,钟世镇等.吻合腓动静脉腓肠神经移植的应用,中华显微外科杂志,1998,21:97-99.[36]. Koshima I, Okumoto K, Umeda N, et al. Free vascularized deep peroneal nervegrafts. J Reconstr Micro Surg,1996,12:131-141.[37].顾玉东,吴敏明,郑忆柳等.静脉蒂动脉化游离腓肠神经移植,中华外科杂志,1985,23:338-340.[38].杨忠岑.带大隐静脉隐神经移植修复周围神经缺损,中华显微外科杂志,1991,14:139-140.[39]. Keeley R, Atagi TY, Sabelman E, et al. Peripheral nerve regeneration across14mm gaps:A comparision of autograft and entubulation repair methods in the rat. J Reconstr Micro,1993,9(1):5.[40]. Wood RJ, Adson MH, Varbeck AL, et al. Controlled expansion of peripneral nerves:Comparision of nerve grafting and nerve expansion rapair for canine sciatic??nerve defects. J Trauma,1990,31:686.[41]. Nall GD, VanWay CW, Kung FT, et al. Peripheral nerve elongation with tissue expansion techniques. J Trauma,1993,3:181.[42]. Terzia J, Fabistef B, Williams HB. The nerve gap:Suture under tension Vs graft. Plast Reconster Surg,1975,56(1):2.[43].姜保国,柴田实,王澍寰等.组织扩张器延长周围神经的实验研究.中华外科杂志,1994,32(2):93.[44]. Manders EK, Saggers GC, Sipio. Elongation of peripheral nerve and viscera containing smooth muscle. Clin Plast Surg,1987,14:551.[45]. Lassner F, Becker M, Fansa H, et al. Preservation of peripheral nerve grafts:a comparison of normal saline, HTK organ preservation solution, and DMEM Schwann cell culture medium. J Reconstr Microsurg,1995,11(6):447-453.[46]. Evans PJ, Midha R, Mackinnon SE. The peripheral nerve allograft:a com prehensive review of regeneration and neuroimmunology. Prog Neurobio,1994,43(3):187-233.[47].王秋根,应明,鲁树荣等.不同冷冻温度和保存时间对同种异体神经移植后神经功能影响的研究.中华手外科杂志,1998,14(1):53-55.[48]. Jensen S, Wallace MN, Dahlerup B. Cryopreservation of rat peripheral nerve segments later used for transplantation. Neuro report,1990,1(34):243-246.[49]. Evans PJ, Mackinnon SE, Midha R, et al. Regeneration across cold preserved peripheral nerve allografts. Microsurgery,1999,19(3):115-127.[50].蔡锦方,曹学斌,张福洲等.异体胎神经移植修复周围神经缺损实验研究初步报告,中华显微外科杂志,1991,14:217-219.[51]. Fox IK, Jaramillo A, Hunter DA, et al. Prolonged cold preservation of nerve allografts. Muscle Nerve,2005,31(1):59-69.[52].李存孝,李稔生,殷琦.预变性神经移植的时限.第四军医大学学报,2000,21(8):983-985.[53]. Lundborg G, Kanje M, Zhao Q, et al. Can sensory and motor collateral sprouting be induced from intact peripheral nerve by end-to-side anastomosis. J H and Surg Br,1994,19(3):277-282.[54]. Dumont CE, Hentz VR. Enhancement of axon growth by detergent extracted nerve grafts. Transplantation,1997,63(9):1210-1215.[55]. Sondel1M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allografts made a cellular through chemical extraction. Brain Res,1998,795(12):44-54.[56].衷鸿宾,卢世壁,侯树勋等.犬化学去细胞同种异体移植的神经再生研究.中华手外科杂志,2002,18(3):131-133.[57].陈秉耀,侯树勋,赵敏等.化学去细胞异种神经移植后宿主的雪旺细胞在移植物内的增殖.中华显微外科杂志,2006,29(5):350.[58].赵志钢,陈秉耀,魏海温,王成琪,吴宝岭.中国矫形外科杂志,2009,17(12)[59].李跃军,陈绍宗,曲辉,李学拥等.异种神经基膜管桥接周围神经缺损的初步研究.中国修复重建外科杂志,2002,26(3:161-165.[60].丁文龙,刘德民,王桂秀,温蔚.解剖学报,1992,3.[61].丁文龙,刘德民,王桂秀,温蔚.中国临床解剖学杂志,1994,1.[62].丁文龙,刘德民,温蔚。解剖学杂志,1996,1.[63].何仲义,张崇智,焦旭文,戴波,秦毅.天津医药,2002,9.[64].焦兆德,陈景明,孙英华.泰山医学院学报,2006,4.[65].孙佳冰,路来金.中国老年学杂志,2009,29(4)[66]. Fansa H, Keilhoff G, Wolf G, et al. Cultivating human Schwann cells for tissue engineering of peripheral nerves. Handchir Mikrochir Plast Chir,2000,32:181-86.[67]. Keilhoff G, Fansa H, Smalla KH, et al. Neuroma:a donor-age independent source of human Schwann cells for tissue engineered nerve grafts. Neuroreport,2000,11:3805-3809.[68]. Dezawa M, Takahashi I, Esaki M, et al. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone marrow stromal cells. Eur J Neurosci,2001,14:1771-1776.[69].侯赛云,朱家恺.大鼠骨髓基质干细胞体外诱导分化为类许旺细胞.中华显微外科杂志,2003,26:39-41.[70]. Russell FD, Koishi K, Jiang Y, et al. Anterograde axonal transport of glial cell line-deprived neurotrophic factor and its receptors in rat hypoglossal nerve. Neuroscience,2000,97:575-580.[71]. Singh N, Birdi TJ, Chandrashekar S, et al. Schwann cell extracellular matrix protein production is modulated by Mycobacterium leprae and macrophage secretory products. J Neurol Sci,1997,151:13-22.[72]. Tada H, Hatoko M, Tanaka A, et al. Detection of E-cadherin expression after nerve repair in a rat sciatic nerve model. Ann Plast Surg,2001,47:178-182.[73]. Chernousov MA, Scherer SS, Stahl RC, et al. P200, a collagen secreted by Schwann cells, is expressed in developing nerves and in adult nerves following axotomy. J Neurosci Res,1999,56:284-294.[74]. Yanagida H, Tanaka J, Maruo S. Immunocytochemical localization of a cell adhesion molecule, integrin alpha5betal, in nerve growth cones. J Orthop Sci,1999,4:353-360.[75].蒋良福,劳杰.周围神经组织工程研究.中华创伤杂志,2003,19:254-256.[76]. Keilhoff G, Fansa H, Schneider W, et al. In vivo predegeneration of peripheral nerves:an effective technique to obtain activated Schwann cells for nerve conduits. J Neurosci Methods,1999,89:17-24.[77].劳杰,熊良俭,顾玉东等.应用激活态的SC填充导管修复周围神经缺损的初步研究.中华手外科杂志,2000,16:236-240.[78]. Feron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain,2005,128(12)[79]. Lin W, Chen X, Wang X, et al. Adult rat bone marrow stromal cells differentiate into Schwann cell-like cells in vitro. In Vitro Cell Dev Biol Anim,2008,44(1-2):31-40.[80]. Wang J, Ding F, Gu Y, et al. Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res,2009,1262:7-15.[81].许绍芬主编.神经生物学(第二版).上海医科大学出版社,1999.[82]. McGarvey ML, BaronVan EA, Kleinman HK, et al. Synthesis and effects of basement membrane components in cultured rat Schwann cell. Dev Biol,1984,105(1):18-28.[83]. Chen YS, Hsieh CL, Tsai CC, et al. Peripheral nerve regeneration using silicon rubber chamber filled with collagen, laminin and fibronection. Biomaterials,2000,21:1541-1547.[84]. Matheson CR, Carnahan J, Urich JL, et al. Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for sensory neurons:comparison with the effects of the neurotrophins. J Neurobiol,1997,32(1):22-32.[85].史福东,刘东,李长江.神经生长因子在周围神经损伤中的应用.现代中西医结合杂志,2008,17(27):4281-4282.[86]. Patel M, Mao L, Wu B, et al. GDNF blended chitosan nerve guides:an in vivo study. J Biomed Mater Res A,2009,90(1):154-165.[87]. Yang Y, DeLaporte L, Rives CB, et al. Neurotrophin releasing singleand multiple lumen nerve conduits. J Control Release,2005,104(3):433-446.[88]. Song BN, Li YX, Han DM. Effects of delayed brain-derived neurotrophic factor application on cochlear pathology and auditory physiology in rats. Chin Med J (Engl),2008,121(13):1189-1196.[89]. Marcol W, Kotulska K, Larysz-Bryszn M, et al. Extracts obtained from predegenerated nerves improves functional recovery after sciatic nerve transection. Microsurgery,2005,25(6):486-494.[90].谢钊,李翔.脑源性神经营养因子对青光眼视神经保护的研究进展.国际眼科杂志,2010,10(1):100-101.[91]. Barati S, Hurtado PR, Zhang SH, et al. GDNF gene delivery via the p75(NTR) receptor rescues injured motor neurons. Exp Neurol,2006,202(1):179-188.[92]. Blondet B, Carpenter G, Ferry A, et al. Exogenous pleiotrophin applied to lesioned nerve impairs muscle reinnervation. Neurochem Res,2006,31(7):907-913.[93]. Yin Y, Henzl MT, Lorber B, et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci,2006,9(6):843-852.[94].赵立国,姚康德.神经导管修复周围神经损伤的研究进展.生物医学工程与临床,2003,7:120-123.[95]. Chang CJ. The effect of pulse-released nerve growth factor from genipin-crossl inked gelatin in schwann cell-seeded polycaprol-actone conduits on large-gap peripheral nerve regeneration. Tissue Eng Part A,2009,15(3):547-557.[96].孔吉明,钟世镇,孙博.用骨骼肌桥接周围神经缺损的实验研究.中华显微外科杂志,1986,9:68-70.[97].张爱华,朱家恺.血管植入变性骨骼肌修复神经缺损的实验研究.中华显微外科杂志,1990,13:25-28.[98].顾立强,朱家恺.血管植入变性骨骼肌修复不同长度神经缺损的实验研究.中华显微外科杂志,1990,13:85-88.[99].傅小宽,朱家恺.变性骨骼肌与自体神经联合移植修复周围神经缺损.中华显微外科杂志,1993,16:197-199.[100].杨超,葛宝丰,刘兴炎等.外源性神经生长因子对神经在肌肉桥接物中再生??的影响.中华显微外科杂志,1994,17:195-197.[101].席保平,刘小林,程钢等.雪旺氏细胞植入非神经移植体修复周围神经缺损的实验研究.中华显微外科杂志,1991,14:90-94.[102].洪光祥,王发斌,黄省秋等.自体静脉修复周围神经缺损实验研究.中华显微外科杂志,1991,14:220-222.[103].洪光祥,王发斌,黄省秋等.自体静脉修复周围神经缺损的疗效观察.中华手外科杂志,1993,9:10-11.[104].尹维田.静脉桥接治疗周围神经缺损.中华显微外科杂志,1990,13:13-14.[105]. Tang JB. Vein conduits with interposition of nerve tissue for peripheral nerve defects. J Reconstr Microsurg,1995,11:21-26.[106]. Brundelli GA, Battiston B, Vigasio A, et al. Bridging nerve defeats with combined skeletal muscle and vein conduits. Micro Surgery,1993,14:247-251.[107]. Lundborg G, Gelberman RH, Longo FM, et al. In vivo regeneration of cut nerves encased in silicon tube. J Neuropathol Exp Neurol,1982,41:412-422.[108]. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol,1986,136(7):2348-2357.[109]. Piccotti R, Chan SY, VanBuskirk AM, Eichwald EJ, Bishop DK. Are Th2helper T lymphocytes beneficial, deleterious, or irrelevant in promoting allograft survival? Transplantation,1997,63(5):619-624.[110]. Antonysamy MA, Fanslow WC, Fu F, Li W, Qian S, Troutt AB, Thomson AW. Evidence for a role of IL-17in organ allograft rejection:IL-17promotes the functional differentiation of dendritic cell progenitors. J Immunol,1999,162(1):577-584.[111]. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17and Th17cells. Annu Rev Immunol,2009,27:485-517.[112]. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity,2006:24:179-189.[113]. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17and regulatory T cells. Nature,2006,441:235-38.[114]. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, et al. Transforming growth factor-β induces development of the Th17lineage. Nature,2006,448:231-234.[115]. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, et al. IL-21initiates an alternative pathway to induce proinflammatory Th17cells. Nature,2007,448:484-487.[116]. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, et al. Essential autocrine regulation by IL-21in the generation of inflammatory T cells. Nature,2007,448:480-483.[117]. Zhong L, Ivanov Ⅱ, Sploski R, Min R, Shenderov K, et al. IL-6programs Thl7cell differentiation by promoting sequential engagement of the IL-21and IL-23pathways. Nat. Immunol,2007,8:961-9174.[118]. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, et al. Interleukin-23rather than interleukin-12is the critical cytokine for autoimmune inflammation of the brain. Nature,2003,421:744-748.[119]. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, et al. IL-23drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med,2005,201:233-240.[120]. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, et al. The orphan nuclear receptor RORyt directs the differentiation program of proinflammatory IL-17+T helper cells. Cell,2006,126:1121-1133.[121]. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, et al. STAT3regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem,2007,282:9358-9363.[122]. Kamoto K, Iwai Y, Ohhora M, et al. IκB regulates Th17development by cooperating with ROR nuclear receptors. Nature,2010,464:1381-1385.[123]. Xuebin L, Stewart L, Chunxia W, et al. Crucial role of interleukin-7in T helper type17survival and expansion in autoimmune disease. Nat Med,2010,16:191-197.[124]. Ghoreschi K, Laurence A, Yang XP, et al. Generation of pathogenic Th17cells in the absence of TGF signaling. Nature,2010,467:967-971.[125]. Gorbacheva V, Fan R, Li X, et al. Interleukin-17promotes early allograft inflammation. Am J Pathol,2010,177(3):1265-1273.[126.]VanKooten C, Boonstra JG, Paape ME, et al. Interleukin-17activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol,1998,9(8):1526-1534.[127]. Haiyong Ch, Weilin W, Haiang X. Pathogenic role of IL17at the early stage of corneal allograft rejection. Trans Immuno,2009,21:155-161.[128]. Yuan X, PaezCortez J, Schmitt KI, et al. A novel role of CD4+Th17cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med,2008,205:3133-3144.[129]. Antonysamy MA, Fanslow WC, Fu F, et al. Evidence for a role of IL-17in alloimmunity:a novel IL-17antagonist promotes heart graft survival. Transplant Proc,1999,31(1/2):93.[130].雷钧,何凡,吴敏等.IL-17参与小鼠心脏移植排斥反应的实验研究.华中科技大学学报:医学版,2009,38(5):581-584.[131]. Braun RK, MolitorDart M, Wigfield C, et al. Transfer of tolerance to collagen type V suppresses T helper cell17lymphocyte mediated acute lung transplant rejection. Transplantation,2009,88:1341-1348.[132]. Vanaudenaerde BM, Wuyts WA, Dupont LJ, et al. Interleukin-17stimulates release of interleukin-8by human airway smooth muscle cells in vitro:a potential role for interleukin-17and airway smooth muscle ceils in bronchiolitis obliterans syndrome. Heart Lung Transplant,2003,22(11):1280-1283.[133]. Xie X, Ye Y, Zhou L, et al. Kupffer Cells Promote Acute Rejection via Induction of Th17Differentiation in Rat Liver Allografts. Transplant Proc,2010,42:3784-3792.[134]. Fabrega E, Lopez HM, San SD, et al. Changes in the serum levels of??interleukinl7/interleukin23during a cute rejection in liver transplantation. Liver Transp,2009,15:629-634.[135]. Trumble TE, Shon FG. The physiology of nerve transplantation. Hand Clin,2000,16:105-122.[136]. Hebebrand D, Zohman G, Jones NF. Nerve xenograft transplantation. Immunosuppression with FK-506and RS-61443. J Hand Surg Br,1997,22:304-307.[137]. Yang YG, Sykes M. Xenotransplantation:current status and a perspective on the future. Nat Rev Immunol,2007,7:519-531.[138]. Dorling A, Lombardi G, Binns R, Lechler RI. Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. Eur J Immunol,1996,26:1378-1387.[139]. Davila E, Byrne GW, LaBreche PT, McGregor HC, Schwab AK, et al. T-cellresponses during pig-to-primate xenotransplantation. Xenotransplantation,2006,13:31-40.[140]. Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med,2006,12:304-306.[141]. Hering BJ, Wijkstrom M, Graham ML, Hardstedt M, Aasheim TC, et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med,2006,12:301-303.[142]. Guo Z, Wang J, Meng L, Wu Q, Kim O, et al. Membrane lymphotoxin regulates CD8(+) T cell-mediated intestinal allograft rejection. Modern Pathology,2002,15:133a-133a.[143]. Trambley J, Bingaman AW, Lin A, Elwood ET, Waitze SY, et al. Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. Journal of Clinical Investigation,1999,104:1715-1722.[144]. Jones ND, Carvalho-Gaspar M, Luo S, Brook MD, Martin L, et al. Effector and memory CD8(+) T cells can be generated in response to alloantigen independently of CD4(+) T cell help. Journal of Immunol ogy,2006,176:2316-2323.[145]. Waldmann H, Honey K, Cobbold SP. CD40ligand blockade induces CD4+T cell tolerance and linked suppression. Journal of Immunology,1999,163:4805-4810.[146]. Kreisel D, Krupnick AS, Gelman AE, Engels FH, Popma SH, et al. Non-hematopoietic allograft cells directly activate CD8(+) T cells and trigger acute rejection:An alternative mechanism of allorecognition. Nature Medicine,2002,8:233-239.[147]. He D, Wu L, Kim HK, Li H, Elmets CA, et al. CD8+IL-17producing T cells are important in effector functions for the elicitation of contact hypersensitivity. Journal of Investigative Dermatology,2006,126:110-110.[148]. Harrington LE, Hatton RD, Mangan PR, Turner H, Mruphy TL, et al. Interleukin17-producing CD4+effector T cells develop via a lineage distinct from the T helper type1and2lineages. Nat Immunol,2005,6:1123-1132.[149]. Luger D, Silver PB, Tang J, Cua D, Chen Z, et al. Either a Th17or a Thl??effector response can drive autoimmunity:conditions of disease induction affect dominant effector category. Journal of Experimental Medicine,2008,205:799-810.[150]. Su SB, Grajewski RS, Luger D, Agarwal RK, Silver PB, et al. Altered chemokine profile associated with exacerbated autoimmune pathology under conditions of genetic interferon-gamma deficiency. Invest Ophthalmol Vis Sci,2007,48:4616-4625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700