用户名: 密码: 验证码:
SIEA26-28 ku-scFv抗日本血吸虫病治疗性疫苗的免疫靶向作用及其效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     日本血吸虫病(Schistosomiasis japonica)是一种危害严重的人兽共患寄生虫病,它严重危害了疫区群众身体健康并影响了社会经济的发展。迄今为止,我国开展了半个多世纪的血吸虫病防治工作,并取得了举世瞩目的成绩。但由于日本血吸虫病流行的影响因素复杂,目前仍然是我国湖南、湖北、江西、安徽、江苏湖区5省和山区2省主要公共卫生问题之一。近年来,采取的以控制传染源为主的综合防治策略,虽然在疫情控制地区已经显示出了较好的防治效果,但仍未脱离以传播生态学为原理的思维模式。防治实践表明,依据疾病传播生态学原理设计的综合防治措施固然有效,但效果难以持久巩固,容易受到自然生态环境及防治投入力度变化的挑战。鉴于疫苗在预防、控制许多传染病中已证明其巨大的作用,因此,研制抗血吸虫病疫苗,弥补常规药物化疗短期效果的不足,发挥疫苗接种诱导的长期免疫预防效果,通过二者的双重效益来实现对血吸虫病长期控制效果,是近20-30年来我国乃至世界各国有关科学家共同的奋斗目标之一,也正是WHO/TDR自上个世纪80年代以来在世界范围内为协调血吸虫病疫苗研制所做努力的初衷。
     成熟虫卵是血吸虫病致病的主要因素和传播的唯一因子。因此,本室血吸虫病疫苗的研究主要集中于抗雌虫生殖、抗卵抗病免疫方面。近十年来,本课题组的研究结果已经证明了未成熟虫卵可溶性抗原(Soluble immatured egg antigen, SIEA)免疫可诱导动物机体产生抗虫卵胚胎发育和抗雌虫生殖产卵的效果,SIEA诱导产生的体液免疫应答,在抗血吸虫病保护性免疫中起着重要作用。抗SIEA免疫血清能够与虫卵内胚胎结合,抑制和干扰虫卵胚胎的发育;还能与雌虫卵黄腺及肠腔内膜组织结合,降低雌虫的生殖产卵功能。进一步的研究发现SIEA中26-28 ku分子抗原是诱导抗病保护性体液免疫应答中的主要效应分子之一。课题组前期应用噬菌体展示技术成功构建了日本血吸虫未成熟卵单链抗体库,获得了针对SIEA26-28 ku的特异性单链抗体(single chain antibody, scFv),为日本血吸虫治疗性疫苗的研制打下了基础。
     研究目的
     大量表达SIEA26-28 ku-scFv和EGFP-scFv,通过柱层析法纯化蛋白,研究其抗体特异性以及靶向免疫作用效果;并将SIEA26-28 ku-scFv与DNA双价疫苗及其对应的蛋白疫苗联合使用,观察其抗病免疫的保护效果及其免疫效应机制。
     研究方法
     1、大量表达并纯化SIEA26-28 ku-scFv和EGFP-scFv,并测定其抗体特异性。
     大量培养带有pET32a/SIEA26-28 ku-scFv质粒和pET32a/EGFP-scFv的BL21(DE3)大肠杆菌,IPTG诱导SIEA26-28 ku-scFv和EGFP-scFv表达。用两步纯化法纯化目的蛋白。将纯化蛋白进行SDS-PAGE(或HPLC)纯度检测、Western blot鉴定、蛋白浓度测定,采用非竞争酶免疫法测定纯化后单链抗体的亲和常数。
     2、特异性SIEA26-28 ku单链抗体的靶向定位
     应用酶免疫组织化学法、间接免疫荧光法,观测特异性SIEA26-28ku单链抗体针对血吸虫雌虫及虫卵抗原的靶向定位情况。
     3、特异性SIEA26-28 ku单链抗体作为治疗性抗体及与疫苗联合免疫小鼠保护性效果的观察。
     4、特异性SIEA26-28 ku单链抗体作为治疗性疫苗联合免疫牲猪的抗病效果及其效应机制的研究。
     研究结果
     1、以pET32a质粒作为载体,构建了可溶性表达SIEA26-28 ku-scFv的工程菌株,通过Ni2+螯合亲和层析法再结合DEAE阴离子交换层析,两步纯化即可得到纯度达到98.2%的单链抗体,通过Western blot和ELISA检测证明单链抗体与日本血吸虫SIEA抗原具有高度特异性。
     2、SIEA26-28 ku-scFv与血吸虫未成熟虫卵、成熟虫卵及雌虫生殖系统特异性结合,结合部位主要在虫卵卵胚、雌虫卵黄腺、卵巢、子宫内卵及与生殖系统邻近的肠壁内膜。与正常人肝组织蛋白、正常鼠肝组织蛋白无交叉反应。
     3、SIEA26-28 ku-scFv治疗性抗体对昆明小鼠免疫保护效果:该单链抗体与DNA疫苗联用时可显著提高小鼠抗血吸虫病的免疫保护性作用,小鼠血清滴度达到1:6400,减虫率达61.4%、肝减卵率为51.2%、肠减卵率为56.6%、每雌子宫虫卵数降低54.2%,所有数值均较其它单一疫苗组高,而且肝脏血吸虫虫卵肉芽肿直径和面积均较其它单一疫苗组低。
     4、SIEA26-28 ku-scFv与疫苗联合应用时可明显升高猪外周血和脾细胞CD4+T细胞数和CD4+/CD8+比值,促进机体IFN-γ表达,对IL-4表达影响不明显。实验中发现,该单链抗体的单一使用虽可对感染后的猪起到一定的抗病效果,但其效果不及联合免疫组。
     结论
     1、成功构建了可溶性表达SIEA26-28 ku-scFv的工程菌株,并纯化目的蛋白。纯化后蛋白纯度高达98.2%。
     2、SIEA26-28 ku-scFv与血吸虫未成熟卵具有高度靶向特异性,与血吸虫结合部位主要在虫卵卵胚、雌虫卵黄腺、卵巢、子宫内卵及与生殖系统邻近的肠壁内膜。
     3、小鼠和猪实验表明,SIEA26-28 ku-scFv与疫苗联用可明显提高单一分子疫苗的免疫保护效果。其作用机制可能是通过其特异性的靶向作用而产生抗病效果。
     4、SIEA26-28 ku-scFv可明显升高猪血和脾细胞CD4+T细胞数和CD4+/CD8+比值,促进机体IFN-γ表达,对IL-4表达影响不明显,促进机体主要产生以Th1型优势为主的免疫应答。
     5、SIEA26-28 ku-scFv具有明显的免疫靶向效果,将其靶向作用与疫苗联合应用,可显著提高血吸虫病疫苗的抗病免疫效果。同时,抗血吸虫病疫苗与AHFP药物的联用同样具显著的抗病效果。
Background
     Schistosomiasis japonicum remains to be a serious zoonosis and seriously endanger people's health and affect social and economic development of epidemic areas. Heretofore, though great achievments have obtained through the work of schistosomiasis prevention in the past 50 years, schistosomiasis japonicum remains a serious public health problem which is prevalent in Hunan, Hubei, Jiangxi, Anhui, Jiangsu 5 provinces around lake and 2 provinces at mountain areas in our country because its popular links and effect factors are complex. In the past several years, though the integrate control strategy that control source of infection primary which we adopted have shown a comparatively effect in the epidemic controlled areas, this strategy dose not relieve from the thought of Communication Ecology Theory. The practice shows that though the integrate control strategy designed by Communication Ecology Theory is effective, the control task is being challenged by the change of natural circumstance and decreased financial aid. The significant role of vaccines have been proved in the prevention and control of many infectious diseases. So it is one of the common goals of the scientists in both China and the world in recent 20-30 years to develop an effective anti-schistosomiasis vaccine in order to make up for short-term effects of conventional chemotherapy to achieve long-term control on schistosomiasis. It is the purpose of the WHO/TDR to coordinate the development of schistosomiasis vaccines.
     It is well known that mature egg of Schistosoma is the major causative agent to the development of schistosomiasis and is responsible for the transmission and prevalence of this disease. With years of efforts, our laboratory has proved that a strong anti-embryonation and anti-fecundity immunity in host can be induced after being immunized with soluble immature egg antigen (SIEA) of Schistosoma japonicum. Protective humoral immunity induced by SIEA is the main mechanism of the protective efficacy. SIEA immuno-serum can react with the vitellaria and the lining membrane tissue of the gut lumen of female worms as well as with the embryo of immature eggs, which inhibited the embryo development and the fecundity of female worms markedly. We also found in further studies that 26-28 ku components extracted from SIEA were the major antigens inducing the anti-schistosomiasis protective humoral immune response. During the former research, our team constructed SIEA single-chain Fv antibody library by phage display technic and obtained highly specific SIEA26-28 ku antibody. It provides the foundation for the therapeutic vaccine research for schistosomiasis.
     Objective
     SIEA26-28 ku-scFv and EGFP-scFv were constructed and highly expressed. The expressed proteins were purified by chromatography, to research its antibody specificity and immuno-target efficacy. Purified SIEA26-28 ku-scFv were also used together with DNA bivalent vaccine and its correspondence protein vaccines which constructed by our team, to observe the protective efficacy and to investigate the immune response mechanism preliminary.
     Methods
     1. Highly express and purify SIEA26-28 ku-scFv and EGFP-scFv, and evaluate the antibody's specificity.
     Large scale culture E.coli BL21 (DE3) which contained plasmid pET32a/SIEA26-28 ku-scFv or pET32a/EGFP-scFv was induced by IPTG. The target proteins which contained six histidine were purified by 2 steps. The purified protein was identified by SDS-PAGE, Western blot, and HPLC. Affinity constant of scFv was measured by Non-competitive enzyme immunoassay.
     2. Location of specific SIEA26-28 ku-scFv
     The enzyme immunohistochemistry and indirect immuno-fluorescence were used to observe the location of specific antigen of female adult worm and eggs of Schistosoma japonicum by SIEA26-28 ku-scFv.
     3. Research the immunity efficacy of specific SIEA26-28 ku-scFv as therapeutic antibody, and the efficacy of combined immunization with DNA vaccine and its corresponding protein vaccines which we had constructive before.
     4. Research the effect of anti-schistosomiasis and immunity mechanism of specific SIEA26-28 ku-scFv as therapeutic antibody combined immuning procines.
     Results
     1. Recombinant plasmid pET32a/SIEA26-28 ku-scFv was transfected into E.coli BL21(DE3). The fusion protein was purified by Ni2+ column affinity chromatography and DEAE Anion-exchange chromatography. The purity of scFv was 98.2% by two steps purification. Western blot and ELISA showed that scFv and SIEA had high degree of specificity.
     2. The specific scFv could combine with immature eggs, mature eggs and reproductive system of female adult worm of S.japonicum. It was mainly located on egg embryo, vitellaria of female adult worm, ovary, eggs in uterus and intima of gut wall near reproductive system and had no cross reactions with normal hepar tissue of human and mice.
     3. Specific SIEA26-28 ku-scFv as therapeutic antibody's immunity efficacy to Kunming mice is as follows. The group of scFv immunized Kunming mice with DNA vaccine and protein vaccines had a significant protective immunity. The serum titer was 1:6400, worm reduction rate was 61.4%, liver egg reduction was 51.2%, intestine egg reduction was 56.6%, and uterus egg reduction of per female worm was 54.2%. All value forms of this group were higher than other groups, while diameter and area of hepatic schistosomiasis granuloma were lower than other groups.
     4. CD4+ T cell counter and CD4+/CD8+ ratio were significantly higher in blood and spleens of procines which were immuned by scFv combined with DNA and protein vaccines. It also increased the expression of IFN-y, but had no obvious effect on IL-4. The group SIEA26-28 ku-scFv had a limited anti-schistosomiasis effect on procines and this effect was not as good as the group combined immunization.
     Conclusion
     1. SIEA26-28 ku-scFv engineering strain was successfully constructed. The purity of SIEA26-28 ku-scFv reached 98.2%.
     2. SIEA and SIEA26-28 ku-scFv have high degree of specificity. SIEA26-28ku-scFv mainly located on egg embryo, vitellaria of female adult worm, ovary, eggs in uterus and intima of gut wall near reproductive system.
     3. SIEA26-28 ku-scFv combined with DNA vaccine and protein vaccines to immunize Kunming mice and procines had a significant protective immunity. Its anti-schistosomiasis effect might be related to its specificity of immuno-target.
     4. CD4+T cell counter and CD4+/CD8+ratio were significantly higher in blood and spleens of procines. It could also increase the expression of IFN-y, but had little effect on IL-4. It mainly stimulated Th1 type immunity.
     5. SIEA26-28 ku-scFv has significant immuno-target effect. The effect of anti-schistosomiasis can be increased by combining immuno-target effect with vaccines. Meanwhile, AHFP drug combined immuning with vaccines has the similar effect.
引文
[1]朱晓华,石佑恩.血吸虫病全球流行病学状况及其控制的新进展.国外医学寄生虫病分册,2004,31(3):116-119
    [2]Chitsulo L, Loverde R, Engels D, et al. Schistosomiasis. Nature reviews microbiology,2004,2(1):12-13
    [3]Engels D, Chitsulo L, Montresor A, et al. The global epidemiological situation of schistosomiasis and new approaches to control and research. Acta Tropica, 2002,82(2):139-146
    [4]Chitsulo L, Engels D, Montresor A, etal. The global status of schistosomiasis and its control. Acta Tropica,2000,77:44-51
    [5]Michaud CM, Murray CJL, Bloom BR. Burden of disease Implications for future research. Jama-journal of the American Medical Association,2001, 285(5):535-539
    [6]WHO Expert Committee. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Health Organ Tech Rep Ser,2002, 912:Ⅰ-ⅵ,1-57
    [7]King, C. H., K. Dickman, D. J. Tisch. Reassessment of the cost of chronic helmintic infection:a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet,2005,365:1561-1569
    [8]Brown, M., P. A. Mawa, S. Joseph, et al. Treamtent of Schistosoma mansoni infection increases helminth-specific type 2 cytokine responses and HIV-1 loads in coinfected Ugandan adults. J. Infect. Dis,2005,191:1648-1657
    [9]Brown, M., G. Miiro, P. Nkurunziza, et al. Schistosoma mansoni, nematode infections, and progression to active tuberculosis among HIV-1-infected Ugandans. Am. J. Trop. Med. Hyg,2006,74:819-825
    [10]Kallestrup, P., R. Zinyama, E. Gomo, et al.Schistosomiasis and HIV-1 infection in rural Zimbabwe:implications of coinfection for excertion of eggs. J. Infect. Dis,2005,191:1311-1320
    [11]Kallestrup P., R. Zinyama, E.Gomo, et al. Schostosomiasis and HIV in rural Zimbabwe:efficacy of treatment of schistosomiasis in individuals with HIV COINFECTION. Clin. Infect. Dis,2006,42:1781-1789
    [12]Kjetlad E.F., P.D.Ndhlovu, E.GOMO, et al. Association between genital schistosomiasis and HIV in rural Zimbabwean women. AIDS,2006,20:593-600
    [13]Elias D., H. Akuffo, S. Britton. Helminths could influence the outcome of vaccines against TB in the tropics. Parasite Immunal,2006,28:507-513
    [14]Elias D., H. Akuffo, A. Pawlowski, et al. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine,2005,23:1326-1334
    [15]Elias D., H. Akuffo, C. Thors, et al. Low dose chronic Schistosoma mansoni infection increases susceptibility to Mycobacterium bovis BCG infection in mice. Clin. Exp. Immunol,2005,139:398-404
    [16]Booth M., B. J. Vennervald, A. E. Butterworth, et al. Exposure to malaria affects the regression of hepatosplenomegaly after treatment for Schistosoma mansoni infection in Kenyan children. BMC Med,2004,2:36
    [17]Briand V., L. Watier, L.E. Hesran, et al. Coinfection with Plasmodium falciparum and Schistosoma haematobium:protective effect of schistosomiasis on malaria in Senegalese children? Am. J. Trop. Med. Hyg,2005,72:702-707
    [18]Zhou YB, Zhao GM, Jiang QW. Effects of the praziquantel-based control of schistosomiasis japonica in China. Ann. Trop. Med. Parasitol,2007, 101(8):695-703
    [19]Wang T, Zhang S, Wu W, et al. Treatment and reinfection of water buffaloes and cattle infected with Schistosoma japonicum in Yangtze River Valley, Anhui province, China. J Parasotol,2006,92(5):1088-1091
    [20]Wu ZD, Lv ZY, Yu XB. Development of a vaccine against Schistosoma japonicum in China[R]. Acta Trop,2005,96(2-3):106-116
    [21]江艳,蒋作君.血吸虫药物研究概况.中国血吸虫病防治杂志,2001,13(1):59-60
    [22]UNDP/World Bank/WHO/TDR. Meeting on strategies for the development of a schistosomiasis vaccine. TDR/SCH/VAC-DEV,1991,3:1-11
    [23]汪世平,赵慰先,易新元,等.日本血吸虫未成熟虫卵可溶性抗原诱导抗卵免疫初步研究.湖南医科大学学报,1995,20(3):193-196
    [24]汪世平,赵慰先,周汩波,等.日本血吸虫卵的体外培养与抗卵胚发育研究.中华医学杂志,1996,76(3):218-221
    [25]汪世平,赵慰先,易新元,等.日本血吸虫未成熟卵可溶性抗原的初步分析.中国人兽共患病杂志,1995,11(4):35-37,封底
    [26]汪世平,周汩波,张顺科,等.日本血吸虫未成熟虫卵对小鼠肝肉芽肿形成 的免疫学影响.中华医学杂志,1997,77(10):768-770
    [27]汪世平,周汩波,沈国励:等.日本血吸虫未成熟虫卵26/28kDa抗原诱导抗雌虫生殖和抗卵胚发育免疫的研究.中国寄生虫学与寄生虫病杂志,1997,15(2):79-83
    [28]汪世平,周汩波,曾宪芳,等.抗日本血吸虫生殖及卵胚发育免疫的研究.中国血吸虫病防治杂志,1998,10(疫苗研究专辑):7-12
    [29]汪世平,周汩波,曾庆仁,等.抗日本血吸虫未成熟虫卵部分纯化抗原免疫血清的制备及定位观察.中华传染病杂志,1997,15(3):155-156
    [30]何卓,汪世平,肖小芹,等.日本血吸虫未成熟卵单链抗体库的构建、筛选及初步应用.生物化学与生物物理进展,2008,35(8):921-928
    [31]Wool IG. Extraribosoma functions of ribosomal proteins. Trends Biochem Sci, 1996,21:164-165
    [32]Chen FW, Ioannou YA. Ribosomal protein in cell proliferation and apoptosis. Int Rev Immunol,1999,18:429-448
    [33]Naora H. Involvement of ribosomal protein in regulating cell growth and apoptosis:Translational modulation or recruitment for extra-ribosomal activity. Immunol Cell Biol,1999,77:197-205
    [34]汪世平,高冬梅,何卓,等.日本血吸虫核糖体蛋白SjRPS4、SjRPL7 DNA疫苗对小鼠免疫保护作用研究.中国人兽共患病学报,2010,26(2):97-100
    [35]李林.Sj31/32kD天然分子疫苗编码基因的鉴定及其特异性单链抗体的筛选:[硕士学位论文].长沙;中南大学,2008
    [36]Wang X, Jin H, Du X, et al. The protective efficacy against Schistosoma japonicum infection by immunization with DNA vaccine and levamisole as adjuvant in mice. Vaccine,2008,26(15):1832-1845
    [37]赵松,朱荫昌,D.A.Harn,等.免疫刺激序列增强日本血吸虫DNA疫苗的免疫保护作用.中国寄生虫学与寄生虫病杂志,2005,23(1):1-5
    [38]Mahmoud H Romeih, Hanem M Hassan, Tarek S Abou Shousha, et al. Immunization against Egyptian Schistosoma mansoni infection by multivalent DNA vaccine. Acta. Biochim Biophys Sin,2008,40(4):327-338
    [39]朱荫昌,任建功,司进,等.日本血吸虫SjCTPI和SjC23 DNA疫苗联合免疫保护作用的研究.中国血吸虫病防治杂志,2002,14(2):84-87.
    [40]戴洋,朱荫昌,王晓婷,等.日本血吸虫鸡尾酒式DNA疫苗与蛋白疫苗联合应用增强免疫保护作用的研究.中国血吸虫病防治杂志,2008,20(1):1-7
    [41]任建功,朱荫昌,D.A.Harn,等.日本血吸虫23kDa膜蛋白DNA疫苗和蛋白 质疫苗联合应用免疫保护性作用的研究.中国血吸虫病防治杂志,2002,14(2):98-101
    [42]Da'dara AA, Skelly PJ, Fatakdawala M, et al. Comparative efficacy of the Schistosoma mansoni nucleic acid vaccine, Sm23, following microseeding or gene gun delivey. Parasite Immunol,2002,24(4):179-187
    [43]石宁,董敏,阴彬,等.疟疾DNA疫苗免疫接种方法对小鼠体液免疫应答的影响.中华微生物学和免疫学杂志,2001,21(1):50-54
    [44]秦永华.抗日本血吸虫病天然分子靶基因pVAX1/SjRPS4·CB双价疫苗与联合免疫的研究:[硕士学位论文].长沙;中南大学,2008
    [45]Meseda CA, Elkins KL, Merchlinsky MJ, et al. Prime-boost immunization with DNA and modified vaccinia virus ankara vectors expressing herpes simplex virus-2 glycoprotein D elicits greater specific antibody and cytokine responses than DNA vaccine alone. J Infect Dis,2002,186:1065-1073
    [46]Vordermeier HM, Lowrie DB, Hewinson RG. Improved immunogenicity of DNA vaccination with mycobacterial HSP65 against bovine tuberculosis by .protein boosting. Veteriary Microbiology,2003,93:349-359
    [47]Anderson RJ, Hannan CM, Gilbert SC, et al. Enhanced CD8+ T cell immune responses and protection elicited against Plasmodium berghei malaria by prime boost immunization regimens using a novel attenuated fowlpox virus. J Immunol,2004,172(5):3094-3100
    [48]吴丹,王庆敏,陈蕊雯,等.猪囊尾蚴抗原cDNA疫苗和蛋白质疫苗联合诱导小鼠免疫应答.第二军医大学学报,2004,25(1):34-36
    [49]Lian Y, Srivastava I, Gomez-Roman VR, et al. Evaluation of envelope vaccines derived from the South African subtype C human immunodeficiency virus type 1 TV1 strain. J Virol,2005,79(21):13338-13349
    [50]Da' Dara AA, Skelly PJ, Walker CM, et al. A DNA-prime/protein-boost vaccination regimen enhances Th2 immune responses but not protection following Schistosoma mansoni infection. Parasite Immunol,2003, 25(8-9):429-437
    [51]Shalaby KA, Yin L, Thakur A, et al. Protection against Schistosoma mansoni utilizing DNA vaccination with genes encoding Cu/Zn cytosolic superoxide dismutase, signal peptide-containing superoxide dismutase and glutathione peroxidase enzymes. Vaccine,2003,22(1):130-136
    [52]张冉,易新元,曾宪芳,等.日本血吸虫Rho GTPase DNA及重组蛋白免疫 保护效果研究.南华大学学报医学版,2004,32(4):419-422
    [53]余光清,刘文琪,雷家慧,等.日本血吸虫Mr26000GST DNA疫苗和重组蛋白联合免疫的保护作用研究.中国寄生虫学与寄生虫病杂志,2006,24(1):51-55
    [54]萨姆布克J,拉塞尔WD,黄培堂,等译.分子克隆实验指南.第三版,北京:科学出版社,2002,8
    [55]郑大勇,罗荣城,韩焕兴.非竞争性ELISA法测定人源抗HBsAg Fab功能性亲和常数.解放军医学杂志,2004,29(2):1 10-119
    [56]Mitraki A, King J. Protein folding intermediated and inclusion body formation. Bio Technology,1989,7(7):690-697
    [57]Lilie H, Schwarz E, Rudolph R. Advances in refolding of protein.produced in E.coli. Curr Opin Biotechnol,1998,9(5):497-501
    [58]Guise AD, West SM, Chaudhuri JB. Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol Biotechnol,1996,6(1):53-64
    [59]Feldman DE, Frydman J. Protein folding in vivo:the importance of molecular chaperones. Curr Opin instruct Biol,2000,10(1):26-33
    [60]Rabhi-Essafi I, Sadok A, Khalaf N, et al. A strategy for high-level expression of soluble and functional human interferon alpha as a GST-fusion protein in E.coli.Protein Eng Des Sel,2007,20(5):201-209
    [61]Fang L, Jia KZ, Tang YL, et al. An improved strategy for high level production of TEV protease in Escherichia coli and its purification and characterization. Protein Expr Purif,2007,51(1):102-109
    [62]Zhou QF, Luo XG, Ye L, et al. High-level production of a novel antimicrobial peptide in Escherichia coli by fusion expression. Curr Microbiol,2007, 4(5):366-370
    [63]Dyson MR, Shadbolt SP, Vincent KJ, et al. Production of soluble mammalian proteins in Escherichia coli:identification of protein features that correlate with successful expression. BMC biotechnol,2004,14(4):32
    [64]Kapust RB, Waugh DS. Escherichia coli maltose-binding proteins is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci,1999,8(8):1668-1674
    [65]Hayhurst A. Improved expression characteristics of single-chain Fv fragments when fused downstream of the Escherichia coli maltose-binding protein or upstream of a single immunoglobulin-constant domain. Protein Expr Purif,2000, 18:1-10
    [66]Bach H, Maxor Y, Shaky S, et al. Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J Mol Biol,2001,312(1):79-93
    [67]康铁军,田茶,俞炜源.通过与MBP融合提高单链抗体在大肠杆菌中可溶性表达.中华医学研究杂志,2003,3(7):590-592
    [68]Guagliardi A, de Pascale D, Cannio R, et al. The purification, cloning, and high level expression of a glutaredoxin-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem,1995,270(11):5748-5755
    [69]Wang H, Tong Y, Fang M, et al. High-level expression of human TFF3 in Escherichia coli. Peptides,2005,26(7):1213-1218
    [70]Zhang Z, Li ZH, Wang F, et al. Overexpression of DsbC and DsbG markedly improve soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Protein Expr Purif,2002,26(2):218-228
    [71]Hoshino K, Eda A, Jurokawa Y, et al. Production of brain-derived neurotrophic factor in Escherichia coli by coexpression of Dsb proteins. Biosci Biotechnol Biochem,2002,66(2):344-350
    [72]Sletta H, Tondervik A, Hakvaq S, et al. The presence of N-terminal secretion sequences leads to strong stimulation of the total expression level of three tested medically important proteins during high-cell density cultivations of Escherichia coli. Appl Environ Microbiol,2007,73(3):906-912
    [73]赵君,孙志伟,刘彦仿,等.抗肝癌单链抗体与PE38融合蛋白在大肠杆菌中的可溶性表达.第四军医大学学报,2003,24(10):896-898
    [74]颜冰,朱恒奇,黄培堂.抗转铁蛋白受体单链抗体的可溶性表达及其对脑的靶向性研究.生物工程学报,2004,20(3):342-347
    [75]王臣,侯利华,张彦明,等.抗人整合素αυβ3单链抗体的构建和表达.细胞与分子免疫学杂志,2004,20(2):159-162
    [76]Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol,1986, 189(1):113-130
    [77]Grodberg J, Dunn JJ. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol,2001, 170(3):1245-1253
    [78]Whetstone PA, Butlin NG, Corneillie TM, et al. Element-coded affinity tags for peptides and.proteins. Bioconjug Chem,2004,15(1):3-6
    [79]Lee WC, Lee KH. Applications of affinity chromatography in proteomics. Anal Biochem,2004,324(1):1-10
    [80]Wu J, Filutowicz M. (His6)-tag dependent protein dimerization:a cautionary tale. Acta Biochim Pol,1999,46(3):591-599
    [81]Muller KM, Arndt KM, Bauer K, et al. Tandem immobilized metal-ion affinity chromatography/immunoaffinity purification of His-tagged proteins-evaluation of two anti-His-tag monoclonal antibodies. Anal Biochem,1998,259(1):54-61
    [82]Liu HL, Ho Y, Hsu CM. Molecular simulations to determine the chelating mechanisms of various metal ions to the His-tag motif:a preliminary study. J Biomol Struct Dyn,2003,21(1):31-41
    [83]Beatty JD, Baetty BG, Vlahos WG. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods,1987, 100(1-2):173-179
    [84]何卓,汪世平,徐绍锐,等.抗日本血吸虫生殖功能分子SIEA26-28kDa单链抗体与EGFP的融合表达及靶向性研究.中国人兽共患病学报,2008,24(8):704-707
    [85]Chalfie M, Tu Y Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science,1994,263:802-805
    [86]Stauber RH, Horie K, Carney P, et al. Development and applications of enhanced green fluorescent protein mutants. Biotechniques,1998, 24(3):462-466
    [87]Peipp M, Saul D, Barbin K, et al. Efficient eukaryotic expression of fluorescent scFv fusion proteins directed against CD antigens for FACS applications. J Immunol Methods,2004,285(2):265-280
    [88]Zhang Q, Bai G, Cheng J, et al. Use of an enhanced green fluorescence protein linked to a single chain fragment variable antibody to localize Bursaphelenchus xylophilus cellulose. Biosci Biotechnol Biochem,2007,71(6):1514-1520
    [89]Oelschlaeqer P, Srikant-Iver S, Lange S, et al. Fluorophor-linked immunosorbent assay:a time-and cost-saving method for the characterization of antibody fragments using a fusion protein of a single-chain antibody fragment and enhanced green fluorescent protein. Anal Biochem,2002, 309(1):27-34
    [90]秦玺,马航航,薛建红,等.肿瘤血管特异结合抗体scFvH1的靶向性和抑瘤 性.中国肿瘤生物治疗杂志,2007,14(2):120-125
    [91]卢志贤,陈江,程华莉,等.去唾液酸糖蛋白受体单链抗体与绿色荧光蛋白的融合表达及靶向性观察.南京医科大学学报(自然科学版),2006,26(12):1192-1195
    [92]Wang S, Hazelrigg T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature,1994,369(6479): 400-403
    [93]Casey JL, Coley AM, Tilley LM, et al. Green fluorescent antibodies:novel in vitro tools. Protein Eng,2000,13(6):445-452
    [94]Zhong F, Wang SP, Li WK, et al. Studieson the cultivation of newly laid eggs of Schistosoma japonicum in vitro. Chinese Journal of Zoonoses,2004, 20(7):561-565
    [95]高冬梅,汪世平,余路新,等.日本血吸虫RPS4基因的克隆、表达、纯化及免疫诊断价值的初步研究.中华预防医学杂志,2010,44(6):1-5
    [96]Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science,1993, 259:1745-1749
    [97]He YK, Song GC, Liu SX, et al. A study on the recombinant 26 kDa glutathione-S-transferase as a vaccine candidate dynamics of antibodies in immunized buffaloes and protection against schistosoma japonicum infections. Chin J Parasitol Parasit Dis,2001,19(5):265-267 in Chinese
    [98]He YK, Liu SX, Yu XL, et al. Preliminary observation on specific antibody level and reduction of ovulation induced by recominant schistosoma japonicum 26 kDa GST antigen in water buffaloes. Chin J Parasitol Parasit Dis,2002, 20(3):133-135 in Chinese
    [99]Cao JP, Liu SX, Song GC, et al. Cloning of cDNA encoding schistosoma japonicum tropomyosin and its expression in Escherichia coli. Chin Med J, 2002,115(10):1465-1469
    [100]Zhou JC, Yi XY, Zeng XF, et al. Study on protective immunity against schistosoma japonicum in buffaloes immunized with recombinant paramyosin. Chin J Parasit Dis Control,2000,13 (4):262-284 in Chinese
    [101]Cai XZ, Lin JJ, Fu ZQ, et al. The animal vaccinating experiment with recombinant schistosoma japonicum Chinese strain fattyacid binding protein J. Chin J Schisto Control,2000,12(4):198-201 in Chinese
    [102]赵巍,苏川,吴海玮,,等.日本血吸脂肪酸结合蛋白的重组抗原对小鼠免疫保护性的研究.中国人兽共患病杂志,2002,18(3):42-44
    [103]余俊龙,汪世平,何卓,等.日本血吸虫中国株次黄嘌呤鸟嘌呤磷酸核糖转移酶的克隆、表达及其免疫保护性研究.生物化学与生物物理进展,2006,33(7):665-672
    [104]Yang W, Waine GJ, McManus DP. Antibodies to Asian blood fluke paramyosin induced by nucleic acid vaccination J. Biochem Biophys Res Commu,1995, 212(3):1029
    [105]沈关心,周汝麟主编.现代免疫学实验技术.武汉:湖北科学技术出社.1998:288-326
    [106]张立煌,蔡为民.晚期血吸虫病患者外周血T细胞亚群及B细胞的初步研究.中国血吸虫病防治杂志,1991,1(3):154
    [107]李文桂,石佑恩.血吸虫重组BCG-Sj26GST疫苗诱导小鼠T淋巴细胞亚群变化的研究.中国人兽共患病杂志,2000,16(2):56-58
    [108]Gatlin MR, Black CL, Mwinzi PN, et al. Association of the gene polymorphisms IFN-gamma+874, IL-13-1055 and IL-4-590 with patterns of reinfection with Schistosoma mansoni. PLoS Negl Trop Dis,2009,3(2):e375
    [109]Jankovic D, Wynn TA, Kullberg MC, et al. Optimal vaccination against Schistosoma mansoni requires the induction of both B cell-and IFN-gamma-dependent effector mechanisms. J Immunol,1999,162(1):345-351
    [110]Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell,1994, 76(2):241-251
    [111]Grzych JM, Pearce E, Cheever A, et al. Egg deposition is the major stimulus for the production of Th2 cytokines in murine schistosomiasis mansoni. J Immunol, 1991,146(4):1322-1327
    [112]Pearce EJ, Caspar P, Grzych JM, et al. Downregulation of Thl cytokine production accompanies induction of Th2 response by a parasitic helminth, Schistosoma mansoni. J Exp Med,1991,173(1):159-166
    [113]Faveeuw C, Angeli V, Fontaine J, et al. Antigen presentation by CD1d contributes to the amplification of Th2 responses to Schistosoma mansoni glycoconjugates in mice. J Immunol,2002,169(2):906-912
    [114]Pearce EJ, M Kane C, Sun J, et al. Th2 response polarization during infection with the helminth parasite Schistosoma mansoni. Immunol Rev,2004, 201:117-126
    [115]Vella AT, Pearce EJ. CD4+ Th2 response induced by Schistosoma mansoni eggs develops rapidly, through an early, transient, Th0-like stage. J Immunol,1992, 148(7):2283-2290
    [116]Reynolds SR, Harn DA. Comparison of irradiated-cercaria schistosome vaccine models that use 15-and 50-kilorad doses:the 15-kilorad dose gives greater protection, smaller liver sizes, and higher gamma interferon levels after challenge. Infect Immun,1992,60(1):90-94
    [117]吕芳丽,石佑恩,李雍龙,等.紫外线减毒日本血吸虫尾蚴免疫小鼠的细胞免疫应答和细胞因子的动态变化.中国寄生虫学与寄生虫病杂志,1997,15(4):238-241
    [118]Ayash-Rashkovsky M, Weisman Z; Zlotnikov S, et al. Induction of antigen-specific Th1-biased immune responses by plasmid DNA in schistosoma-infected mice with a preexistent dominant Th2 immune profile. Biochem Biophys Res Commun,2001,282(5):1169-1176
    [1]Chitsulo L, Engels D, Montresor A, et al. The global status of schistosomiasis and its control[J]. Acta Trop,2007,77:41-51
    [2]石佑恩.血吸虫病免疫预防的研究和展望[J].中国公共卫生,2000,16(8):679-681
    [3]Zhou YB, Zhao GM, Jiang QW. Effects of the praziquantel-based control of schistosomiasis japonica in China[J]. Ann Trop Med Parasitol,2007, 101(8):695-703
    [4]Wang T, Zhang S, Wu W, et al. Treatment and reinfection of water buffaloes and cattle infected with Schistosoma japonicum in Yangtze River Valley, Anhui province, China[J]. J Parasotol,2006,92(5):1088-1091
    [5]Wu ZD, Lv ZY, Yu XB. Development of a vaccine against Schistosoma japonicum in China[R]. Acta Trop,2005,96(2-3):106-116
    [6]江艳,蒋作君.血吸虫药物研究概况[J].中国血吸虫病防治杂志,2001,13(1):59-60
    [7]林丹丹,吴晓华,姜庆五,等.我国血吸虫病防治的战略重点思考[J].中国血吸虫病防治杂志,2009,21(1):1-5
    [8]Bergquist N R. Controlling schistosomiasis by vaccine:a realistic option[J]. Parasitol. Today,1995,11:191-194
    [9]MacManus D P. The search for a vaccine against schistosomiasis:a difficult path but achievable goal[J]. Immunol. Rev,1999,171:147-161
    [10]McManus D P. Prospects for development of a transmission block ingvaccine against Schistosoma japonicum[J]. Parasite Immunol,2005,27:297-308
    [11]UNDP/World Bank/WHO/TDR. Meetings on Strategies for the Development of a Schistosomiasis Vacinne,1991,3:1-11
    [12]Harn DA, Gu W, Oligino L D, et al. A protective monocclonal antibody specifically recognizes and alters the catalytic activity of Schistosoma triosephosphate isomerase [J]. J. Immunol,1992, 148(2):562-567.
    [13]Sun W, Liu S, Brindley P J, et al. Bacterial expression and characterization of functional recombinant triose-phosphate isomerase from Schistosoma japonicum[J]. Prot. Expr. Purif,1999,17:410-413
    [14]朱荫昌,司进,D.A.Harn,等.日本血吸虫中国大陆株磷酸丙糖异构酶DNA疫苗对猪的保护性免疫作用研究[J].中国寄生虫病防治杂志,2001,13(5):260-262
    [15]McTigueM A, Williams D R, Tainer J A. Crystal structure of a schistosomal drug and vaccine target:glutathione-S-transferase from Schistosoma japonica and its comp lexwith the leading antischistosomal drug praziquantel[J]. J. Mol. Biol,1995,246:21-27
    [16]Balloul J M, Sondermeyer P, DreyerD, et al. Molecular cloning of a protective antigen of schistomes[J]. Nature,1987,326:149-153
    [17]Wu ZD, Liu ZY, Yu XB. Development of a vaccine against Schistosoma japonicam in China[R]. Acta Trop,2005,96:106-116
    [18]刘尚林,古锦泰,张仁利,等.日本血吸虫Calpain蛋白免疫原性研究[J].中国热带医学,2004,4(4):493-495
    [19]周爱琴,张仁利,石淑华,等.日本血吸虫Calpain的DNA疫苗诱导小鼠免疫保护性研究[J].中国热带医学杂志,2003,3(1):5-6
    [20]Gobert GN, Stenzel DJ., Jones MK, et al. Schistosoma japonicum: immunclocalization of paramyosin during development[J]. Parasitol,1997,114 (pt1):45-52
    [21]Laclette JP, Landa A, Arcos L, et al. Paramyosin is the Schistosoma mansoni (Trematode) homologice of antigen B from taeniasolium(Cestode)[J]. Mol.
    Biochem. Parasitol,1991,44:287-295
    [22]Hernandez MG, Hafalla JC, Acosta LP, et al. Paramyosin is a major target of the human IgA response against Schistosoma japonicum[J]. Parasite Immunol,1999, 21(12):641-647
    [23]Waine GJ, Yang W, Scott JC, et al. DNA-based vaccination using Schistosoma japonicum (Asian bl ood2 fluke) genes[J]. Vaccine,1997,15:846-848
    [24]Pearce EJ, James SL, Hieny S, et al. Induction of protcetive immunity against Schistosoma mansoni by vaccination with schistosoma paramyosin (Sm97), a nonsurface parasite antigen[J]. Proc. Natl. cad. Sci. USA,1988,85:5678-5682
    [25]McL lanus UP, Wong IY, Zhou J, et al. Recombinant paramyosin (rec-Sj-97) tested for immunogenicity and vaccine effieaey against Schistosoma japonicum in mice and water buffaloes[J]. Vaccine,2001,20(526):870-878
    [26]Li LZ, Shi YE, Jiang K, et al. Immune effect induced by S.japonicum DNA vaccine with different vectors in mice[J]. Huazhong Univ Sci Tech Health Sci, 2003,32(1):325-618
    [27]Wright MD, Melder AM, Davern KM, et al. Serologic activities of the 23kDa integral membrane proteins of schistosomes[J]. J. Immunol,1991,147: 4338-4342
    [28]任建功,朱荫昌,D.A.Harn,等.日本血吸虫23kDa膜蛋白DNA疫苗保护性免疫及IL-12免疫佐剂作用的研究[J].中国血吸虫防治杂志,2001,13(6):328-332
    [29]顿国栋,马铁军,王坤平,等.血吸虫疫苗候选分子的研究进展[J].寄生虫病与感染性疾病,2008,6(3):159-162
    [30]Veerkamp JH, Maatman RG. Cytoplasmic fatty acid-binding proteins:their structure and genes[J]. Prog Lipid Res,1995,34 (1):17-52
    [31]Varaldo PB, Leite LC, Dias WO, et al. Recombinant M yco-bacterium bovis BCG expressing the Sm 14 antigen of Schistosoa mansoni protects mice from cercarial challenge[J]. Infect mmun,2004,72 (6):3336-3343
    [32]Fonseca CT, Brito CF, Alves JB, et al. IL-12 enhances protective immunity in mice engendered by immunization with recombinant 14 kDa Schistosoma mansoni fatty acid-binding protein through an IFN-gamma and TNF-alpha dependent pathway [J]. Vaccine,2004,22 (3-4):503-510
    [33]王志成,徐元宏,罗飞.日本血吸虫信号蛋白14-3-3在虫卵的定位及其免疫诊断价值初探[J].检验医学,2007,22(2):128-131
    [34]李德发,祖莹,陈月生,等.日本血吸虫重组抗原rSj14-3-3免疫保护作用的研究[J].中国寄生虫病防治杂志,2004,17(2):106-109
    [35]刘庆中,沈继龙.日本血吸虫重组信号蛋白14-3-3 DNA免疫保护作用的观察[J].中国人兽共患病杂志,2004,20(3):230-232
    [36]Hernandez DC, Lim KC, McKerrow JH, et al. Schistosoma mansoni sex-specific modulation of parasite growth by host immune signals[J]. Exp Parasitol,2004,106 (1-2):59-61.
    [37]朱建国,林矫矫,冯新港,等.日本血吸虫编码抱雌沟蛋白保守区cDNA核酸疫苗的研究[J].中国人兽共患病杂志,2002,18(3):27-30
    [38]汪世平,周汨波,沈国励,等.日本血吸虫未成熟虫卵26/28kDa抗原诱导抗雌虫生殖和抗卵胚发育免疫的研究[J].中国寄生虫学与寄生虫病杂志,1997,15(2):79-83
    [39]Zhong F, Wang SP, Li WK, et al. Studies on the cultivation of newly laid eggs of Schistosoma japonicum in vitro[J]. Chin J Zoonoses,2004,20(7):561-565
    [40]Li WK, Wang SP, Lv ZY, et al. Anti-fecundity immunity induced by SIEA 26-28kDa antigens of Schistosoma japonicum:is HGPRT antigen a major target for the immunity? Chin J Zoonoses,2005,21(1):1-4
    [41]余俊龙,汪世平,何卓,等.日本血吸虫中国株次黄嘌呤鸟嘌呤磷酸核糖转移酶的克隆、表达及其免疫保护性研究[J].生物化学与生物物理进展,2006,33(7):665-672
    [42]YU JL, Wang SP, Li WK, et al. Cloning, expression and protective immunity evaluation of the full-length cDNA encoding succinate dehydrogenase iron-sulfur protein of schistosomiasis japonica[J]. Sci China Series C(life Sciences),2007,50(2):221-227
    [43]何卓,汪世平,肖小芹,等.日本血吸虫未成熟卵单链抗体库的构建、筛选及初步应用[J].生物化学与生物物理进展,2008,35(8):921-928
    [44]戴橄,汪世平,余俊龙,等.日本血吸虫单性感染雄虫和双性感染雄虫差异蛋白的筛选与鉴定[J].生物化学与生物物理进展,2007,34(3):283-291
    [45]K Chlichlia, M Bahgat, V Schirrmacher, et al. Species-restricted antibody response against a DNA-construct coding for aspartic proteinase from Schistosoma japonicum[J]. Parasitol Res,2002,88:368-375
    [46]田明礼,蔡春,易新元,等.日本血吸虫重组抗原rSjGST-32诱导小鼠保护性免疫效果的比较[J].中国寄生虫学与寄生虫病杂志,2003,21(1):24-26
    [47]Schirrmacher V, Foerg P, Dalemans W. (2002) Intra-pinna antitumor vaccination with self-replicating infectious RNA or with DNA encoding a model tumor antigen and a cytokine[J]. Gene Ther,2002,7:1137-1147
    [48]Yang W, Waine GJ, McManus DP, et al. Antibodies to Schistosoma japonicum (Asian Blood fluke) paramyosin induced by nucleic acid vaccination[J]. Biochem Biophys Res Commu,1995,212(3):1029
    [49]闻礼永,吴观陵.日本血吸虫候选疫苗研究现状与展望[J].中国寄生虫学与寄生虫病杂志,2007,25(5):422-425,429
    [50]彭先楚,汪世平,何卓等.日本血吸虫pcDNA3/SjCWL01核酸疫苗构建及其对小鼠免疫效果的观察[J].中国人畜共患病学报,2007,23(8):752-756
    [51]刘庆中,沈继龙.日本血吸虫重组信号蛋白14-3-3 DNA免疫保护作用的观察[J].中国人兽共患病杂志,2004,20(3):230-232
    [52]刘庆中,沈继龙.日本血吸虫重组信号蛋白14-3-3疫苗免疫保护性的观察[J].中国寄生虫学与寄生虫病杂志,2003,21(5):257-260
    [53]刘彦,肖建华.血吸虫核酸疫苗研究进展[J].寄生虫与医学昆虫学报,2003,10(2):123-127
    [54]王晓婷,朱荫昌,管晓虹,等.日本血吸虫多价DNA疫苗的构建及鉴定[J].中国血吸虫病防治杂志,2005,17(3):166-171
    [55]李建国,张阳德,李罗丝,等.日本血吸虫DNA多价疫苗SjGST-FABP/pcDNA3的构建及其保护性免疫研究[J].中国现代医学杂志,2007,17(14):1709-1712
    [56]Fonseca CT, Brito CF, Alves JB, et al. IL-12 enhances protective immunity in mice engendered by immunization with recombinant 14 ku Schistosoma mansoni fatty acid2binding protein through an IFN-gamma and TNF-alpha dependent path way [J]. Vaccine,2004,22 (3-4):503-510
    [57]余光清,刘文琪,雷家慧,等.日本血吸虫Mr26000谷胱甘肽S2转移酶(Sj26) DNA疫苗和重组蛋白(rSj26GST)疫苗联合免疫小鼠的保护作用研究[J].中国寄生虫学与寄生虫病杂志,2006,24(1):51-56
    [58]戴洋,朱荫昌,王晓婷,等.以日本血吸虫鸡尾酒式DNA疫苗与蛋白疫苗联合应用增强免疫保护作用的研究[J].中国血吸虫防治杂志,2008,20(1):1-6
    [59]李柳哲,石佑恩,宁长修,等.日本血吸虫混合DNA疫苗的免疫效果观察[J].中国血吸虫病防治杂志,2001,13(4):201-202
    [60]鲁燕妮,冯清,朱晓华,等.香菇多糖对日本血吸虫DNA疫苗pVIVO2-Sj14-Sj23的增效作用[J].复旦学报(医学版),2007,34(3):459-460
    [61]甘燕,姜昌富,石佑恩,等.多糖佐剂FQ2对日本血吸虫rBCG-S/26GST疫苗增效作用及其机理的初步探[J].中国人兽共患病杂志,2003,19(2):13-15
    [62]李光富,张兆松,朱鸿飞,等.CpG寡核苷酸的筛选及其对rSj28GST的免疫佐剂作用[J].中国血吸虫病防治杂志,2004,16(2):104-108
    [63]周建宁,程翔,邓荷萍.五种日本血吸虫疫苗佐剂的比较研究[J].中国人兽共患病杂志,1999,15(2):12-13
    [64]LeBuanec H, Vetu C, Lachgar A, et al. Induction in mice of anti-Tat mucosal immunity by the intranasal and oral routes[J]. Biomed Pharmacother,2001,55 (6):3162320
    [65]Gu X, Schmitt M, Hiasa A, et al.A novel hydrophobized polysaccharide/ oncoprotein complex vaccine induces in vitro and in vivo cellular and humoral immune responses against HER2-expressing murine sarcomas[J]. Cancer Res, 1998,58 (15):3385-3390
    [66]钟石根,冯振卿,仇镇宁,等.钙纳米颗粒作为血吸虫病抗独特型抗体疫苗佐剂的研究[J].中国血吸虫病防治杂志,2001,13(6):321-323
    [67]Dupre L, Kremer L, Wolowczuk I, et al. Immunostimulatory effect of IL-18-encoding plasmid in DNA vaccination against murine Schistosoma mansoni infection[J]. Vaccine,2001,19 (11212):1373-1380
    [68]钟石根,冯振卿,李玉华,等.重组IL-2、IL-6、TNF-a作为血吸虫病疫苗佐剂的研究[J].中国血吸虫病防治杂志,2002,14(3):168-172
    [69]Wynn TA, Reynolds A, James S, et al. IL-12 enhances vaccine-induced immunity to schistosomes by augmenting both humoral and cell-mediated immune response against the parasite[J]. J Immunol,1996,157(9):4068-4078

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700