用户名: 密码: 验证码:
膨润土负载纳米铁去除地下水中六价铬研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水与人类的生存息息相关,然而随着人民生活水平提高和城市化进程加快,我国地下水污染问题日益凸现。有机污染物及重金属高强度场地污染对人民健康、生态环境及社会安全构成了严重威胁。地下水中的重金属Cr(Ⅵ)污染逐渐受到重视,纳米零价铁可以有效地将六价铬还原成三价铬,使其沉淀固定下来。从而将污染源区的污染物消减固定,防止其向周围扩散。然而由于纳米铁颗粒微小,易被氧化,极易团聚,自身活性受到限制,因此,纳米铁的分散性、稳定性、良好活性研究至关重要。本文采用低成本环境友好型粘土矿物膨润土作为负载材料制备膨润土负载纳米铁(B-NZVI),同时进行样品表征,并通过B-NZVI与模拟地下水含Cr(Ⅵ)溶液反应的批实验,研究其活性;通过柱实验考察膨润土负载纳米铁的迁移性及Cr(Ⅵ)在含膨润土负载纳米铁石英砂柱中的穿透曲线,这为膨润土负载纳米铁去除Cr(Ⅵ)的实际场地应用设计提供了理论实验基础。获得的主要成果如下:
     (1)自制的膨润土负载纳米铁个体呈球形,呈分散状负载在膨润土上。比较钠基和钙基膨润土负载纳米铁、不同膨润土含量的B-NZVI及老化五天后的除铬活性研究得出:50%钠基B-NZVI的分散性和稳定性最佳。之后实验均采用50%钠基B-NZVI进行。
     (2)在相同的实验条件下,含铁量相同(1g/L)的B-NZVI、NZVI和1g/L膨润土去除20mg/LCr(VI)比较得出,相同铁含量的膨润土负载纳米铁处理Cr(Ⅵ)的效率远大于纳米铁。这是因为采用膨润土作为负载材料增加纳米铁与Cr(Ⅵ)之问的电子转移,从而明显提高了铁还原Cr(Ⅵ)的能力。
     (3)B-NZVI对Cr(Ⅵ)的还原去除基本符合伪一级反应动力学模型。通过比较不同初始浓度B-NZVI对Cr(Ⅵ)的还原反应动力学ln(C/C0)—t直线的斜率K可知,反应的表观速率常数K随着B-NZVI初始浓度的减小而减小。
     (4)膨润上负载纳米铁在石英砂柱中基本无迁移,说明B-NZVI适用于点源污染。Cr(Ⅵ)在含B-NZVI石英砂柱中的穿透曲线为膨润土负载纳米铁去除Cr(VI)的实际场地应用设计提供了理论基础。
Ground water is the most important water source for human's production and life. However, with the development of living standard and urbanization, ground water pollution is becoming serious. It is hazardous to human health, ecotope and social security with the heavy metal and organic field pollutants. The issues of Cr(Ⅵ) contaminated groundwater are paid more attention recently. As Cr(Ⅵ) has high toxicity and mobility in water compared to Cr(Ⅲ), it is very important to deposit chromium by reduction of Cr(Ⅵ) into Cr(Ⅲ) using nano iron. So the contaminants in source region are stabilized and induffused from all around. While the agglomeration and oxidation of nano iron is often unavoidable due to the very small particles, it is essential to study the disperse and stability of nano iron. In this paper, bentonite was used as a porous-based support material for synthesized nano iron and the produced materials was characted with transmission electron microscope. The reactivity of bentonite-supported nano iron(B-NZVI) was evaluated by the batch tests for Cr(Ⅵ) removal in water. Colume experiments for Cr(Ⅵ) removal in porous media by B-NZVI are conducted in this study. The mobility of B-NZVI and break through curve was observed. This study provided the base of theory and experiment to the application of bentonite-supported nano iron for Cr(Ⅵ) contaminated groundwater remediation. The results are as follows.
     (1)Bentonite-supported nano iron was synthesized using liquidphase reduction. The particles are well sphere scattering on the bentonite. Batch tests for Cr(Ⅵ) removal by different type, content and aging bentonite-supported nano iron conducted. The fifty percent iron concentration of Na B-NZVI is better than Ca B-NZVI.
     (2) The removal efficiency of B-NZVI is better than NZVI comparing the same iron content (1g/L) B-NZVI, NZVI and1g/L bentonite. The bentonite enhanced the electron transfer between iron and Cr(VI)。
     (3)Reduction kinetics of Cr(Ⅵ) by B-NZVI were described by a pseudo first-order reaction. Kinetics studies of Cr(Ⅵ) reduction using B-NZVI suggested that the reactivity of NZVI particles supported on bentonite were decreased significantly with the decrease of intial iron content.
     (4) Colume experiments showed that the B-NZVI was no migratory in the colume packed silicon dioxide. It is obtained that the breakthough curve of Cr(Ⅵ) in the colume.
引文
1.冯尚友.水资源持续利用与管理导论.北京:科学出版社.2000年
    2. Line H L. Nanoscale bimetallic particles for dehalogenation of halogenated aliphatic compounds. Ph.D Dissertation. Lehigh University.2000.
    3. Zhang W.X. Nanoscale iron particles for environmental remediation:On overview. Journal of Nanoparticle Research.2003.5(3-4):p.323-332.
    4. Masciangioli T, Zhang W.X. Environmental nanotechnology:Potential and pitfalls. Environmental Science and Technology.2003.37(5):p.102-108.
    5. Sherman M.P., John G. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials.2001.13(2):p.479-486.
    6. Choe S, Cao Y.Y., Hwang KY, et al. Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere.2000.41(8):p.1307-1314.
    7. Li L, Fan M. H, Brown R. C. et al. Synthesis, properties, and environmental applications of nanoscale iron-based materials:A review. Critical Reviews in Environmental Science and Technology.2006.36(5):p.405-431.
    8. Wang C.B. and Zhang W.X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology.1997.31(7):p.2154-2156.
    9. Zhang W.X. Nanoscale iron particles for environmental remediation:An overview. Journal of Nanoparticle Research.2003.5:p.323-332.
    10. Elliott D.W., Lien H.L, and Zhang W.X. Degradation of Lindane by Zero-Valent Iron Nanoparticles. Journal of Environmental Engineering-Asce. 2009.135(5):p.317-324.
    11. Kanel S.R., Manning B., Charlet. L.et al. Removal of arsenic(Ⅲ) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology.2005.39(5):p.1291-1298.
    12. Lien H.L, Zhang W.X. Nanoscale Pd/Fe bimetallic particles:Catalytic effects of palladium on hydrodechlorination. Applied Catalysis B-Environmental. 2007.77(1-2):p.110-116.
    13. Ponder S.M., Darab J.G., and Mallouk T.E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zero-valent iron. Environmental Science & Technology.2000.34(12):p.2564-2569.
    14. Su C.M. and Puls R.W. Nitrate reduction by zerovalent iron:Effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environmental Science & Technology.2004.38(9):p.2715-2720.
    15. Xiong Z., Zhao D.Y. and Pan G. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Research.2007.41(15):p.3497-3505.
    16. Elliott D.W, Zhang W.X. Field assessment of nanoscale biometallic particles for groundwater treatment. Environmental Science & Technology.2001. 35(24):p.4922-4926.
    17. Quinn J., Geiger C, Clausen C. et al. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology.2005.39(5):p.1309-1318.
    18. He F., Zhao D.Y., and Paul C, Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research.2010.44(7):p.2360-2370.
    19. Wei Y.T., Wu S. C., Chou C. M. et al. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation:A field case study. Water Research.2010.44(1):p.131-140.
    20. He F., Zhao D.Y., Application of novel stabilizers for enhanced mobility and reactivity of iron-based nanoparticles for in situ destruction of chlorinated hydrocarbons in soils[C].230th ACS National Meeting, Washington, USA 28 August-1 September 2005.
    21. Schrick B., Hydutsky B. W., Blough J. L. et al. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials.2004.16(11):p.2187-2193.
    22. Kim H.J, Phenrat T., Tilton R. D. et al., Fe(0) Nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface sodifiers. Environmental Science & Technology.2009.43(10):p.3824-3830.
    23. Saleh N, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology.2008.42(9):p.3349-3355.
    24. Tiraferri A., et al. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science.2008.324(1-2):p.71-79.
    25. Phenrat T., et al., Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes:adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research.2008.10(5):p.795-814.
    26. Saleh N., et al., Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science.2007. 24(1):p.45-57.
    27. 李海莹,王薇,金朝晖,纳米铁的制备及其对污染地下水的脱硝研究.南开大学学报(自然科学版)2006.39(1):p.8-13.
    28. 李铁龙,王丹,金朝晖,汕酸钠/Fe纳米粒子的制备及其脱氯性能研究.功能材料.2008.39(8):p.1385-1388.
    29. Chen S. S., Hsu H. D., and Li C.W., A new method to produce nanoscale iron for nitrate removal. Journal of Nanoparticle Research.2004.6(6):p.639-647.
    30. Susliek K., Fang M., and Hyeon T., Sonochemical synthesis of iron colloids. Journal of the American. Chemical Society.1996.118(47):p.11960-11961.
    31. He F., Zhao D.Y., Liu J., Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research.2007.46(1):p.29-34.
    32. He F., Preparation characterization and applications of polysaccharide-stabilized metal nanoparticles for remediation of chlorinated solvents in soils and groundwater. Ph.D Dissertation,2007. Department of Civil Engineering. Auburn University. Auburn AL.
    33. Xu Y., Zhao D.Y., Reductive immobilization of chromate in soils and groundwater by stabilized zero-valent iron nanoparticles. Water Research. 2007.41(10):p.2101-2108.
    34. Kanel SR., Greneche J.M., Choi H., Arsenic(V) removal kom groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology.2006.40:p.2045-2050.
    35. Xiong Z. and Zhao D.Y., Rapid and controlled transformation of nitrate in water and brine using stabilized iron nanoparticles. Journal of Nanoparticle Research.2008.36(5):p.405-431.
    36. Cao J.S., Elliott D.W., and Zhang WX, Perchlorate reduction by nanoscale iron particles. Journal of Nanoparticle Research.2005.7:p.499-506.
    37. Jazdanian AD., Kakuya K., Okinaka K. et al., Treatment of Trichloroethene with Reactive Nanoscale Iron Particles. The Annual International Conference on Contaminated Soils,2006. Sediments and water. Amherst,MA.
    38. Kuroda CS., Shimura T., Maeda M. et al. Ferrite route preparation of iron nanoparticles and their encapsulation in styrene-GMA Co-polymer for biomedical applications. IEEE Transactions on Magnetics.2006.42:p. 3569-3571.
    39. Li X.Q. and Zhang W.X., Iron nanoparticles:the core-shell structure and unique properties for Ni(II) sequestration. Langmuir.2006.22:p.4638-4382.
    40. He F. and Zhao D.Y., Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology.2005.39 p.3314-3320.
    41. Kretzschmar R., Sticher H., Transport of humic-coated iron oxide colloids in a sandy soil:influence of Ca2+ and trace metals. Environmental Science & Technology.1997.31:p.3497-3504.
    42. Lecoanet H.F., Wiesner M.R., Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environmental Science & Technology.2004.16:p.4377-4382.
    43. Cheng X.K., Kan A.T., Tomson M.B., Study of C-60 transport in porous media and the effect of sorbed C-60 on naphthalene transport. Journal of Materials Reasearch.2005.20:p.3244-3254.
    44. Guzman K.A.D., Finnegan M.P., Banfield J.F., Influence of surface potential on aggregation and transport of titania nanoparticles. Environmental Science & Technology.2006.40:p.7688-7693.
    45. 白少元,王明玉,零价纳米铁在水污染修复中的研究现状及讨论.净水技术.2008.27(1).p.35-40
    46. Ponder S. M., Darab J. G., Mallouk T. E., Remediation of Cr (Ⅵ) and Pb (Ⅱ) aqueoussolutions using supported, nanoscale zero-valent iron. Environmental Science & Technology.2000.34(12):p.2564-2569.
    47. 赵宗山,刘景富,邰超.离子交换树脂负载零价纳米铁快速降解水溶性偶氮染料.中国科学B辑:化学.2008.38(1):p.60-66.
    48. 胡六江,李益民,有机膨润土负载纳米铁去除废水中硝基苯.环境科学学报.2008.28(6):p.1107-1112.
    49. Hydutsky B.W., Mack E.J., Beckerman B.B. et al., Optimization of nano-and microiron transport through sand columns using polyelectrolyte mixtures. Environmental Science & Technology.2007.41:p.6418-6424.
    50. Zhang W X, Elliott DW, Applications of iron nanoparticles for groundwater remediation. Remediation Journal.2006.16(2):p.7-21.
    51. ITRC.2005 Interstate technology and regulatory council. Permeable reactive barriers:lessons learned/New directions. PRB-4,2009.
    52. EPA.2008c, U.S., Office of solid waste and emergency response. Nanotechnology for site remediation fact sheet. Report number:EPA 542-F-08-009,2009.
    53. Zhang W.X. Nanoscale iron particles for environmental remediation:An overview. Journal of Nanoparticle Research.2003.5(3-4):p.323-332.
    54. You Y, Han J, Chiu PC, Removal and inactivation of waterborne viruses using zerovalent iron. Environmental Science & Technology.2005.39:p.9263-9269.
    55. Phenrat T, Long TC, Lowry, G. V. et al., Partial oxidation (aging) and surface modification decrease the toxicity of nanosized zerovalent iron. Environmental Science & Technology.2009.43:p.195-200.
    56. He F., Zhao D.Y., Liu J.C. et al., Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research.2007.46 p.29-34.
    57. Phenrat T., Long TC, Lowry, G. V. et al., Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology.2007.41(1):p.284-290.
    58. Phenrat T., Kim H.J., Fagerlund F. et al., Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology. 2009.43:p.5079-5085.
    59. Saleh N., Sirk K., Liu YQ. et al., Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science.2007.24(1):p.45-57.
    60. Saleh N., Kim H.J., Phenrat T., et al., Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology.2008..42:p.3349-3355.
    61. Gavaskar A.,Tatar L, Condit WL, Cost and performance report nanoscale zero-valent iron technologies for source remediation. Naval Facilities Engineering Command(NAVFAC). Contract report:CR-05-007-ENV.2005.
    62. Chang M.C., Kang H.Y., Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering.2009.44(6):p.576-582.
    63. Li Z., Jones H. K., Bowman R.S., Enhanced reduction of chromate and PCE by palletized surfactant-modified zeolite/zero-valent iron. Environmental Science & Technology.1999.33(23):p.4326-4330.
    64. Zhang W.X., Lin Y., Chen ZX.,2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nano scale zero-valent iron. Journal of Hazardous materials.2009.165(1-3):p.923-927.
    65. 赵天涛,张丽杰,全学军,矿化垃圾固定床吸附过程和穿透曲线预测.环境科学学报.2008.28(8):p.1599-1 603.
    66. 沈金玉,汪秦宇,丛进阳,谷氨酸离子交换过程动态穿透曲线的分析.清华大学学报(自然科学版).1996.6:p.44-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700