用户名: 密码: 验证码:
功能性纳米ZnO的调控制备、表征及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化氧化处理有机废水技术是一项耗能低、易操作、无二次污染,具有广阔应用前景的新技术。然而其实际应用仍然受光催化效率较低所限制,因此,发展高效光催化剂已经成为一项重要的研究课题。ZnO是一种高效、无毒性、价格低廉的重要光催化剂,在降解和完全矿化环境中污染物领域备受关注。众所周知,无机材料的形貌对其多样化的性能及其相应的应用有重要的影响,而ZnO是一种具有丰富多样形貌的宽禁带半导体材料。因此,制备特殊形貌的ZnO纳米材料,可以有效的改善其光学性质,提高其光催化性能。本文采用低温液相合成法制备了具有特殊形貌的纳米ZnO粉末和薄膜材料,并且对材料进行了系统的表征和光催化降解性能的研究。围绕以上内容,主要开展了以下几方面的工作:
     (1)应用简单低温水热法,无需加入表面活性剂,成功制备不同形貌的纳米ZnO。通过对影响ZnO样品的因素进行考察,发现通过调节溶液中的碱性,可以得到花状和棒状形貌的ZnO。X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和选取电子衍射(SAED)表征分析显示,花状形貌的ZnO是由许多根纳米棒辐射发散自组装形成的,ZnO纳米棒为六方纤锌矿单晶结构,沿[0001]方向生长。并且根据晶体成核和生长方向理论,对ZnO纳米花和ZnO纳米棒的可控生长机理进行了探讨。
     (2)通过紫外-可见漫反射光谱(DRS)、拉曼光谱(Raman)、光致发光光谱(PL)、X射线光电子能谱(XPS)和表面光电压谱(SPS)对不同形貌的纳米ZnO进行表征,分析了特殊形貌的ZnO具有的电子结构和表面组成。所制备的不同形貌的纳米ZnO在光催化氧化降解染料和有机物污染物中都有很好的性能。ZnO纳米花光催化降解染料和酚类化合物的能力强于ZnO纳米棒,是由于在PL、XPS和SPS表征中发现,ZnO纳米花的表面含有大量的氧空位,而氧空位可以作为光催化剂的活性中心,捕获光生电子,从而抑制光生电子和空穴的复合。
     (3)应用简单的低温液相合成法在锌片上制备了高度定向排列的ZnO纳米棒阵列薄膜,这里锌片不仅用作基底,同时也作为锌离子源,通过在甲酰胺水溶液中直接生长ZnO纳米棒阵列薄膜。这种自源生长方法简单、低耗,无需在基底上预先生长一层ZnO粒子作为生长阵列的种子层,也无需在溶液中加入锌离子溶液。XRD、高倍透射电镜(HRTEM)和SAED表征分析,表明ZnO纳米棒阵列是六方纤锌矿的单晶结构,沿c轴方向晶面择优取向生长。此外,对ZnO纳米棒阵列薄膜的形成机理进行了探讨。
     (4)通过DRS分析,估算ZnO纳米棒阵列薄膜的带隙能为3.24eV,相比体相ZnO(3.37eV)有所红移。ZnO纳米棒阵列薄膜的PL谱中出现一个位于383nm处强的紫外发光峰和两个位于450和468nm处弱的可见发光峰。拉曼光谱分析表明,位于437cm~(-1)处的E_(2H)强振动峰对应于六方纤锌矿ZnO特征振动,位于332、379、415和580cm~(-1)处的弱的振动峰分别对应于ZnO的3E_(2H)-E_(2L)、A_1(TO)、E_1(TO)和E_1(LO)振动。此外,将ZnO纳米棒阵列薄膜光催化降解4-氯酚的效果与生长于钛基底上ZnO纳米棒膜进行比较,发现ZnO纳米棒阵列薄膜表现出更好的光催化性能。
Photocatalytic oxidation for organic wastewater treatment is a promising technology with low cost,easy operation and non-secondary pollution.However,it is limited to actual application due to the low photocatalytic efficiency.Therefore,the development of highly effective photocatalyst has become one of the most important research subjects.ZnO,as a well-known photocatalyst for its high efficiency,non-toxic nature and low cost,has been paid much attention in the degradation and complete mineralization of environmental pollutants. The morphologies of inorganic materials are demonstrated to have great effects on their widely varying properties and corresponding potential applications.It is well known that ZnO exhibits the richest range of morphologies among the wide band gap semiconductors. Therefore,the fabrication of ZnO nanomaterials with special morphologies could effectively improve their optical properties and photocatalytic activity.In the present work, nanostructured-ZnO powders and films with particular morphologies were prepared and characterized.Meanwhile,the optical properties and photocatalytic degradation activities were investigated.In this dissertation,our investigations are carried out as follows:
     (1) Nanostructured ZnO samples with different morphologies were successfully synthesized by simple low-temperature hydrothermal routes in the absence of surfactants. Systematic experiments were carried out to investigate the factors that affect the morphology. We demonstrate that ZnO with different morphologies such as flowers and rods can be controllably obtained by simply varying the basicity in the solution.The as-prepared samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM), transmission electron microscopy(TEM) and selected area electron diffraction(SAED).We found that the ZnO nanoflowers contain many radial nanorods and these ZnO single-crystalline nanorods with the wurtzite structure grow along the[0001]direction.The formation mechanisms of ZnO nanoflowers and nanorods were initially interpreted in terms of the general theory of the crystal nucleation and crystal growth direction.
     (2) Nanostructured ZnO samples with different morphologies exhibit interesting optical properties.They were characterized by UV-vis diffuse reflectance(DRS),Raman, Photoluminescence(PL),X-ray photoelectron spectroscopy(XPS) and surface photovoltage spectroscopy(SPS).The obtained samples with different morphologies have significant potentials in photocatalytic oxidation of dyes and organic pollutants.ZnO with flower-like morphology exhibited improved ability on the photocatalytic degradation of dye and phenolic compounds in aqueous solution under UV radiation compared with ZnO nanorods.The higher photocatalytic activity of the ZnO nanoflowers results from the larger content of oxygen vacancy on the surface of 1D nanomaterials as revealed by their Raman,PL,XPS and SPS spectra features.It is suggested that oxygen vacancy may act as the active centers of the catalyst,which could capture photo-induced electrons,whereas the recombination of photo-induced electrons and holes can be effectively inhibited.
     (3) Highly oriented and large-scale ZnO nanorod arrays film have been successfully synthesized on zinc foil by a simple,low temperature,solution-phase approach.Here,zinc foil was used as not only a substrate but also zinc-ion source for the growth of ZnO nanorod arrays film by direct oxidation of zinc foil in an aqueous solution of formamide.This is a simple,self-source and low-cost method without the need of pre-casting ZnO nanoparticles onto the substrates as a seed layer and adding materials such as Zn~(2+)-contained salts.X-ray diffraction(XRD) analysis,high-resolution TEM(HRTEM) photographs and selected area electron diffraction(SAED) patterns indicated that the ZnO nanorod arrays on the zinc foil substrate was single crystalline and grown predominant crystal orientation along the c-axis direction with the wurtzite structure.In addition,the possible formation mechanism of ZnO nanorod arrays was discussed.
     (4) The band gap of ZnO nanorod arrays film is 3.24 eV estimated by DRS,which is red-shifted compared with bulk ZnO(3.37 eV).The PL spectrum of ZnO nanorod arrays film appeared a dominant UV emission at 383nm and two weak visible emissions at 450 nm and 468 nm.Raman spectrum indicates that the remarkable E_(2H) mode of ZnO nanorod arrays film is located at 437 cm~(-1),which corresponds to the characteristic band of hexagonal wurtzite phase,and the weaker peaks appear at 332,379,415 and 580 cm~(-1),which can be assigned to the 3E_(2H)-E_(2L),A_1(TO),E_1(TO)and E_1(LO)mode of ZnO,respectively.Furthermore,the photocatalytic activity of ZnO nanorod arrays has been tested by degradation of 4-chlorophenol(4-CP) under UV light irradiation compared to that of the disordered ZnO nanorods film grown on the Ti substrate,indicating that the as-synthesized ZnO nanorod arrays exhibit excellent photocatalytic activity.
引文
[1]钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理.第1版.北京:中国环境科学出版社.2000.
    [2]楚文海,高乃云,李青松等.六氯苯污染源水的饮用水应急处理工艺研究.中国环境科学.2008,28(6):507-511.
    [3]陈士明,郭锐.微絮凝-变孔隙直接过滤工艺深度处理印染废水.水处理技术.2008,34(5):50-52.
    [4]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode.Nature.1972,238(7):37-38.
    [5]Carey J H,Lawrence J,Tosine H M.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension.Bulletin of Environmental Contamination and Toxicology.1976,16(6):697-701.
    [6]Frank S N,Bard A J.Heterogeneous photo-catalytic oxidation of cyanide ion in aqueous solution at TiO_2 powders.Journal of the American Chemical Society.1977,99(1):303-304.
    [7]Frank S N,Bard A J.Heterogeneous photo-catalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders.Journal of Physical Chemistry.1977,81(15):1484-1489.
    [8]蔡乃才,董庆华.悬浮体系中的半导体光催化及应用.化学通报.1991,(7):9-13.
    [9]Ollis D F,Pelizzetti E,Serpone N.Photocatalyzed destruction of water contaminants.Environmental Science and Technology.1991,25(9):1523-1529.
    [10]Hoffmann M R,Martin S T,Choi W et al.Environmental applications of semiconductor photocatalysis.Chemical Reviews.1995,95(1):69-96.
    [11]David F.Ollis.Photocatalytic purification and remediation of contaminated air and water.Chemistry.2000,3(6):405-411.
    [12]Sopyan I,Murasawa S,Hashimoto K et al.High efficient TiO_2 film photocatalyst.Degradation of gaseous acetaldehyde.Chemisty Letters.1994,23(4):723-726.
    [13]Hager S,Bauer R,Kudielka G.Photocatalytic oxidation of gaseous chlorinated organics over titanium dioxide.Chemosphere.2000,41(8):1219-1225.
    [14]Pichat P,Disdier J,Hoang-van C et al.Purification/deodorization of indoor air and gaseous effluents by TiO_2 photocatalysis.Catalysis Today.2000,63(2):363-369.
    [15]Gogate P R,Pandit A B.A review of imperative technologies for wastewater treatment Ⅱ:hybrid methods.Advances in Environmental Research.2004,8(3-4):553-597.
    [16]De Felip E,Ferri F,Lupi C et al.Structure-dependent photocatalytic degradation of polychlorobiphenyls in a TiO_2 aqueous system.Chemosphere.1996,33(11):2263-2271.
    [17]Vijaikumar S,Somasundaram N,Srinvasan C.Photoinduced oxidation of benzhydrol and reduction of benzil on titanium dioxide.Applied catalysis.A:General.2002,223(1-2):129-135.
    [18]Brigden C T,Poulston S,Twigg M V.Photo-oxidation of short-chain hydrocarbons over titania.Applied Catalysis B:Environmental.2001,32(1-2):63-71.
    [19]Waki K,Zhao J,Horikoshi S et al.Photooxidation mechanism of nitrogen-containing compounds at TiO_2/H_2O interfaces:an experimental and theoretical examination of hydrazine derivatives.Chemosphere.2000,41(3):337-343.
    [20]Wong C C,Chu W.The direct photolysis and photocatalytic degradation of alachlor at different TiO_2 and UV sources.Chemosphere.2003,50(8):981-987.
    [21]Muto H,Saitoh K,Funayama H.PCDD/DF formations by the heterogeneous thermal reactions of phenols and their TiO_2 photocatalytic degradation by batch-recycle system.Chemosphere.2001,45(2):129-136.
    [22]Bekbolet M,Ozkosemen G.A preliminary investigation on the photocatalytic degradation of a model humic acid.Water Science and Technology.1996,33(6):189-194.
    [23]Fujishima A,Rao T N,Tryk D A.Titanium diode photocatalysis.Journal of Photochemistry and Photobiology C:Photochemistry Reviews.2000,1(1):1-21.
    [24]Cho S M,Choi W Y.Solid-phase photocatalytic degradation of PVC-TiO_2 polymer composites.Journal of Photochemistry and Photobiology A:Chemistry.2001,143(2-3):221-228.
    [25]Hagfeldt A,Gratzel M.Light-induced redox reactions in nanocrystalline systems Chemical Reviews.1995,95(1):49-68.
    [26]Okazaki M,Shiga T,Shigera S et al.Isotope enrichment by electron spin resonance transition of the intermedediate radical pair.Journal of Physical Chemistry.1988,92(96):1402-1404.
    [27]Ishibashi K I,Fujishima A,Watanabe T et al.Quantum yields of active oxidative species formed on TiO_2 photocatalyst.Journal of Photochemistry and Photobiology A:Chemistry.2000,134(1-2):139-142.
    [28]Assabane A,Yahia A I,Tahiri H et al.Photocatalytic degradation of polycarboxylic benzoic acids in UV irradiated aqueous suspensions of titania:identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid).Applied Catalysis B:Environmental.2000,24(2):71-87.
    [29]Behnajady M A,Modirshahla N,Hamzavi R.Kinetic study on photocatalytic degradation of C.I.Acid Yellow 23 by ZnO photocatalyst.Journal of Hazardous Materials 2006,133(1-3):226-232.
    [30]Linsebigler A L,Lu G Q,Yates J T.Photocatalysis on TiO_2 surfaces:principles,mechanisms,and selected results,Chemical Reviews.1995,95(3):735-758.
    [31]Sakthivel S,Kisch H.Daylight photocatalysis by carbon-modified titaniwn dioxide.Angewandte Chemie International Edition.2003,42(40):4908-4911.
    [32]谢立进,马峻峰,赵忠强等.半导体光催化剂的研究现状及展望.硅酸盐通报.2005,24(6):80-84.
    [33]Zheng Y H,Chen C Q,Zhan Y Y et al.Luminescence and photocatalytic activity of ZnO nanocrystals:correlation between structure and property.Inorganic Chemistry.2007,46(16):6675-6682.
    [34]Wang H H,Xie C S,Zhang W et al.Comparison of dye degradation efficiency using ZnO powders with various size scales.Journal of Hazardous Materials.2007,141(3):645-652.
    [35]Pavasupree S,Ngamsinlapasathian S,Nakajima M et al.Synthesis,characterization,photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO_2with mesoporous structure.Journal of Photochemistry and Photobiology A:Chemistry,2006,184(1-2):163-169.
    [36]Li X,Fan Y Q,Jin W Q et al.Effect of EDTA on preparation of Pd membranes by photocatalytic deposition.Desalination.2006,192(1-3):117-124.
    [37]蔡乃才,简翠英,董庆华TiO_2光催化剂表面截铂方法的研究.催化学报.1989,10(2):137-141.
    [38]Choi W,Termin A,Hoffmann M R.Effect of dopant states on photoactivity in carbon-doped TiO_2.Journal of Physical Chemistry.1994,98(51):13669-13679.
    [39]栾勇,傅平丰,戴学刚等.金属离子掺杂对TiO_2光催化性能的影响.化学进展.2004,16(5):738-746.
    [40]牟柏林,侯天意,霍丽娟等.天然沸石负载ZnO/SnO_2复合半导体的光催化活性.硅酸盐学报.2005,33(11):1366-1370.
    [41]邓南圣,昊峰.环境光化学.北京:化学工业出版社(第一版).2003.
    [42]Leng W H,Cheng X F,Zhang J Q.Comment on "Photocatalytic Oxidation of Arsenite on TiO_2:Understanding the Controversial Oxidation Mechanism Involving Superoxides and the Effect of Alternative Electron Acceptors".Environmental Science and Technology.2007,41(17):6311-6312.
    [43]Yassitepe E,Yatmaz H C,Ozturk C.Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions.2008,198(1):1-6.
    [44]Bandara J,Ranasinghe R A S S.The effect of MgO coating on photocatalytic activity of SnO_2for the degradation of chlorophenol and textile colorants;the correlation between the photocatalytic activity and the negative shift of flatband potential of SnO_2.Applied Catalysis A:General.2007,319(1):58-63.
    [45]Yagi M,Maruyama S,Sone K et al.Preparation and photoelectrocatalytic activity of a nano-structured WO_3 platelet film.Journal of Solid State Chemistry.2008,181 (1):175-182.
    [46]Neppolian B,Wang Q L,Yamashita H.Synthesis and characterization of ZrO_2-TiO_2 binary oxide semiconductor nanoparticles:Application and interparticle electron transfer process.Applied Catalysis A:General.2007,333(2):264-271.
    [47]Chen X Y,Yu T,Fan X X et al.Enhanced activity of mesoporous Nb_2O_5 for photocatalytic hydrogen production.Applied Surface Science.2007,253(20):8500-8506.
    [48]Gondal M A,Hameed A,Yamani Z H et al.Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe_2O3.Applied Catalysis A:General.2004,268(1-2):159-167.
    [49]Puangpetch T,Sreethawong T,Yoshikawa S et al.Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO_3 nanocrystals prepared by sol-gel method with the aid of structure-directing surfactant.Journal of Molecular Catalysis A:Chemical.2008,287(1-2):70-79.
    [50]Suarez-Parra R,Hernandez-Perez I,Rincon M E et al.Visible light-induced degradation of blue textile azo dye on TiO_2/CdO-ZnO coupled nanoporous films Solar Energy Materials and Solar Cells.2003,76(2):189-199.
    [51]Datta A,Priyam A,Bhattacharyya S N.Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics.Journal of Colloid and Interface Science.2008,322(1):128-135.
    [52]Torres-Martinez C L,Kho R,Mian O I et al.Efficient Photocatalytic Degradation of Environmental Pollutants with Mass-Produced ZnS Nanocrystals Journal of Colloid and Interface Science.2001,240(2):Pages 525-532.
    [53]Ho W K,Yu J C.Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO_2 nanoparticles.Journal of Molecular Catalysis A:Chemical.2006,247(1-2):268-274.
    [54]Yamashita H,Nishida Y,Yuan S et al.Design of TiO_2-SiC photocatalyst using TiC-SiC nano-particles for degradation of 2-propanol diluted in water.Catalysis Today.2007,120(2):163-167.
    [55]Maeda K,Takata T,Hara M et al.GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting.Journal of the American Chemical Society.2005,127(23):8286-8287.
    [56]Dindar B,Icli S.Unusual photoreactivity of zinc oxide irradiated by concentrated sun light.Jouranl of Photochemistry and Photobiology A:Chemistry.2001,140(3):263-268.
    [57]Gouvea C A K,Wypych F,Morass S G,et al.Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution.Chemosphere,2000,40(4):433-440.
    [58]Sakthivel S,Neppolian B,Shankar M V et al.Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO_2.Solar Energy Materials and Solar Cells.2003,77(1):65-82.
    [59]Seung B P,Yun C K.Photocatalytic activity of nanometer size ZnO particles prepared by spray pyrolysis.Journal of Aerosol Science.1997,28(1):473-474.
    [60]Yeber M C,Rodriguez J,Freer J et al.Photocatalytic degradation of cellulose bleaching effluent by supported TiO_2 and ZnO.Chemosphere.2000,41(8):1193-1197.
    [61]Peng X G,Manna L,Yang W D et al.Shape control of CdSe nanocrystals.Nature.2000,404(6773):59-61.
    [62]Valiev R Z.Nanomaterial advantage.Nature.2002,419(6910):887-888.
    [63]Ball P,Garwin L.Science at the atomic scale.Nature.1992,355(63):761 -766.
    [64]Yiping L,Hdjipanayis G C,Sorensenk C M et al.Magnetic properties of fine cobalt particles prepared by metal atom reduction.Journal of Applied Physics.1990,67(9):4502-4504.
    [65]Hagfeldt A,Gratzel M.Light-induced redox reactions in nanocrystalline systems.Chemical Review.1995,95(1):49-68.
    [66]Nair S V,Sinha S,Rustagi K C.Quantum size effectes in spherical semiconductor microcrystals.Physical Review B.1987,35(8):4098-4101.
    [67]Linderoth S,Morup S.Chemically prepared amorphous Fe-B particles:Influence of pH on the composition.Journal of Applied Physics.1990,67(9):4472-4474.
    [68]Willander M,Nur O,Lozovik Y E et al.Solid and soft nanostructured materials Fundamentals and applications.Microelectronics Journal.2005,36(11):940-949.
    [69]Ngomsik A F,Bee A,Draye M et al.Magnetic nano- and microparticles for metal removal and environmental application.Comptes Rendus Chimie.2005,8(6-7):963-970.
    [70]Zhang Y J,Ma B L,Li Y J et al.Enhanced affinochromism of polydiacetylene monolayer in response to bacteria by incorporating CdS nano-crystallites.Colloids and Surfaces B Biointerfaces.2004,35(1):41-44.
    [71]Tang Z K,Wong G K L,P Yu et al.Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films.Applied Physics Letters.1998,72(25):3270-3272.
    [72]Bagnall D M,Chen Y F,Zhu Z et al.Optically pumped lasing of ZnO at room temperature.Applied Physics Letters.1997,70(17):2230-2232.
    [73]Cao H,Zhao Y G,Ong H C et al.Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films.Applied Physics Letters.1998,73(25),3656-3658.
    [74]Zu P,Tang Z K,Wong G K L et al.Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature.Solid State Communications.1997,103(8):459-463.
    [75]Zu P,Tang Z K,Wong G K L et al.Room-temperature gain spectra and lasing in microcrystalline ZnO thin films.Journal of Crystal Growth.1998,184-185:601-604.
    [76]Bagnall D M,Chen Y F,Zhu Z et al.Temperature dependence ofelectromigration dynamics in Al interconnects by real-time microscopy.Applied Physics Letters.1998,73(8),1038-1040.
    [77]Hellemans A.Laser Light From a Handful of Dust.Science.1999,284:24-25.
    [78]Kouklin N.Cu-Doped ZnO Nanowires for Efficient and Multispectral Photodetection Applications.Advanced Materials.2008,20(11):2190-2194.
    [79]Campos L C,Tonezzer M,Ferlauto A Set al,Vapor-Solid-Solid Growth Mechanism Driven by Epitaxial Match between Solid AuZn Alloy Catalyst Particles and ZnO Nanowires at Low Temperatures.Advanced Materials.2008,20(8):1499-1504.
    [80]Service R F.Will UV lasers beat the blues? Science.1997,276,895.
    [81]Tang Z K,Yu P,Wong C K L et al.Room temperature ultraviolent laser emission from microstructured ZnO thin film.Nonlinear Optics.1997,18(2-4),355-359.
    [82]Usui H,Shimizu Y,Sasaki T et al.Photoluminescence of ZnO Nanoparticles Prepared by Laser Ablation in Different Surfactant Solutions.Jounal of Physical Chemistry B.2005,109(1):120-124.
    [83]Song J K,Szarko J M,Leone S R et al.Ultrafast Wavelength-Dependent Lasing-Time Dynamics in Single ZnO Nanotetrapod and Nanowire Lasers.Jounal of Physical Chemistry B.2005,109(33):15749-15753.
    [84]Johnson J C,Knutsen K P,Yan H et al.Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers.Nano Letters.2004,4(2):197-204.
    [85]Song J K,Willer U,Szarko J M et al.Ultrafast Upconversion Probing of Lasing Dynamics in Single ZnO Nanowire Lasers.Jounal of Physical Chemistry C.2008,112(5):1679-1684.
    [86]King S L,Gardenlers J G E,Boyd I W.Pulsed-laser deposited ZnO for device application.Applied Surface Science.1996,96-98:811-818.
    [87]王步国,仲维卓,华素坤等.ZnO晶体的极性生长习性与双晶的形成机理.人工晶体学报.1997,26(2):102-107.
    [88]Wang Z L.Zinc oxide nanostructures:growth,properties and applications.Journal of Physics:Condensed Matter.2004,16(25):R829-R858.
    [89]徐滨士.纳米表面工程.北京:化学工业出版社.2004.
    [90]Lyu S C,Zhang Y,Lee C J et al.Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method.Chemistry of Materials,2003,15(17):3294-3299.
    [91]Aghababazadeh R,Mazinanil B,Mirhabibil A et al.ZnO Nanoparticles Synthesised by mechanochemical processing.Journal of Physics:Conference Series.2006,26:312-314.
    [92]Jin C F,Yuan X,Ge W W et al.Synthesis of ZnO nanorods by solid state reaction at room temperature.Nanotechnology.2003,14(6):667-669.
    [93]韩兵强,李楠.高能球磨法在纳米材料研究中的应用.耐火材料.2002,36(4):240-242.
    [94]肖军,潘晶,刘新才.高能球磨法及其在纳米晶磁性材料制备中的应用.磁性材料及器件.2005,36(1):6-10.
    [95]Lu J F,Zhang Q W,Wang J et al.Synthesis of N-Doped ZnO by grinding and subsequent heating ZnO-urea mixture.Powder Technology.2006,162(1):33-37.
    [96]Wang Z C,Prangnell P B.Microstructure refinement and mechanical properties of severely deformed Al-Mg-Li alloys.Materials Science and Engineering A.2002,328(1-2):87-97.
    [97]王磊,樊建中,熊柏青.SPD法及P/M法制备金属纳米体材料进展.稀有金属.2002,26(2):129-133.
    [98]Fan H J,Scholz R,Dadgar A et al.A low-temperature evaporation route for ZnO nanoneedles and nanosaws.Applied Physics A:Materials Science & Processing.2005,80(3):457-460.
    [99]Wang R C,Liu C P,Huang J L et al.ZnO symmetric nanosheets integrated with nanowalls.Applied Physics Letters.2005,87(5):053103.
    [100]Wang R C,Liu C P,Huang J L et al.ZnO nanopencils:Efficient field emitters.Applied Physics Letters.2005,87(1):013110.
    [101]Nobis T,Kaidashev E M,Rahm A et al.Spatially inhomogeneous impurity distribution in ZnO micropillars.Nano Letters.2004,4(5):797-800.
    [102]Tani T,Madler L,Pratsinis S E.Homogeneous ZnO nanoparticles by flame spray pyrolysis.Journal of Nanoparticle Research.2002,4(4):337-343.
    [103]Bian J M,Li X M,Gao X D et al.Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis.Applied Physics Letters.2004,84(4):541-543.
    [104]Seelig E W,Tang B,Yamilov A et al.Self-assembled 3D photonic crystals from ZnO colloidal spheres.Materials Chemistry and Physics.2003,80(1):257-263.
    [105]Spanhel L,Anderson M A.Semiconductor Clusters in the Sol-Gel Process:quantized aggregation,gelation,and crystal growth in concentrated ZnO colloids.Journal of the American Chemical Society.1991,113(8):2826-2833.
    [106]Lin K F,Cheng H M,Hsu H C et al.Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method.Chemical Physics Letters.2005,409(4-6):208-211.
    [107]Lisiecki I,Albouy P A,Pileni M P."Supra" Crystal:the Control of the Ordering of Self-Organization of Cobalt Nanocrystals at the Mesoscopic Scale.Journal of Physical Chemistry B.2004,108(52):20050-20055.
    [108]Lisiecki I.Size,Shape,and Structural Control of Metallic Nanocrystals.Journal of Physical Chemistry B.2005,109(25):12231-12244.
    [109]Li F,Ding Y,Gao P X et al.Single-crystal Hexagonal Disks and Rings of ZnO:Low-temperature,Large-scale Synthesis and Growth Mechanism.Angewandte Chemie International Edition.2004,43(39):5238-5242.
    [110]王国平,石晓波,汪德先。室温固相反应制备纳米氧化锌.合肥工业大学学报.2002,25(1):32-35.
    [111]余磊,邹贵田.微波诱导固-固相反应合成纳米氧化锌.贵州师范大学学报.2004,22(4):78-80.
    [112]Gao P X,Ding Y,Wang Z L.Crystallographic orientation-aligned ZnO nanorods grown by a Tin catalyst.Nano Letters.2003,3(9):1315-1320.
    [113]Pan Z W,Dai Z R,Wang Z L.Nanobelts of semiconducting Oxides.Science.2001,291:1947-1949.
    [114]Zhang X Y,Dai J Y,Ong H C.Hydrothermal synthesis of oriented ZnO nanobelts and their temperature dependent photoluminescence.Chemical Physics Letters.2004,393(1-3):17-21.
    [115]Gao P X,Wang Z L.High-yield synthesis of single-crystal nanosprings of ZnO.Small.2005,1(10):945-949.
    [116]Gao P X,Ding Y,Mai W J et al.Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices.Science.2005,309:1700-1704.
    [117]Gao P X,Wang Z L.Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO.Journal of Physical Chemistry B.2002,106(49):12653-12658.
    [118]Wang Z L,Kong X Y,Zuo J M.Induced growth of asymmetric nanocantilever arrays on polar.Surfaces.Physical Review Letters.2003,91(18):185502-185505.
    [119]Kong X Y,Ding Y,Yang R S et al.Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts.Science.2004,303:1348-1351.
    [120]Gao P X,Wang Z L.Nanopropeller arrays of zinc oxide.Applied Physics Letters.2004,84(15):2883-2885.
    [121]Wang Z L.Zinc oxide nanostructures.Material Today.2004,7(6):26-33.
    [122]Huang M H,Mao S,Feick H et al.Room-Temperature Ultraviolet Nanowire Nanolasers.Science.2001,292:1897-1899.
    [123]Xu C X,Sun X W,Dong Z L et al.Zinc oxide nanodisk.Applied Physics Letters.2004,85:3878-3880.
    [124]Kong,Y C,Yu D P,Zhang B et al.Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach.Applied Physics Letters.2001,78(4):407-409.
    [125]Zhang B P,Binh N T,Wakatsuki K et al.Formation of highly aligned ZnO tubes on sapphire (0001) substrates.Applied Physics Letters.2004,84(20):4098-4100.
    [126]Xu L,Guo Y,Liao Q et al.Morphological Control of ZnO Nanostructures by Electrodeposition.Journal of Physical Chemistry B.2005,109(28):13519-13522.
    [127]Zhang J,Sun L D,Yin J L et al.Control of ZnO morphology via a simple solution route.Chemistry of Materials.2002,14(10):4172-4177.
    [128]Zhu H,Huang J F,Pan Z et al.Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors.Chemistry of Materials.2006,18(18):4473-4477.
    [129]Jung S,Oh E,Lee K et al.Sonochemical Preparation of Shape-Selective ZnO Nanostructures.Crystal Growth and Design.2008,8(1):265-269.
    [130]祖庸,吴金龙等.纳米ZnO的奇妙用途.化工新型材料.1999,27(3):14-16.
    [131]李卫华,郝彦中,乔学斌等.纳米结构ZnO/染料/聚毗咯光阳极的光电化学性质.物理化学学报.1999,15(10):905-911.
    [132]张莉,杨迈之,孟凡颖等.五甲川蔷敏化ZnO纳米结构电极的光电化学行为.化学通报.1999,(8):43-47.
    [133]刘超峰,王振红,胡行方.氧化锌色素在真空紫外辐射下降解机理的研究.中国空间科学技术.1999,(4):33-39.
    [134]刘福春,韩恩厚,柯伟.抗紫外线纳米ZnO/氧化锌复合丙烯酸酷涂料.材料研究学报.2003,17(2):138-144.
    [135]唐春,杨综璐,王真等.ZnO光降解甲基橙初步研究.云南化工.2000,27(3):4-5.
    [136]Ou H H,Lo S L,Wu C H.Exploring the interparticle electron transfer process in the photocatalytic oxidation of 4-chlorophenol.Journal of Hazardous Materials.2006,137(3):1362-1370.
    [137]井立强,徐自力,杜尧国等.ZnO超微粒子光催化氧化降解n-C_7H_6的研究.高等化学学报.2002,23(5):871-875.
    [138]Martins J B L,Longo E,Taft C A.CO and NH interaction with ZnO surface:an AM1 study.International Journal of Quantum Chemistry.1998,70(2):367-374.
    [139]祖庸,雷闫盈,王训等.纳米ZnO的奇妙用途。化工新型材料.2001,27(3):254-259.
    [140]楚珑聂,周柞万,段晓飞.ZnO_w/纳米复合抗菌剂的研制.材料导报.2003,17(6):84-87.
    [141]井立强,孙晓君,徐自力等.ZnO超微粒子光催化氧化SO_2的研究.催化学报.2002,23(1):33-37.
    [142]井立强,孙晓君,郑人方等.ZnO超微粒子的量子效应和光催化性能.哈尔滨工业大学学报.2001,33(3):344-348.
    [143]井强山,方林霞.负载型金属氧化物常温精脱硫剂的制备与表征.信阳师范学院学报.2003,16(3):314-317.
    [144]牛新书,杜卫平,杜卫民等.纳米ZnO的制备及其气敏性能.应用化学.2003,20(10):968-971.
    [145]Bender M,Gagaoudakis E,Douloufakis E et al.Production and characterization of zinc oxide thin films for room temperature ozone sensing.Thin Solid Films.2002,418(1):45-50.
    [146]Min Y K,Tuller H L,Palzer S.Gas response of reactively sputtered ZnO films on Si-based micro-array.Sensors and Actuators B:Chemical.2003,93(1-3):435-441.
    [147]Bhooloka R B.Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour.Materials Chemistry and Physics.2000,64(1):62-65.
    [148]Xu J Q,Shun Y,Pan Q Y et al.Sensing characteristics of double layer film of ZnO.Sensors and Actuators B:Chemical.2000,66(1):161-163.
    [149]Chang J F,Kuo H H,Leu I C et al.The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor.Sensors and Actuators B:Chemical.2002,84(2-3):258-264.
    [150]Gruber D,Kraus F,Muller J.A novel gas sensor design based on CH_4/H_2/H_2O plasma etched ZnO thin films.Sensors and Actuators B:Chemical.2003,92(1-2):81-89.
    [151]Emanetoglu N W,Gorla C,Liu Y et al.Epitaxial ZnO piezoelectric thin films for SAW filters.Materials Science in Semiconductor Processing.2001,2(3):247-252.
    [152]Chen J J,Gao Y,Zeng F et al.Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films.Applied Surface Science,2004,223(4):318-329.
    [153]周柞万,楚珑晨,雷强.氧化锌晶须在树脂基复合材料中的应用.化工新型材料.2001,29(9):45-53.
    [154]Kang X Y,Han Y,Tao M et al.Analysis of ZnO varistors prepared from nano-size ZnO precursors.Materials Research Bulletin.1998,33(11):1703-1708.
    [155]Kuoni A,Holzherr R,Boillat Met al.Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor.Journal of Micromechanics and Microengineering.2003,3(4):103-107.
    [156]王英连,孙汪典.ZnO薄膜在传感器方面的最新应用进展.传感器世界.2004,10(6):15-20.
    [157]郭新,袁润章.化学气相沉积在无机新材料制备中的应用.材料科学与工程.1994,12(1):58-61.
    [158]Xu T,Wu G Y,Zhang G B et al.The compatibility of ZnO piezoelectric film with micromachining process.Sensors and Actuators A:Physical.2003,104(1):61-67.
    [159]Huang M H,Wu Y Y,Yang P D et al.Catalytic growth of zinc oxide nanowires by vapor transport.Advanced Materials.2001,13(2):113-116.
    [160]Wang X D,Ding Y,Wang Z L et al.Large-scale synthesis of six-nanometer-wide ZnO nanobelts.Journal of Physical Chemistry B.2004,108(26):8773-8777.
    [161]Banerjee A,Jo S H,Ren Z F et al.Enhanced field emission of ZnO nanowires.Advanced Materials.2004,16(22):2028-2032.
    [162]Wang Z L,Song J H.Piezeoelectric nanogenerators based on zinc oxide nanowire arrays.Science.2006,312:242-246.
    [163]Comini E,Faglia G,Sberveglieri G et al.Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts.Applied Physics Letters.2002,81(10):1869-1871.
    [164]Arnold M S,Avouris P,Pan Z W et al.Field-effect transistors based on single semiconducting oxide nanobelts.Journal of Physical Chemistry B.2003,107(3):659-663.
    [165]Zhao M H,Wang Z L,Mao S X.Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope.Nano Letters.2004,4(4):587-590.
    [166]Bai X D,Gao P X,Wang Z Let al.Dual-mode mechanical resonance of individual ZnO nanobelts.Applied Physics Letters.2003,82(26):4806-4808.
    [167]Hughes W L,Wang Z L.Nanobelts as nanocantilevers.Applied Physics Letters.2003,82(17):2886-2888.
    [168]Li S,Qing H,Wang Z L et al.Thermal conductivities of individual tin dioxide nanobelts.Applied Physics Letters.2004,84(14):2638-2640.
    [169]Bagnall D M,Chert Y Y,Goto T et al.Optically Pumped Losing of ZnO at Room Temperature.Applied Physics Letters.1997,70(17):2230-2232.
    [170]Hacker D S,Butt J B.Photocatalysis in a slurry reactor.Chemical Engineering Science.1975,30(9):1149-1158.
    [171]Barbeni M,Pramauro E,Pelizzetti E et al.Photodegradation of pentachlorophenol catalyzed by semiconductor particles.Chemosphere.1985,14(2):195-208.
    [172]Sharma A,Rao P,Mathur R P er al.Photocatalytic reactions of xylidine ponceau on semiconducting zinc oxide powder.Journal of Photochemistry and Photobiology A:Chemistry.1995,86(1-3):197-200.
    [173]Poulios I,Tsachpinis I.Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides.Journal of Chemical Technology and Biotechnology.1999,74(4):349-357.
    [174]Wang H H,Xie C H,Zhang W et al.Comparison of dye degradation efficiency using ZnO powders with various size scales.Journal of Hazardous Materials.2007,141(3):645-652.
    [175]Selli E,De Giorgi A,Bidoglio G.Humic Acid-Sensitized Photoreduction of Cr(Ⅵ) on ZnO Particles.Environmental Science and Technology.1996,30(2):598-604.
    [176]Yatmaz H C,Akyol A,Bayramoglu M.Kinetics of the Photocatalytic Decolorization of an Azo Reactive Dye in Aqueous ZnO Suspensions.Industrial and Engineering Chemistry Research.2004,43(19):6035-6039.
    [177]Ye C,Bando Y,Shen G et al.Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets.Journal of Physical Chemistry B.2006,110(31):15146-15151.
    [178]Marci G,Augugliaro V,Lopez-Munoz M J et al.Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO_2 Systems.2.Surface,Bulk Characterization,and 4-Nitrophenol Photodegradation in Liquid-Solid Regime.Journal of Physical Chemistry B.2001,105(5):1033-1040.
    [179]Pauporte T,Rathousky J.Electrodeposited Mesoporous ZnO Thin Films as Efficient Photocatalysts for the Degradation of Dye Pollutants.Journal of Physical Chemistry C.2007,111(21):7639-7644.
    [180]Xu F,Zhang P,Navrotsky A et al.Hierarchically Assembled Porous ZnO Nanoparticles:Synthesis,Surface Energy,and Photocatalytic Activity.Chemistry of Materials.2007,19(23):5680-5686.
    [181]Kuo T J,Lin C N,Kuo C L et al.Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts.Chemistry of Materials.2007,19(21):5143-5147.
    [182]Zheng Y,Chen C,Zhan Y et al.Luminescence and Photocatalytic Activity of ZnO Nanocrystals:Correlation between Structure and Property.Inorganic Chemistry.2007,46(16):6675-6682.
    [183]Wan Q,Wang T H,Zhao J C.Enhanced photocatalytic activity of ZnO nanotetrapods.Applied Physics Letters.2005,87(8):083105.
    [184]Jing L Q,Xu Z L,Sun X J et al.The surface properties and photocatalytic activities of ZnO ultrafine particles.Applied Surface Science,2001,180(3-4):308-314.
    [185]井立强,袁福龙,侯海鸽等.znO纳米粒子的表面氧空位与其光致发光和光催化性能的关系.中国科学B辑化学.2004,34(4):310-314.
    [186]Alivisatos A P.Semiconductor Clusters,Nanocrystals,and Quantum Dots.Science.1996,271:933-937.
    [187]Ji Y L,Guo L,Xu H B et al.Regularly Shaped,Single-Crystalline ZnO Nanorods with Wurtzite Structure,Journal of the American Chemical Society.2002,124(50):14864-14865.
    [188]Zhang J,Sun L D,Liao C S et al.A simple route towards tubular ZnO.Chemical Communications.2002,3(52):262-263.
    [189]Wang M S,Kim E J,Shin E W et al.Low-Temperature Solution Growth of High-Quality ZnO Thin Films and Solvent-Dependent Film Texture.Journal of Physical Chemistry C.2008,112(6):1920-1924.
    [190]Liu B,Yu S H,Zhang F et al.Ring-Like Nanosheets Standing on Spindle-Like Rods:Unusual ZnO Superstructures Synthesized from a Flakelike Precursor Zn_5(OH)_8Cl_2·H_2O.Journal of Physical Chemistry B.2004,108(14):4338-4341.
    [191]Hughes W L,Wang Z Let al.Controlled synthesis and manipulation of ZnO nanorings and nanobows.Applied Physics Letters.2005,86(4):043106.
    [192]Gao P X,Lao C S,Hughes W L et al.Three-dimensional interconnected nanowire networks of ZnO.Chemical Physics Letters.2005,408(1-3):174-178.
    [193]Jiang C L,Zhang W Q,Zou G F et al.Precursor-Induced Hydrothermal Synthesis of Flowerlike Cupped-End Microrod Bundles of ZnO.Journal of Physical Chemistry B.2005,109(4):1361-1363.
    [194]Yin H Y,Xu Z D,Wang Q S et al.Study of assembling ZnO nanorods into chrysanthemum-like crystals.Materials Chemistry and Physics.2005,91(1):130-133.
    [195]Du G H,Chen Q,Peng L M et al.Preparation and structure analysis of titanium oxide nanotubes.Applied Physical Letters.2001,79(22):3702-3704.
    [196]Buseck P,Cowley J M,Eyring L.High Resolution Transmission Electron Microscopy and Associated Techniques.New York:Oxford University Press.1988.
    [197]Lao J Y,Wen J G,Ren Z F.Hierarchical ZnO Nanostructures.Nano Letters.2002,2(11):1287-1291.
    [198]Lao J Y,Huang J Y,Wang D Z et al.ZnO Nanobridges and Nanonails.Nano Letters.2003,3(2):235-238.
    [199]Kong X Y,Wang Z L.Spontaneous Polarization-Induced Nanohelixes,Nanosprings,and Nanorings of Piezoelectric Nanobelts.Nano Letters.2003,3(12):1625-1631.
    [200]Whitesides G M,Mathias J P,Seto C T.Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures.Science.1991,254:1312-1319.
    [201]Klingshirn C.The luminesecence of ZnO under high one-and two-quantum excitation,physica status solidi B.1975,71(2):547-559.
    [202]Ye J D,Gu S L,Zhu S M et al.The growth and annealing of single crystalline ZnO film s by low-pressure MOCVD.Journal of Crystal Growth.2002,243(1):151-156.
    [203]Vanheusden K,Warren W L,Seager C H et al.Mechanisms behind green photoluminescence in ZnO phosphor powders.Journal of Applied Physics.1996,79(10):7983-7990.
    [204]Zhang D H,Wang Q P,Xue Z Y.Photoluminescence of ZnO films excited with light of different wavelength.Applied Surface Science.2003,207(1-4):20-25.
    [205]Sander M S,Gao H.Aligned Arrays of Nanotubes and Segmented Nanotubes on Substrates Fabricated by Electrodeposition onto Nanorods.Journal of the American Chemical Society.2005,127(35):12158-12159.
    [206]Chen S J,Liu Y C,Shao C L et al.Structural and optical properties of uniform ZnO nanosheets.Advanced Materials.2005,17(5):586-586.
    [207]Jing L Q,Xu Z L,Sun X J et al.The surface properties and photocatalytic activities of ZnO ultrafine particles.Applied Surface Science.2001,180(3-4):308-314.
    [208]Jing L Q,Xu Z L,Shang J et al.The preparation and characterization of ZnO ultrafine particles.Material Sciences and Engineering A.2002,332(1-2):356-361.
    [209]Li K Y,Wang D J,Wu F Q et al.Surface Electronic States and Photovoltage Gas-Sensitive Characters of Nanocrystalline LaFeO_3.Materials Chemistry and Physics.2000,64(3):269-272.
    [210]林艳红.ZnO纳米粒子的制备及其表面光电特性的研究:(博士学位论文).长春:吉林大学,2006.
    [211]Jing L Q,Qu Y C,Wang B Q et al.Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity Solar Energy Materials and Solar Cells.2006,90(12):1773-1787.
    [212]Daneshvar N,Aber S,Seyed Dorraji M S et al.Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light.Separation and Purification Technology.2007,58(1):Pages 91-98.
    [213]Jing L Q,Wang D J,Wang B Q et al.Effects of noble metal modification on surface oxygen composition,charge separation and photocatalytic activity of ZnO nanoparticles.Journal of Molecular Catalysis A:Chemical.2006,244(1-2):193-200.
    [214]Yassitepe E,Yatmaz H C,(O|¨)ztürk C et al.Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions.Journal of Photochemistry and Photobiology A:Chemistry.2008,198(1):1-6.
    [215]Ullah R,Dutta J.Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles.Journal of Hazardous Materials.2008,156(1-3):194-200.
    [216]Anandan S,Vinu A,Mori T et al.Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension.Catalysis Communications.2007,8(9):1377-1382.
    [217]Anandan S,Vinu A,Sheeja Lovely K L P et al.Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension.Journal of Molecular Catalysis A:Chemical.2007,266(1-2):149-157.
    [218]Chen C C.Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions.Journal of Molecular Catalysis A:Chemical.2007,264(1-2):82-92.
    [219]Parida K M,Dash S S,Das D P.Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods.Journal of Colloid and Interface Science.2006,298(2):787-793.
    [220]Nishio J,Tokumura M,Znad H T et al.Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor.Journal of Hazardous Materials.2006,138(1):106-115.
    [221]Gao P,Wang Z L.Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO.Journal of Physical Chemistry B.2002,106(49):12653-12658.
    [222]Zhang Z,Yuan H,Zhou J et al.Growth Mechanism,Photoluminescence,and Field-Emission Properties of ZnO Nanoneedle Arrays.Journal of Physical Chemistry B.2006,110(17):8566-8569.
    [223]Li Q,Kumar V,Li Y et al.Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions.Chemistry of Materials.2005,17(5):1001-1006.
    [224]Wu X F,Bai H,Li C et al.Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature.Chemical Communications.2006,15:1655-1657.
    [225]Wang D,Song C.Controllable Synthesis of ZnO Nanorod and Prism Arrays in a Large Area.Journal of Physical Chemistry B.2005,109(26):12697-12700.
    [226]Chang Y C,Chen L J.ZnO Nanoneedles with Enhanced and Sharp Ultraviolet Cathodoluminescence Peak.Journal of Physical Chemistry C.2007,111(3):1268-1272.
    [227]Boukos N,Chandrinou C,Giannakopoulos K et al.Growth of ZnO nanorods by a simple chemical method.Applied Physics A.2007,88(1):35-39.
    [228]Zhang D H,Wang Q P,Xue Z Y.Photoluminescence of ZnO films excited with light of different wavelength.Applied Surface Science.2003,207(1-4):20-25.
    [229]Damen T C,Porto S P S,Tell B.Raman Effect in Zinc Oxide.Physical Review.1966,142(2):570-574.
    [230]Chen S J,Liu Y C,Shao C L et al.Structural and Optical Properties of Uniform ZnO Nanosheets.Advanced Materials.2005,17(5):586-590.
    [231]Jang E S,Won J H,HWang S J et al.Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity.Advanced Materials.2006,18(24):3309-3312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700