用户名: 密码: 验证码:
功能磁性纳米粒子的合成和吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是一类新颖的功能材料,在生物分离、药物靶向输送、免疫检测及生物传感器等方面具有广阔的应用前景。磁性纳米材料的特性不同于常规的磁性材料,由于其粒径小,比表面积大,且具有优良的磁性能,因此受到许多研究者的青睐,但是相比其他的纳米材料更容易团聚或氧化,因而磁性纳米粒子的改性成为研究的切入点。表面改性是指用物理、化学方法对粒子表面进行处理,有目的地改变粒子表面的物理化学性质,如表面化学结构、表面疏水性、化学吸附和反应特性等。根据纳米Fe0和Fe304粒子表面的特点,通常在粒子表面包覆一层无机或有机物,主要是为了提高其抗氧化性、生物相容性及在使用溶剂中的分散性、稳定性等。此外,也可以根据使用要求,通过表面改性赋予Fe0、Fe3O4粒子表面不同的反应性功能基团(如—COOH、—NH2、—OH等),使其表面功能化而具有不同的使用功能。本论文的主要内容:
     首先采用微乳液法合成了粒径分布比较窄、分散性好零价纳米铁,再将γ-氨丙基三乙氧基硅烷通过溶胶凝胶法引入到零价纳米铁表面,通过红外光谱分析和透射电子显微镜分析确定了磁性纳米粒子粒径为20~30nm。考察其对Pb2+和酸性大红GR、活性艳红K-2BP的吸附性能和机理。(1)Pb2+的吸附性能和机理研究,实验考察了不同质量的纳米铁、吸附时间、温度和不同比例的γ-氨丙基三乙氧基硅烷改性零价纳米铁对水中铅离子的吸附性能,吸附的活化能为17.30kJ/mol,指前因子k0=18.75min-1。(2)对偶氮类染料酸性大红GR、活性艳红K-2BP的去除性能的研究,确定的最佳PH值4-5,吸附达到平衡时间为12h,浓度为100mg/L的酸性大红和活性艳红水溶液在最佳吸附条件下达到平衡时最大吸附量分别是121.06mg/g和191.5mg/g,且吸附动力学符合langmuir吸附动力学方程,吸附速率方程符合一次动力学方程。
     其次制备了三乙烯四胺修饰的具有核壳结构的功能化四氧化三铁纳米粒子,考察了其对Cd2+的吸附性能。实验首先采用溶剂热法合成了粒径均一,分散性良好的磁性纳米粒子,又采用溶胶凝胶法正硅酸乙酯水解制备了Fe3O4@SiO2,γ-缩水甘油醚氧丙基三甲氧基硅烷起桥联作用,进而将三乙烯四胺引入到四氧化三铁的表面。制备的结构如下表示:Fe3O4@SiO2@KH-560@TETA。产物进行了红外光谱分析,XRD,热重分析,透射电镜分析和磁性能分析,考察了吸附时间,吸附浓度,溶液的PH值等条件,得到如下结论:产物粒径集中分散在200-300nm,物相为尖晶石结构,核壳结构明显,包覆层的厚度大约在30-50nm,饱和磁化强度仍然为39.21emu/g。确定了对Cd2+最佳吸附PH值为6~7,最大吸附容量为657.9mg/g。实验吸附等温线能很好的符合Freundlich等温吸附模型,吸附动力学符合二次速率方程。
Magnetic nano-particles are a kind of novel functional materials, which exhibit extensive application prospect, such as bio-separation, targeted drug delivery, immunoassay and biological sensors and so on. magnetic properties of nano magnetic material is different from conventional magnetic materials, for its small particle size, large surface area and excellent magnetic properties, so it is favored by many researchers. However compared to other nano-materials, they are easier to aggregate with each other or oxidized, thus the modified magnetic nanoparticles are as the starting point of the magnetic nano-materials. Modification means changing the physical and chemistry properties of nano-particles by physical or chemical methods, including the surface chemistry properties, wettability, chemical adsorption and reaction characteristics. According to the surface properties of nano-particles, people usually adopt the method of coating organic or inorganic materials to improve the oxidation resistance, bio-compatibility and stability. The main content of this paper such as following:
     1.3-aminopropyltriethoxysilane functionalized nanoscale zero-valent iron for the removal of dyes from aqueous solution to adsorb dyes (acid brilliant scarlet GR and reactive brilliant red K-2BP) from aqueous solution. APS-NZVI has shown good adsorption performance at different concentrations of dyes. Under the adsorption conditions of pH 4.5, initial concentration was 100 mg/L, and time is 12h, the adsorption capacity of APS-NZVI for 121.06mg/g and 191.5mg/g, respectively. The results revealed that the adsorption behavior of the dyes on the nano-particles fitted well with the Langmuir model and the sorption kinetics fits well the pseudo-second-order rate equation model.
     2. In our work, we successfully prepared TETA-coated Fe3O4(?)SiO2 microspheres by using environmentally friendly KH-560 silane coupling agent as the connecting agents between Fe3O4(?) SiO2 spheres and TETA. The advantage of the material are as follows (1) the magnetic core can provide a convenient platform for the facile separation; (2) the silica shell can efficiently prevent the aggregation and chemical decomposition of Fe3O4 in harsh environment; (3) The KH-560 and TETA are without additional toxicity for the further application. (4) This material with excellent solubility are easily scattered, which makes adsorption process easier. (5) This material can be recycled. In this study, silica was selected to encapsulate the obtained magnetite microspheres, because the silica coating could not only effectively screen the magnetic dipolar attraction between magnetite microspheres, which favors the dispersion of magnetite microspheres in liquid media and protects them from leaching in an acidic environment, but also provides them with a silica-like surface, which allows further modification with various groups that are useful for practical applications.
引文
[1]. Dadash, M. S.; Karbasi, S.; Esfahani, M. N.; Ebrahimi, M. R.; Vali, H., Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO2-SiO2 nano composite coatings on stainless steel substrates. Journal of Materials Science-Materials in Medicine 2011,22 (4),829-838.
    [2]. Niu, X. S.; Li, S. J.; Chu, H. H.; Zhou, J. G, Preparation, characterization of Y3+-doped TiO2 nanoparticles and their photocatalytic activities for methyl orange degradation. Journal of Rare Earths 2011,29 (3),225-229.
    [3]. Okada, K.; Yoshizawa, A.; Kameshima, Y.; Isobe, T.; Nakajima, A.; Mackenzie, K. J. D., Adsorption and photocatalytic properties of TiO2/mesoporous silica composites from two silica sources (acid-leached kaolinite and Si-alkoxide). Journal of Porous Materials 2011,18 (3),345-354.
    [4]. Martin-Samos, L.; Bussi, G; Ruini. A.; Molinari, E.; Caldas, M. J., SiO2 in density functional theory and beyond. Physica Status Solidi B-Basic Solid State Physics 2011,248 (5), 1061-1066.
    [5]. Schmidt, P.; Frohlich, F, Temperature dependent crystallographic transformations in chalcedony, SiO2, assessed in mid infrared spectroscopy. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2011,78(5),1476-1481.
    [6]. Pathmamanoharan, C; Philipse, A. P., Preparation and Properties of Monodisperse Magnetic Cobalt Colloids Grafted with Polyisobutene. Journal of Colloid and Interface Science 1998,205 (2),340-353.
    [7]. Sun, Y. K.; Ma, M.; Zhang, Y; Gu, N., Synthesis of nanometer-size maghemite particles from magnetite. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2004, 245(1-3),15-19.
    [8]. Corr, S. A.; O Byrne, A.; Gun'ko, Y. K.; Ghosh, S.; Brougham, D. F.; Mitchell, S.; Volkov, Y.; Prina-Mello, A., Magnetic-fluorescent nanocomposites for biomedical multitasking. Chemical Communications 2006, (43),4474-4476.
    [9]. Corr, S. A.; Rakovich, Y. P.; Gun'ko, Y. K., Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Research Letters 2008,3 (3),87-104.
    [10]. Quarta, A.; Di Corato, R.; Manna, L.; Ragusa, A.; Pellegrino, T., Fluorescent-magnetic hybrid nanostructures:Preparation, properties, and applications in biology. Ieee Transactions on Nanobioscience 2007,6 (4),298-308.
    [11]. Xu, X.; Ji, F. Y.; Fan, Z. H.; He, L., Degradation of Glyphosate in Soil Photocatalyzed by Fe3O4/SiO2/TiO2 under Solar Light. International Journal of Environmental Research and Public Health 2011,8 (4),1258-1270.
    [12]. Koehler, F. M.; Rossier, M.; Waelle, M.; Athanassiou, E. K.; Limbach, L. K.; Grass, R. N.; Gunther, D.; Stark, W. J., Magnetic EDTA:coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. Chemical Communications 2009, (32),4862-4864.
    [13]. Melian-Cabrera, I.; Kapteijn, F.; Moulijn, J. A., One-pot catalyst preparation: combined detemplating and Fe ionexchange of BEA through Fenton's chemistry. Chemical Communications 2005, (16),2178-2180.
    [14]. Qiu, W.; Zheng, Y, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chem. Eng. J.2009,145 (3),483-488.
    [15]. Schatz, A.; Grass, R. N.; Stark, W. J.; Reiser, O., TEMPO Supported on Magnetic C/Co-Nanoparticles:A Highly Active and Recyclable Organocatalyst. Chem.-Eur. J.2008,14 (27),8262-8266.
    [16]. Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G; Marinas, B. J.; Mayes, A. M., Science and technology for water purification in the coming decades. Nature 2008,452 (7185),301-310.
    [1]. Zhang, M.; He, F.; Zhao, D. Y.; Hao, X. D., Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles:Effects of sorption, surfactants, and natural organic matter. Water Research 2011,45 (7),2401-2414.
    [2]. Zhang, X. L.; Deng, B. L.; Guo, J.; Wang, Y.; Lan, Y. Q., Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron. Journal of Environmental Management 2011,92 (4),1328-1333.
    [3]. Kanel, S. R.; Nepal, D.; Manning, B.; Choi, H., Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. Journal of Nanoparticle Research 2007,9(5),725-735.
    [4]. Li, S. L.; Yan, W. L.; Zhang, W. X., Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry 2009,11 (10),1618-1626.
    [5]. Lien, H. L.; Jhuo, Y. S.; Chen, L. H., Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles. Environmental Engineering Science 2007,24 (1),21-30.
    [6]. Meyer, D. E.; Wood, K.; Bachas, L. G; Bhattacharyya, D., Degradation of chlorinated organics by membrane-immobilized nanosized metals. Environmental Progress 2004,23 (3), 232-242.
    [7]. Naja, G.; Apiratikul, R.; Pavasant, P.; Volesky, B.; Hawari, J., Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles. Environmental Pollution 2009,157 (8-9),2405-2412.
    [8]. Schrick, B.; Blough, J. L.; Jones, A. D.; Mallouk, T. E., Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials 2002,14 (12),5140-5147.
    [9]. Wu, L.; Shamsuzzoha, M.; Ritchie, S. M. C., Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water. Journal of Nanoparticle Research 2005,7 (4-5),469-476.
    [10]. Fan, J.; Guo, Y. H.; Wang, J. J.; Fan, M. H., Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials 2009,166 (2-3),904-910.
    [11]. Narr, J.; Viraraghavan, T.; Jin, Y. C., Applications of nanotechnology in water/wastewater treatment:A review. Fresenius Environmental Bulletin 2007,16 (4), 320-329.
    [12]. Xiao, S. L.; Shen, M. W.; Guo, R.; Huang, Q. G.; Wang, S. Y.; Shi, X. Y, Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications. Journal of Materials Chemistry 2010,20 (27),5700-5708.
    [13]. Ai, Z. H.; Cheng, Y; Zhang, L. Z.; Qiu, J. R., Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires. Environmental Science & Technology 2008,42 (18),6955-6960.
    [14]. Liu, T. Y.; Zhao, L.; Tan, X.; Liu, S. J.; Li, J. J.; Qi, Y; Mao, G Z., Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe2O3 nanoparticles. Water Science and Technology 2010,61 (11),2759-2767.
    [15]. Shi, L. N.; Zhang, X.; Chen, Z. L., Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research 2011,45 (2),886-892.
    [16]. Singh, K. P.; Singh, A. K.; Gupta, S.; Sinha, S., Optimization of Cr(VI) reduction by zero-valent bimetallic nanoparticles using the response surface modeling approach. Desalination 2011,270 (1-3).275-284.
    [17]. Yuan, P.; Fan, M. D.; Yang, D.; He, H. P.; Liu, D.; Yuan, A. H.; Zhua, J. X.; Chen, T. H., Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium Cr(VI) from aqueous solutions. Journal of Hazardous Materials 2009,166 (2-3), 821-829.
    [18]. Yuan, P.; Liu, D.; Fan, M. D.; Yang, D.; Zhu, R. L.; Ge, F.; Zhu, J. X.; He, H. P., Removal of hexavalent chromium Cr(VI) from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Journal of Hazardous Materials 2010,173(1-3),614-621.
    [19]. Zhang, X.; Lin, S.; Lu, X. Q.; Chen, Z. L., Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chem. Eng. J.2010,163 (3), 243-248.
    [20]. Frost, R. L.; Xi, Y. F.; He, H. P., Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption. Journal of Colloid and Interface Science 2010,341 (1),153-161.
    [21]. Li, T. L.; Geng, B.; Zhang, N.; Jin, Z. H.; Qi, X. H., Hexavalent Chromium Removal from Water Using Chitosan-Fe-0 Nanoparticles. In 8th China International Nanoscience and Technology Symposium, Cong, H.; Yu, B.; Gao, M., Eds.2009; Vol.188.
    [22]. Shahwan, T.; Uzum, C; Eroglu, A. E.; Lieberwirth, I., Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions. Applied Clay Science 2010,47 (3-4),257-262.
    [23]. Fang, J.; Shan, X. Q.; Wen, B.; Lin, J. M.; Lu, X. C; Liu, X. D.; Owens, G., Sorption and desorption of phenanthrene onto iron, copper, and silicon dioxide nanoparticles. Langmuir 2008,24 (19),10929-10935.
    [24]. Harendra, S.; Vipulanandan, C., Fe/Ni Bimetallic Particles Transport in Columns Packed with Sandy Clay Soil. Industrial& Engineering Chemistry Research 2011,50 (1), 404-411.
    [25]. Wei, Y. T.; Wu, S. C; Chou, C. M.; Che, C. H.; Tsai, S. M.; Lien, H. L., Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation:A field case study. Water Research 2010,44 (1),131-140.
    [26]. Xi, Y. F.; Mallavarapu, M.; Naidu, R., Reduction and adsorption of Pb2+in aqueous solution by nano-zero-valent iron-A SEM, TEM and XPS study. Materials Research Bulletin 2010,45(10),1361-1367.
    [27]. Li, F.; Vipulanandan, C.; Mohanty, K. K., Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids and Surfaces a-Physicochemical and Engineering Aspects 1993,223 (1-3),103-112.
    [28]. Li, T. L.; Jin, Z. H.; Liu, H. S.; Wang, W.; Li, H. Y.; Han, L., Synthesis of iron nanoparticles by microemulsion with span/tween as mixed-surfactants for denitrification of nitrate in water. ChemicalJournal of Chinese Universities-Chinese 2006,27 (4),672-675.
    [29]. Joo, S. H.; Zhao, D., Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions:Effects of catalyst and stabilizer. Chemosphere 2008,70 (3),418-425.
    [30]. Satapanajaru, T.; Anurakpongsatorn, P.; Pengthamkeerati, P.; Boparai, H., Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air and Soil Pollution 2008,192 (1-4),349-359.
    [31]. Xiong, Z.; Zhao, D. Y.; Pan, G., Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Research 2007,41(15),3497-3505.
    [1]. Kadam, A. A.; Telke, A. A.; Jagtap, A. S.; Govindwar, S. P., Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp SUKl and Aspergillus ochraceus NCIM-1146 under solid state fermentation. Journal of Hazardous Materials 2011,189 (1-2), 486-494.
    [2]. Mahmoodi, N. M.; Salehi, R.; Arami, M., Binary system dye removal from colored textile wastewater using activated carbon:Kinetic and isotherm studies. Desalination 2011, 272(1-3),187-195.
    [3]. Park, H. O.; Oh, S.; Bade, R.; Shin, W. S., Application of Fungal Moving-Bed Biofilm Reactors (MBBRs) and Chemical Coagulation for Dyeing Wastewater Treatment. Ksce Journal of Civil Engineering 2011,15 (3),453-461.
    [4]. Arai, K.; Nakajima, K., Ribbon-like Variegation of Pinus radiata Using the Adsorption of Basic Dyes in the Capillary Penetration Process IV. Dying wood in parallel colored strips through the process of capillary penetration. Mokuzai Gakkaishi 2011,57 (1),34-41.
    [5]. Buvaneswari, N.; Kannan, C., Plant toxic and non-toxic nature of organic dyes through adsorption mechanism on cellulose surface. Journal of Hazardous Materials 2011,189 (1-2), 294-300.
    [6]. Mao, J.; Won, S. W.; Choi, S. B.; Lee, M. W.; Yun, Y. S., Surface modification of the Corynebacterium glutamicum biomass to increase carboxyl binding site for basic dye molecules. Biochemical Engineering Journal2009,46 (1),1-6.
    [7]. Sharma, G. D.; Suresh, P.; Roy, M. S.; Mikroyannidis, J. A., Effect of surface modification of TiO2 on the photovoltaic performance of the quasi solid state dye sensitized solar cells using a benzothiadiazole-based dye. Journal of Power Sources 2010,195 (9), 3011-3016.
    [8]. Yodyingyong, S.; Zhang, Q. F.; Park, K.; Dandeneau, C. S.; Zhou, X. Y.; Triampo, D.; Cao, G. Z., ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Applied Physics Letters 2010,96 (7).
    [9]. Bulut, Y.; Aydin, H., A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 2006,194 (1-3),259-267.
    [10]. Gupta, T.; van der Boom, M. E., Optical sensing of parts per million levels of water in organic solvents using redox-active osmium chromophore-based monolayers. Journal of the American Chemical Society2006,128 (26),8400-8401.
    [11]. Mohanty, K.; Naidu, J. T.; Meikap, B. C.; Biswas, M. N., Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Industrial & Engineering Chemistry Research 1997,45 (14),5165-5171.
    [12]. Schroeder, M.; Heumann, S.; Silva, C; Cavaco-Paulo, A.; Guebitz, G. M., Specificities of a chemically modified laccase from Trametes hirsuta on soluble and cellulose-bound substrates. Biotechnology Letters 2006,28 (10),741-747.
    [13]. Tahir, S. S.; Rauf, N., Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 2006,63 (11),1842-1848.
    [14]. Wang, Y.; Mu, Y.; Zhao, Q. B.; Yu, H. Q., Isotherms, kinetics and thermodynamics of dye biosorption by anaerobic sludge. Separation and Purification Technology 2006,50 (1), 1-7.
    [1]. Chen, F.; Shi, R. B.; Xue, Y.; Chen, L.; Wan, Q. H., Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA. Journal of Magnetism and Magnetic Materials 2010,322 (16),2439-2445.
    [2]. Chen, H. M.; Liu, S. S.; Yang, H. L.; Mao, Y.; Deng, C. H.; Zhang, X. M.; Yang, P. Y, Selective separation and enrichment of peptides for MS analysis using the microspheres composed of Fe3O4(?)nSiO(2) core and perpendicularly aligned mesoporous SiO2 shell. Proteomics 2010,10 (5),930-939.
    [3]. Iordache, P. Z.; Somoghi, V.; Savu, Ⅰ.; Petrea, N.; Mitru, G.; Petre, R.; Dionezie, B.; Ordeanu, V.; Kim, L.; Mutihac, L., The coating of n SiO1.5-(CH2)(3)(NH2) ultrathin layers on the surface of Fe3O4 nanoparticles and the analysis of their coating dynamics. Optoelectronics and Advanced Materials-Rapid Communications 2008,2 (8),491-497.
    [4]. Vogt, C. M.; Toprak, M.; Shi, J. W.; Torres, N. F.; Fadeel, B.; Laurent, S.; Bridot, J. L. Muller, R. N.; Muhammed, M., Optimised Synthetic Route for Tuneable Shell SiO2(?)Fe3O4 Core-Shell Nanoparticles. In Advances in Material Design for Regenerative Medicine, Drug Delivery and Targeting/Imaging, Shastri, V. P.; Lendlein, A.; Liu, L.; Mikos, A.; Mitragotri, S., Eds.2009; Vol.1140, pp 209-214.
    [5]. Chang, Q.; Zhu, L. H.; Jiang, G. D.; Tang, H. Q., Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme-immobilized magnetite/silica nanoparticles. Analytical and Bioanalytical Chemistry 1999,395 (7), 2377-2385.
    [6]. Chen, X. L.; Zhao, T. T.; Zou, J. L., A novel mimetic peroxidase catalyst by using magnetite-containing silica nanoparticles as carriers. Microchimica Acta 2009,164 (1-2), 93-99.
    [7]. Lei, Z. L.; Li, Y. L.; Wei, X. Y, A facile two-step modifying process for preparation of poly(SStNa)-grafted Fe3O4/SiO2particles. Journal of Solid State Chemistry 2008,181 (3), 480-486.
    [8]. Lei, Z. L.; Pang, X. L.; Li, N.; Lin, L.; Li, Y. L., A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres. Journal of Materials Processing Technology 2009,209 (7),3218-3225.
    [9]. Lei, Z. L.; Ren, N.; Li, Y. L.; Li, N.; Mu, B., Fe3O4/SiO2-g-PSStNa Polymer Nanocomposite Microspheres (PNCMs) from a Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) Approach for Pectinase Immobilization. Journal of Agricultural and Food Chemistry 2009,57 (4),1544-1549.
    [10]. Li, Z. Y.; He, L.; Shi, Z. Y.; Wang, H.; Li, S.; Liu, H. N.; Wang, Z. F.; He, N. Y., Preparation of SiO2/Polymethyl Methacrylate/Fe3O4 Nanoparticles and Its Application in Detecting E-coli O157:H7 Using Chemiluminescent Immunological Method. Journal of Biomedical Nanotechnology 2009,5 (5),505-510.
    [11]. Qiu, H.; Peng, H.; Liang, R., Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors. Electrochemistry Communications 2007,9 (11),2734-2738.
    [12]. Tang, L.; Zeng, G. M.; Liu, J. X.; Xu, X. M.; Zhang, Y.; Shen, G. L.; Li, Y P.; Liu, C., Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Analytical and Bioanalytical Chemistry 2008,391 (2),679-685.
    [13]. Chen, Y.; Chen, H. R.; Zhang, S. J.; Chen, F.; Zhang, L. X.; Zhang, J. M.; Zhu, M.; Wu, H. X.; Guo, L. M.; Feng, J. W.; Shi, J. L., Multifunctional Mesoporous Nanoellipsoids for Biological Bimodal Imaging and Magnetically Targeted Delivery of Anticancer Drugs. Advanced Functional Materials 1989,21 (2),270-278.
    [14]. Hai, H.; Le, H. P.; Le, K. V.; Bui, D. L.; Truong, T. K.; Nguyen, N. B.; Tran, N. L Nguyen, Q. H.; Le, H. A. K.; Nguyen, N. V. T., Immobilising of anti-HPV18 and E. coli O157:H7 antibodies on magnetic silica-coated Fe3O4 for early diagnosis of cervical cancer and diarrhoea. International Journal of Nanotechnology 2011,8 (3-5),383-398.
    [15]. He, J.; Chen, J. Y.; Wang, P.; Wang, P. N.; Guo, J.; Yang, W. L.; Wang, C. C.; Peng, Q., Poly(N-isopropylacrylamide)-coated thermo-responsive nanoparticles for controlled delivery of sulfonated Zn-phthalocyanine in Chinese hamster ovary cells in vitro and zebra fish in vivo. Nanotechnology 2007,18 (41).
    [16]. Wang, L. A.; Neoh, K. G.; Kang, E. T.; Shuter, B., Multifunctional polyglycerol-grafted Fe3O4(?)SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials 2011,32 (8),2166-2173.
    [17]. Wu, Y. C.; Chu, M. Q.; Shi, B. Z.; Li, Z. H., A Novel Magneto-fluorescent Nano-bioprobe for Cancer Cell Targeting, Imaging and Collection. Applied Biochemistry and Biotechnology 2011,163 (7),813-825.
    [18]. Xu, X.; Ji, F. Y.; Fan, Z. H.; He, L., Degradation of Glyphosate in Soil Photocatalyzed by Fe3O4/SiO2/TiO2 under Solar Light. International Journal of Environmental Research and Public Health 2011,8 (4),1258-1270.
    [19]. Yu, S. Y.; Fu, L. S.; Zhou, Y. J.; Su, H. Q., Novel bifunctional magnetic-near-infrared luminescent nanocomposites:near-infrared emission from Nd and Yb. Photochemical & Photobiological Sciences 1997,10 (4),548-553.
    [20]. Jiang, Y. J.; Li, X. T.; Gao, J.; Guo, X. C.; Guan, J.; Mu, X. D., One-pot synthesis of hybrid nanospheres with multistructure for selective adsorption of Hg2+. Journal of Nanoparticle Research 2007,13 (3),939-945.
    [21]. Zhang, X. L.; Niu, H. Y.; Li, W. H.; Shi, Y L.; Cai, Y Q., A core-shell magnetic mesoporous silica sorbent for organic targets with high extraction performance and anti-interference ability. Chemical Communications 2011,47 (15),4454-4456.
    [22]. Wang, J. H.; Zheng, S. R.; Shao, Y; Liu, J. L.; Xu, Z. Y; Zhu, D. Q., Amino-functionalized Fe3O4(?)SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. Journal of Colloid and Interface Science 2010,349 (1), 293-299.
    [23]. Li, X.; Huang, K.; Zhang, L. Y.; Xu, W. J., Synthesis and Adsorbability of Fe3O4(?)SiO2.2010; p 1949-1951.
    [24]. Shen, B.; Wang, Y A.; Wang, Z. F., Preparation and Characterization of the Oxime Carbapalladacycle complex grafted onto mesoporous SiO2(?)Fe3O4 nanocomposite for the Heck reaction. In Manufacturing Processes and Systems, Pts 1-2, Liu, X. H.; Jiang, Z. Y.; Han, J.T., Eds.2011; Vol.148-149, pp 1100-1107.
    [25]. Wang, L. Y.; Sun, Y.; Wang, J.; Wang, J. A.; Yu, A. M.; Zhang, H. Q.; Song, D. Q., Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles. Colloids and Surfaces B-Biointerfaces 2011, 84 (2),484-490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700