用户名: 密码: 验证码:
雷电全时空监测系统在超高压电网应用中的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高压输电线路输送容量大、分布广且常作为地区电网的主干线路,其安全可靠的运行对实现“西电东送,南北互供,全国联网”的电力发展战略尤为重要,研究表明,雷击目前仍是威胁输电线路正常运行的主要因素,特别是超高压输电线路,雷击跳闸率常年位于各类跳闸率首位,虽然国内外学者已对超高压输电线路雷电防护问题进行了多年研究,但输电线路雷害事故仍居高不下。
     本文针对目前超高压输电线路雷害严重的问题,采用雷电监测系统、多普勒天气雷达、电力系统过电压在线监测系统等设备,在分析研究雷电活动参数和规律的基础上,结合输电线路反击和绕击耐雷性能计算的规程原理,基于最优化、人工神经网络等数学方法,搭建了一个较为完整的超高压输电线路雷电全时空监测防护系统,并针对雷电全时空监测防护系统中涉及到的关键问题,开展了雷击前的超高压输电线路走廊优化选择、雷暴中的超高压输电线路雷电预警及雷击后的雷电过电压识别等研究。
     在雷电活动参数统计方面,以重庆市为例,使用雷电定位数据,基于经典的网格统计方法,分析研究了与输电线路防雷紧密相关的主要雷电参数,如雷电日、地闪密度、雷电流幅值累计概率分布等;在雷电规律研究方面,使用了变异系数法和Allan因子对地闪发生间的关联性进行了研究。重庆市雷电活动参数区域差异性较为显著,地闪呈现出了较为明显的关联性特征。
     使用网格化后的雷电参数改进了传统规程法中输电线路耐雷性能评估中的相关计算方法,使之更加适应于采用实际雷电定位数据进行输电线路耐雷水平评估的要求,建立起了使用雷电定位数据的超高压输电线路耐雷性能评估模型,研究得知该模型与规程法中相关计算方法保持了高度的一致。
     运用最优化和图论中Dijkstra优化理论,提出了超高压输电线路走廊选择的优化设计算法,该算法从线路期望雷击跳闸数最小这一方面进行了考虑,能较为快捷、准确地找到从输电线路起点到终点的最短线路路径,以重庆电网某超高压输电线路为例,证实了该模型在输电线路走廊优化选择的可行性和较传统人工选线的优越性,并对实现输电线路的差异化防雷设计奠定了基础。
     使用多普勒天气雷达,在分析研究目前各类雷云识别、跟踪和预测算法的优劣的基础上,针对雷云可能出现的非线性运动情况,利用BP神经网络对SCIT算法中单纯使用线性外推法预测雷云运动进行了改进,使得其更适应于雷云的非线性运动的情况,并借鉴超高压输电线路耐雷评估模型,结合重庆市内雷电活动实际统计参数,构建了超高压输电线路的雷电预警模型,该模型在重庆电网某条超高压输电线路模拟运行预警实验中,取得了较好的效果。
     在对几种不同类型的雷电过电压进行分析研究的基础上,采用希尔伯特-黄(HHT)算法作为信号分析计算方法,提出了6种过电压识别特征量,并采用这些特征量,基于支撑向量机(SVM)方法,对雷电过电压进行识别,提出了雷电过电压HHT-SVM识别方法,经过大量实例数据验证,该模型能够达到92.8%的识别准确度,具有较高的应用价值。
     另外,本文研究的超高压输电线路雷电全时空监护防护系统及涉及到的关键技术具有普遍适用性,可方便地应用于各个省市的电网安全运行保障体系中。
The EHV transmission lines with a large transmission capacity and wide distributions often play as a branch line of local electrical network, so their safety and reliability are especially important to realize the electric power development strategy of“West-to-East Power Transmission, North-to-South Power Exchange and Nationwide Interconnection". The research indicated that, at present, the lightning stroke is still the primary factor that threatens the transmission line’s normal operation, especially for the EHV transmission lines. The trip-out rate caused by lightning stroke has been at the top of each kind of trip-out rate during a normal year. Although the domestic and foreign scholars have conducted a lot of researches on the lightning protection of EHV transmission lines, the lightning accidents still stay at a high level.
     In this paper, aiming at the present problem of serious lightning accidents and using various equipments of lightning monitoring system, Doppler weather radar and on-line monitoring system of power system overvoltage, the key problem of lightning protection in the construction and operation process of EHV transmission lines has been investigated applying some mathematical method such as optimization and artificial neutral network, on the basis of the analysis of parameters and discipline of lightning activities, combining the regulation methods in lightning performance calculation of back-flashover and shielding failure, and a more full time-space monitoring and protection system has been set up, which has taken lightning protection estimation, design, early-warning operation and recognition after stroke into consideration.
     In the aspect for the parameter statistics of lightning activities, taking Chongqing as an example, using data of Lighting Location System, which based on classic grid statistical methods, analyzing the main parameter statistics of lightning activity which closely related to the power transmission lines such as lightning day, ground flash density, cumulative probability distribution of lightning current amplitude. In the aspect for the research of lightning law, using coefficient of variation and Allan factor to investigate the relevance of ground flash occurrence .The differences of parameter region of lightning activity are more significant in Chongqing, ground flash appears more significant feature of relevance.
     Lightning parameter after gridding has improved correlation calculation method of lightning withstand performance estimation of the transmission lines in traditional regulations, which make it more adapted to the estimation demand adopting realistic lightning location data. An estimation model about lightning withstand performance of EHV transmission line has been established using lightning location data, which is demonstrated here that the calculation method in both this model and regulations keep a high degree of consistent.
     Applying Dijkstra optimization theory in optimization technique and graph theory, an optimal design algorithm of EHV transmission line corridor selection has been proposed. This algorithm has taken minimizing line’s trip-out numbers into consideration, which is able to find the shortest path fast and accurately from origin to terminal point of transmission lines. For example, an EHV transmission line in Chongqing, has demonstrated the feasibility of this model in transmission line’s optimal selection and the advantages of traditional artificial line’s selection.
     Applying Doppler weather radar, the linear extrapolated method in SCIT algorithm to predict thunderclouds’motion has been improved using BP neutral network, on the basis of researches on various thundercloud’s recognition, tracing and advantages and disadvantages of prediction algorithm, aiming at the thunderclouds’possible nonlinear motion, which makes it more adapted to nonlinear motion of thunderclouds, a lightning early-warning model of EHV transmission line has been established using lightning withstand performance estimation model of EHV transmission line for reference, and combining the statistical parameters of lightning activities, which obtains a better result in the simulation experiments of one EHV transmission line.
     On the basis of analysis and researches on different kind of lightning overvoltage, six overvoltage recognition characteristic quantities have been proposed using Hilbert-Huang Transform (HHT) as the signal analysis and calculation method, and present lightning overvoltage HHT-SVM recognition method to distinguish overvoltage using these characteristic quantities based on Support Vector Machine (SVM) method. This model can reach accuracy degree of 92.8% after amounts of instance data verification, and has a high value of application.
     Besides, due to the general applicability of space-time lightning monitoring system and models, it is convenient to apply such system and models into the running safeguard system in different power grids.
引文
[1]尚春.特高压输电技术在南方电网的发展与应用[J].高电压技术, 2006, 32(1): 35-37.
    [2]李培国.国外对特高压输电线路雷击跳闸原因的一个新观点[J].电网技术, 2000, 24(7): 63-65.
    [3]维列夏金,吴维韩.俄罗斯超高压和特高压输电线路防雷运行经验分析[J].高电压技术, 1998, 24(2): 76-79.
    [4]周浩,余宇红.我国发展特高压输电中一些重要问题的讨论[J].电网技术, 2005, 29(12): 1-9.
    [5]刘振亚.特高压交流输电线路维护与检测[M].北京市:中国电力出版社, 2008.
    [6]彭向阳,周华敏.广东电网防雷现状分析及建议[J].南方电网技术, 2010, 4(3): 87-91.
    [7]朱时阳,邓雨荣,李明贵.广西电网输电线路雷害情况分析及对策研究[J].广西电力, 2010, 33(1): 1-5.
    [8] Fuchs F, Landers E U, Schmid R, et al. Lightning current and magnetic field parameters caused by lightning strikes to tall structures relating to interference of electronic systems[J]. Electromagnetic Compatibility, IEEE Trans. Power Del, 1998, 40(4): 444-451.
    [9] Takami J, Okabe S. Observational results of lightning current on transmission towers[J]. IEEE Trans. Power Del Power Delivery, 2007, 22(1): 547-556.
    [10] Borghetti A, Nucci C A, Paolone M. Estimation of the statistical distributions of lightning current parameters at ground level from the data recorded by instrumented towers[J]. Power Delivery, IEEE Trans. Power Del, 2004, 19(3): 1400-1409.
    [11] Zhang Q, Qie X, Wang Z, et al. Characteristics and simulation of lightning current waveforms during one artificially triggered lightning[J]. Atmospheric Research, 2009, 91(2-4): 387-392.
    [12] Cummins K L, Krider E P, Malone M D. The US National Lightning Detection Network (TM) and applications of cloud-to-ground lightning data by electric power utilities[J]. IEEE Trans. Power Del Electrmagnetic Compatibility, 1998, 40(42): 465-480.
    [13] Diendorfer G, Schulz W, Rakov V A. Lightning characteristics based on data from the Austrian lightning locating system[J]. Electromagnetic Compatibility, IEEE Trans. Power Del, 1998, 40(4): 452-464.
    [14] Shindo T, Yokoyama S. Lightning occurrence data observed with lightning location systems in Japan: 1992-1995[J]. IEEE Trans. Power Del, 1998, 13(4): 1468-1474.
    [15] Shim E.B., Woo J.W., Han S.O., et al. Lightning characteristics in Korea and lightning performance of power systems [C]. Transmission and Distribution Conference and Exhibition: Asia Pacific, Japan, 2002.
    [16]袁铁,郄秀书.卫星观测到的我国闪电活动的时空分布特征[J].高原气象, 2004, 23(004): 488-494.
    [17] Fisher R J, Schnetzer G H, Thottappillil R, et al. Parameters of triggered-lightning flashes in Florida and Alabama[J]. Journal of Geophysical Research, 1993, 98(D12): 22822-22887, 902.
    [18] Shelemy S J, Swatek D R. Monte Carlo. Simulation of lightning strikes to the Nelson River HVDC transmission lines [C]. International Conference on Power Systems Transients, Rio De Janeiro, Brazil, 2001, 11(2): 24 - 28.
    [19] Martinez J A, Gonzalez-Molina F. Statistical evaluation of lightning overvoltages on overhead distribution lines using neural networks[J], Power Delivery, IEEE Trans. Power Del, 2001. 20(3):2219– 2226.
    [20] Zakaria Z, Bashi S M, Mailah N F, et al. Simulation of lightning surges on tower transmission using PSCAD/EMTDC: A comparative study[C]. Research and Development, 2002. SCOReD 2002, IEEE. Student Conference on 16-17 July 2002: 426– 429.
    [21] Ametani A, Kawamura T. A method of a lightning surge analysis recommended in Japan using EMTP[J]. Power Delivery, IEEE Trans. Power Del, 2005, 20(2): 867-875.
    [22]中华人民共和国电力行业标准交流电气装置的过电压保护和绝缘配合[J], 1997.
    [23] Young F S, Clayton J M, Hileman A R. Shielding of transmission lines[J]. IEEE Trans, 1963, S82: 132-154.
    [24] Anderson J G. Monte Carlo. Computer Calculation of Transmission-Line Lightning Performance[J]. Power Apparatus And Systems, Part III. Transactions of The American Institute of Electrical Engineers, 1961, 80(3): 414-419.
    [25] Eriksson A J. An Improved Electrogeometric Model for Transmission Line Shielding Analysis[J]. Power Delivery, IEEE Trans. Power Del, 1987, 2(3): 871-886.
    [26] Eriksson A J. The Incidence of Lightning Strikes to Power Lines[J]. Power Delivery, IEEE Trans. Power Del, 1987, 2(3): 859-870.
    [27] Brown G W. Lightning Performance -- I Shielding Failures Simplified[J]. Power Apparatus and Systems, IEEE Trans. Power Del, 1978, PAS-97(1): 33-38.
    [28]张志劲,司马文霞,廖瑞金.风速对500kV同杆双回线路绕击耐雷的影响[J].高电压技术, 2002, 28(11): 19-20.
    [29]陈国庆,孙才新,张志劲,等.计及风速影响的500kV同杆双回线路绕击耐雷性能计算模型研究[J].中国电机工程学报, 2003, 23(5): 108-112.
    [30] Dellera L, Garbagnati E. Lightning stroke simulation by means of the leader progression model. I. Description of the model and evaluation of exposure of free-standing structures[J]. Power Delivery, IEEE Trans. Power Del, 1990, 5(4): 2009-2022.
    [31] Dellera L, Garbagnati E. Lightning stroke simulation by means of the leader progression model. II. Exposure and shielding failure evaluation of overhead lines with assessment of application graphs[J]. Power Delivery, IEEE Trans. Power Del, 1990, 5(4): 2023-2029.
    [32] Rizk F A M. A model for switching impulse leader inception and breakdown of long air-gaps[J]. Power Delivery, IEEE Trans. Power Del, 1989, 4(1): 596-606.
    [33] Jinliang H, Youping T, Rong Z, et al. Numeral analysis model for shielding failure of transmission line under lightning stroke[J]. Power Delivery, IEEE Transactions on, 2005,20(2):815-822.
    [34] Rizk F A M. Modeling of transmission line exposure to direct lightning strokes [J]. Power Delivery, IEEE Trans. Power Del, 1990, 5(4): 1983-1997.
    [35]何金良,董林,张薛巍,等.输电线路防雷分析分形模型及其统计特性[J].高电压技术, 2010, 36(6): 1333-1340.
    [36]司马文霞,李建标,杨庆,等.雷电先导分形特性及其在特高压线路耐雷性能分析中的应用[J].高电压技术, 2010, 36(01): 86-91.
    [37]王晓瑜.雷电屏蔽性能的模拟试验和分析模型的研究[J].高电压技术, 1994, 20(2): 48-54.
    [38]钱冠军,王晓瑜,汪雁,等.输电线路雷击仿真模型[J].中国电机工程学报, 1998, 24(2): 26-28, 31.
    [39] Rinehart R E. A pattern recognition technique for use with conventional weather radar to determine internal storm motions[J]. Atmos. Technol, 1981, 13: 119-134.
    [40] Austin G L. Application of pattern-recognition and extrapolation techniques to forecasting[J]. ESA Journal(ISSN 0379-2285), 1985, 9(2): 147-155.
    [41] Very short-rang forecast of precipitation by the objective extrapolation of radar and satelite data[M], 1983.
    [42] Rosenfeld D, National Aeronautics And Space Administration. Goddard Space Flight Center G M. Objective method for analysis and tracking of convective cells as seen by radar[J]. Journal of Atmospheric and Oceanic Technology, 1987, 4(3): 422-434.
    [43] Dixon M, Wiener G. Titan. Thunderstorm identufication, tracking, analysis, and nowcasting - a radar-based methodology[J]. Journal of Atmospheric and Oceanic Techlonogy, 1993, 10(6): 785-797.
    [44] Rinehart R E, Garvey E T. Three-dimensional storm motion detection by conventional weather radar[J]. Nature 273, 287 - 289 (25 May 1978).
    [45] Vance Mansur M. Examples of the strength and weakness of the WSR-88D storm tracking products. Preprints, 1993[C].
    [46] Witt A, Eilts M D, Stumpf G J, et al. An enhanced hail detection algorithm for the WSR-88D[J].Weather and Forecasting, 1998, 13(2): 286-303.
    [47] Johnson J T, MacKeen P L, Witt A, et al. The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm[J]. Weather and Forecasting, 1998, 13(2): 263-276.
    [48]汤达章,李力.一种新的跟踪雷达回波的特征量一矩不变量[J].南京气象学院学报, 1989, 11(3): 1-8.
    [49]刘黎平,徐宝祥,王致君.利用矩心跟踪法跟踪、警戒强对流天气方法初探[J].高原气象, 1991, 10(3): 317-324.
    [50]胡雯.模糊聚类法用于建立预报强对流回波移动模式[J].南京气象学院学报, 1993
    [51]肖艳娇.单多普勒雷达反演风场和风暴的的自动识别、跟踪、结构分析与预报以及冰雹的探测[D].南京:南京气象学院硕士研究生毕业论文, 1997.
    [52]胡胜. X波段双偏振全相参多普勒雷达产品软件的开发与设计[D].南京:南京气象学院硕士研究生毕业论文, 2000.
    [53]杨引明.风暴的多普勒雷达自动识别、跟踪、预报及冰雹探测[D].南京:南京气象学院硕士研究生毕业论文, 1998.
    [54]谈曙青.单多普勒雷达风暴的自动识别、跟踪、预报及等值线、低空风切变分析系统[D].南京:南京气象学院硕士研究生毕业论文, 1999.
    [55]张鹏.多普勒天气雷达探测强风暴方法的初步研究[D].南京:中国人民解放军理工大学硕士毕业论文, 2002.
    [56]蔡光显,王建兴,吴世林,等.电力系统过电压在线监测装置[J].电网技术, 1995, 19(1): 9-12.
    [57]周保红,张筱玲.电力系统内过电压在线监测[J].江西电力, 1997, 21(2): 44-47.
    [58]周凯,孙才新,李新,等. 10kV配电网过电压在线监测装置的结构及性能分析[J].中国电力, 2003, 36(003): 41-44.
    [59] Gaing Z L. Wavelet-based neural network for power disturbance recognition and classification[J]. Power Delivery, IEEE Trans. Power Del, 2004, 19(4): 1560-1568.
    [60]何正友,陈小勤.基于多尺度能量统计和小波能量熵测度的电力暂态信号识别方法[J].中国电机工程学报, 2006, 26(10): 33-39.
    [61]王钢,李海锋,赵建仓,吴敏.基于小波多尺度分析的输电线路直击雷暂态识别[J].中国电机工程学报, 2004, 24(4): 139-144.
    [62]束洪春,王永治,程春和,等.±800kV直流输电线路雷击电磁暂态分析与故障识别[J].中国电机工程学报, 2008, 28(019): 93-100.
    [63]束洪春,张广斌,孙士云,等.±800kV直流输电线路雷电绕击与反击的识别方法[J].中国电机工程学报, 2009(007): 13-19.
    [64] Zhu T X. Detection and characterization of oscillatory transients using matching pursuits with adamped sinusoidal dictionary[J]. Power Delivery, IEEE Trans. Power Del, 2007, 22(2): 1093-1099.
    [65] Jankov V. Estimation of the maximal voltage induced on an overhead line due to the nearby lightning[J]. Power Delivery, IEEE Trans.Power Del, 1997, 12(1): 315-324.
    [66]司马文霞,谢博,杨庆,等.特高压输电线路雷电过电压的分类识别方法[J].高电压技术, 2010, 36(002): 306-312.
    [67]彭勇,王志新,陈军,等.输电线路雷击故障定位与识别[J].高电压技术, 2010, 36(2): 406-410.
    [68]李海锋,王钢,赵建仓.输电线路感应雷击暂态特性分析及其识别方法[J].中国电机工程学报, 2004, 24(3): 114-119.
    [69]肖先勇,李逢,邓武军.雷击与短路故障的S变换特征量识别方法[J].高电压技术, 2009, 35(4): 817-822.
    [70]司大军,束洪春,陈学允,等.输电线路雷击的电磁暂态特征分析及其识别方法研究[J].中国电机工程学报, 2005, 25(7): 64-69.
    [71] Krider E P, Noggle R C, Uman M A. Gated, Wideband Magnetic Dorection Finder For Lightning Return Strokes[J]. Journal of Applied Meteorology, 1976, 15(3): 301-306.
    [72] Uman M A, Mclain D K, Krider E P. Electromagnetic radiation from a finite antenna[J]. American Journal of Physics, 1975, 43(1): 33-38.
    [73]俞小鼎等.多普勒天气雷达原理与业务应用[M].北京市:气象出版社, 2006.
    [74]司马文霞,兰海涛,杜林,等.套管末屏电压传感器响应特性研究[J].中国电机工程学报, 2006, 26(21): 172-176.
    [75]陈水明,何金良,曾嵘.输电线路雷电防护技术研究(一):雷电参数[J].高电压技术, 2009(12): 2903-2909.
    [76]陈家宏,郑家松,冯万兴,等.雷电日统计方法[J].高电压技术, 2006(11): 115-118.
    [77] Orville R E, Huffines G R. Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989-98[J]. Monthly Weather Review, 2001, 129(5): 1179-1193.
    [78] Pinto O, Pinto I, Diniz J H, et al. A seven-year study about the negative cloud-to-ground lightning flash characteristics in Southeastern Brazil[J]. Journal of Atmospheric and Solar-terrestrial Physics, 2003, 65(6): 739-748.
    [79] Seity Y, Soula S, Sauvageot H. Radar observation and lightning detection in coastal thunderstorms[J]. Physics and Chemistry of The Earth Part B-hydrology Oceans and Atmospheric, 2000, 25(10-12): 1107-1110.
    [80]吴高林,唐世宇,印华,等.利用落雷密度划分重庆雷区的研究[J].高电压技术, 2007, 33(4): 122-124.
    [81]刘平.基于雷电监测数据的超高压交流输电线路耐雷性能评估[D].西南交通大学, 2010.
    [82] IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines[S]. IEEE Std 1410-2010 (Revision of IEEE Std 1410-2004), 2011: 1-73.
    [83] IEEE Guide for Improving the Lightning Performance of Transmission Lines[S]. IEEE Std 1243-1997, 1997: 1.
    [84]陈家宏,冯万兴,王海涛,等.雷电参数统计方法[J].高电压技术, 2007, 33(10): 6-10.
    [85]李瑞芳,吴广宁,曹晓斌,等.雷电流幅值概率计算公式[J].电工技术学报, 2011, 26(4): 161-167.
    [86] Codano C, Alonzo M L, Vilardo G. Multifractal Approach to Time Clustering of Earthquakes. Application to Mt. Vesuvio Seismicity[J]. Pure and Applied Geophysics, 1997,149(2): 375-390.
    [87]陈林,李永福,司马文霞,等.采用变异系数和Allan因子的雷电时间丛集性特征分析[J].高电压技术, 2011, 37(7): 1706-1712.
    [88] Bebbington M S. Trends and clustering in the onsets of volcanic eruptions[J]. Journal of Geophysical Research-solid Earth, 2010, 115(B01203).
    [89] Lasaponara R, Santulli A, Telesca L. Time-clustering analysis of forest-fire sequences in southern Italy[J]. Chaos Solitons & Fractals, 2005, 24(1): 139-149.
    [90] Kagan Y Y, Jackson D D. Long‐Term Earthquake Clustering[J]. Geophysical Journal International, 1991, 104(1): 117-134.
    [91] ALLAN D W. Statistics of Atomic Frequency Standards[J]. Proceedings of The IEEE, 1966, 54(2).
    [92] Lowen S B, Teich M C. Estimation and simulation of fractal stochastic point processes [J]. Fractals, 1995, 3(1): 183-210.
    [93] Lowen S B, Teich M C. The periodogram and Allan variance reveal fractal exponents greater than unity in auditory-nerve spike trains[J]. Journal of The Acoustical Society of America, 1996, 99(6): 3585-3591.
    [94]张殿生,国家电力公司,东北电力设计院.电力工程高压送电线路设计手册[M].中国电力出版社, 2003.
    [95]陈家宏,王海涛,冯万兴,等. 1000kV线路走廊的雷电参数及易闪线段分析[J].高电压技术, 2006, 32(12): 45-48.
    [96]黄伟超,何俊佳,陆佳政,等.实际雷电活动分布下的线路雷击跳闸率计算[J].高电压技术, 2008, 34(7): 1368-1373.
    [97] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269.
    [98]段凡丁.关于最短路径的SPFA快速算法[J].西南交通大学学报, 1994, 29(2): 207-212.
    [99]陈华容,张崇富. Bellman-Ford算法的改进研究[J].电子科技大学学报, 2006, 35(2): 211-213.
    [100]陈宝林.最优化理论与算法[M].清华大学出版社, 2005.
    [101]高隽.人工神经网络原理及仿真实例[M].机械工业出版社, 2003.
    [102] Vapnik V N. An overview of statistical learning theory[J]. Neural Networks, IEEE Trans. Power Del, 1999, 10(5): 988-999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700