用户名: 密码: 验证码:
Somatostatin在非洲雏鸵鸟胃肠道和胸腺内的分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸵鸟从非洲引进到我国饲养,其生存的气候和环境等均发生了较大的变化,导致出现诸如免疫力下降、生产性能降低等现象。此外,鸵鸟育雏期长达3个月,在育雏期内,雏鸵鸟的生长发育较为缓慢,而且易发生胃肠道疾病。为了提高鸵鸟育雏期的免疫力,降低胃肠道疾病的发生,需要对鸵鸟胃肠道和免疫器官的形态发育与功能调控开展详细的基础研究。Somatostatin (SS)中文译名生长抑素,是Brazeau等人1973年从绵羊下丘脑提取物鉴定的一种神经肽。SS广泛产生于中枢神经和许多外周器官包括胃肠、胰腺、胸腺等器官。SS的功能复杂多样,参与神经功能、激素分泌、免疫反应、胸腺发育、胃肠分泌和运动的调节。目前,对SS在鸵鸟胃肠道和胸腺内的分布和增龄性变化未见研究报道。本研究以此为切入点,采用石蜡切片、免疫组织化学方法和分子生物学技术等综合技术手段,对SS在非洲雏鸵鸟胃肠道和胸腺内的分布定位和增龄性变化规律进行系统的研究,旨在为阐明SS对雏鸵鸟胃肠道和胸腺的功能调控,提供形态学依据,从而为鸵鸟的饲养管理和疾病防治提供理论指导,并为丰富SS在不同种类动物的分布资料、深刻理解SS神经肽功能的多样性和生物进化性提供科学依据。主要工作与研究结果如下:
     1非洲雏鸵鸟胃肠道内SS的分布表达
     采用免疫组化SABC法和RT-PCR法分别对90d非洲雏鸵鸟胃肠内SS免疫阳性细胞的分布、形态学特点和SS mRNA的表达进行观察和检测。免疫组化研究结果显示:雏鸵鸟腺胃、小肠内均见有SS阳性细胞的分布,而在肌胃、大肠内未观察到有SS阳性细胞的分布。在腺胃黏膜下层内的腺小叶内,可见有大量的SS阳性细胞分布。在小肠各段的黏膜层内可见有SS阳性细胞分布。在十二指肠内可观察到大量的阳性细胞分布,而在空肠和回肠内,仅有少量的阳性细胞稀疏分布。RT-PCR法研究结果显示:雏鸵鸟的腺胃、小肠和结肠内有SS mRNA表达,而肌胃、盲肠和直肠内未见SS mRNA表达。鸵鸟胃肠道内SS的分布与对其它动物的报道相似,但也存在差异,反映了SS在不同动物胃肠道的分布存在保守性和多样性。
     2SS免疫阳性细胞在非洲雏鸵鸟腺胃和小肠内发育性变化
     采用免疫组化SABC法和图像分析技术对1d、45d、90d非洲雏鸵鸟腺胃和小肠内SS免疫阳性细胞的分布进行半定量分析,并与1y鸵鸟比较。结果显示:与1d相比,雏鸵鸟腺胃内SS阳性细胞分布密度值45d时显著升高(P<0.05),于45d达到峰值,90d和1y时又开始逐渐降低;雏鸵鸟十二指肠内阳性SS细胞分布密度值1d时最低,45d和90d时显著升高(P<0.05),于90d达到峰值,1y时又开始降低;而雏鸵鸟空肠和回肠内SS细胞分布密度1d时最高,45d和90d时显著降低(P<0.05)。SS阳性细胞分布密度在育雏期阶段鸵鸟腺胃和小肠内呈现规律性变化,提示SS可能在育雏期鸵鸟胃肠道发育和功能方面,起到重要的调控作用。
     3非洲雏鸵鸟胸腺内SS的分布表达
     采用免疫组织化学SABC和RT-PCR法分别对90d的雏鸵鸟胸腺内SS免疫阳性细胞的分布、形态学特点和SSmRNA的表达进行观察和检测。免疫组化试验结果显示:在鸵鸟的胸腺内有少量的SS免疫阳性细胞存在。阳性细胞稀疏地分布在胸腺皮质和髓质区,大多分布在皮质髓质交界处,细胞大多呈圆形或椭圆形,有些细胞呈梭形或梨形细胞,并且伸出细长的突起。RT-PCR检测结果显示:雏鸵鸟的胸腺内有SS mRNA表达。这些结果表明SS可能通过自分泌和旁分泌的方式,参与调节鸵鸟胸腺细胞的发育。
     4SS在非洲雏鸵鸟胸腺内的发育性变化
     采用免疫组织化学SABC法和图像分析技术对1d、45d、90d的非洲雏鸵鸟胸腺内SS免疫阳性细胞的分布进行观察分析,并与1y鸵鸟比较。结果显示:雏鸵鸟胸腺内SS阳性细胞分布密度值1d时较低,45d时显著增加(P<0.05)。45d之后,鸵鸟胸腺内SS阳性细胞分布密度值虽有增加,但无显著性差异。这变化表明,SS可能在育雏期前期对鸵鸟胸腺细胞的发育起到重要的调控功能。
     5非洲鸵鸟SS cDNA克隆和分析
     根据GenBank中报道的鸡SS mRNA序列设计引物,以非洲鸵鸟腺胃总RNA为材料,采用RT-PCR法,扩增出非洲鸵鸟SS cDNA产物,将其克隆、鉴定及序列测定与分析。结果显示:从非洲鸵鸟腺胃中扩增出了SS基因,序列大小为348bp;用DNAMAN软件将非洲鸵鸟SS基因序列与从GeneBank上查到的其它动物的基因序列进行同源性分析,同源性在95.1%-72.2%之间。使用DNASTAR软件对非洲鸵鸟SS cDNA序列分析显示该核苷酸序列编码116个氨基酸残基的前体肽,将SS前体肽的氨基酸序列与小鼠、大鼠、鸡、斑胸草雀、猪、人、猕猴的相比,不同动物之间的SS前体肽序列主要在信号肽段存在差别。非洲鸵鸟成熟SS-14肽序列与其它动物完全相同,SS-28肽序列与鸡的完全相同,而与啮齿类和哺乳类相比,仅在N-端第9个位点存在一个氨基酸的差异。用DNASTAR软件构建SS分子进化树分析显示:在已经报道物种的SS基因序列中,非洲鸵鸟与鸡之间的亲缘关系是最密切。这些研究结果显示在生物进化上SS基因和蛋白质序列高度保守。
The climatic environment and food source hase changed after the ostrich has introduced in our country from abroad, which lead to declined immunity and decreased porfermance to the ostrich. Furthermore, the ostrich, the biggest and unflyable bird living in the world, has longer brood time. During the brood time, the growth anddevelopment of the ostrich is slow, whereas its gastrointestinal disease is serious. So, in order to improve the immunity and decrease gastrointestinal disease rate for ostrich, basic research on morphological development and functional regulation should be investigated in indetail for the ostrich. Somatostatin (SS), a neuropeptide with an inhibitory role on the release of growth hormone, was first isolated in ovine hypothalamic extracts by Brazeau ea al in1973. Studies have demonstrated that in addition to the hypothalamus, SS-immunoreactive (SS-IR) cells also are distributed across other brain regions and in many peripheral organs such as the gastrointestinal tract (GIT), the pancreas and the thymus. SS is involved in a variety of activities including the regulation of neuronal function, hormonal secretion, cardiovascular function, as well as the gastrointestinal function and immune response. The anatomical and histological structure of the GIT and the thymus of the ostrich chicks has been studied and described. However, there are no studies so far on distriubtion of SS in the GIT and the thymus of this bird. The aim of the present study was to investigate the distribution, expression and age-related chanes of SS in the GIT and the thymus of the African ostrich chicks, by immunohistochemistry and RT-PCR, for a better understanding of the physiological role of SS in the GIT tract and the thymus of the ostrich. Moreover, comparative study of distribution of SS in the different animals would help clarify its evolutionary complexity. The works and the results of this study are as follows:
     1The distribution and expression of SS in the GIT of the African ostrich chicks
     The distribution and morphological features of SS-IR cells and expression of SS mRNA were investigated in the GIT of the African ostrich chicks on day90by using immunohistochemical techniques and RT-PCR. Immunohistochemical results show that SST-IR cells were distributed in the proventriculus, duodenum, jejunum and ileum. However, no immunoreactivity was observed in the gizzard, cecum, colon and rectum. In the proventriculus, great numbers of the SS-IR cells were clustered in the base of glandular lobule. These cells had a small round or oval shape. In the small intestinal, SST-IR cells were present in the mucosal layer of whole small intestine of the ostrichs.The number of SST-IR cells were moderate in the duodenal portion but then became rare in the jejunal and ileal portions.SST-IR cells were present in the crypts and villi, which often had round and spherical shapes(closed-type cells). Spindle and pyriform shaped cells, with an apical cytoplasmic process, in contact with the lumen, were also found. The RT-PCR results confirmed the expression of SS mRNA in the proventriculus, duodenum, jejunum, ileum and colon, but no expression of that in the gizzard, cecum and rectum. There are both similarity and difference between our results on the distribution of SS-IR cells in the GIT of the ostrich and study on other animal, suggesting^the distribution of SS-IR cells in the GIT are both conservative and diverse.
     2The age-related changes of SS-IR cells in the proventriculur and small intestinal of the African ostrich chicks
     The development changes of the SS-IR cells in the proventriculur and the small intestinal were detected by immunohistochemical SABC and Image analysis in the African ostrich chicks aged on1day,45days, and90days, and compared with that in African ostrich chicks aged on1year. The results show:The distribution density of SS-IR cells increased significantly on day1, compared with that on day45(P<0.05) in the proventriculus, peaked on day45. However, it decreased significantly on day90, which show no significant difference between these birds aged day90and year1.The distribution density of SS-IR cells increased significantly on day1to day90(P<0.05) in the duodenum, and peaked on day90, which show no significant difference between these birds aged day90and year1. In contrast, it decreased gradually from day1to day90(P <0.05), which show no significant difference between this birds aged day90and year1. There are the regular changes of the SS-IR cells dencity in the proventriculus and small intestine of the ostrich during brood time. SS may be involved in the development and function of the GIT of the ostrich chicks.
     3The distribution and expression of SS in the thymus of the African ostrich chicks
     The distribution and morphological features of SS-IR cells and expression of SS mRNA were investigated in the GIT of the African ostrich chicks on day90by using immunohistochemical techniques and RT-PCR. Immunohistochemical results show that immunoreative cells were sparely distributed in both the cortical and medullary regions of the thymus, but mainly in the corticomedullary junction. The SS of these cells had a small round or oval shape Spindle and pyriform shaped cells with multicellular processes were also found. Furthermore, The RT-PCR results confirmed the expression of SS mRNA in the ostrich thymus. These findings suggest that SS may play a role in T-cell development via autocrine and paracrine pathways
     4The age-related changes of SS-IR cells in the thymus of the African ostrich chicks
     The development changes of the SS-IR cells in the thymus intestinal were detected by immunohistochemical SABC and Image analysis in the African ostrich chicks aged on1day,45days, and90days, and compared with that in African ostrich chicks aged on1year. The results show. The distribution density of SS-IR cells increased significantly on day1to day45(P<0.05); There was no significant difference after day45. These results suggest SS may play a role in T-cell development during brood time.
     5Molecular cloning and sequence analysis of cDNA encoding SS from African ostrich
     The cDNA encoding SS from African ostrich were firstly amplified from the total RNA of the proventriculur by RT-PCR. The cDNA were cloned, Identified, sequenced and analyzed. The results show as fellow:the nucleotide sequence was348bases. The identities between the sequence of ostrich with that of chicks, zebra finch, pig, dog, cattle, goat, human, Rhesus monkey, crab-eating macaque, mouse, rat, western clawed frog and Chinese sturgeon were among95.1%-72.2%. The translation of the nucleotide sequences into the amino acids was performed using the DNASTAR software. The deduced encoded protein was116amino acids residue protein precursors in length. Compared with the amino acid sequence of other species, the mature SS-14peptide sequence of the ostrich was idenctical with the homologue of other species. SS-28peptide sequence of the ostrich was identical with the homologue of the chicks and had only a residue discrepancy at the9th site of the N-terminal with the homologue of the rodents and the Mammali. The relationship between the African ostrich SS and chicks SS gene was close in the phylogenetic tree analysis by DNASTAR software. These fingings suggest the sequence of aminao acid and nucleotide of SS is highly-conserved in the evolution of life.
引文
1.陈慰峰.医学免疫学.北京:人民卫生出版社,2004,138-140
    2.程天明,袁爱力.生长抑素及其类似物的研究进展.国外医学:肿瘤学分册,1998,25:265-268
    3.龚燕妮.生长抑素研究进展综述.甘肃高师学报(自然科学版),1998,3:55-61
    4.侯衍猛,王树迎,尹逊河,黄丽波,冯华朋,刘冠华.生长抑素免疫阳性细胞在莱芜黑山羊消化系统的分布规律.畜牧兽医学报,2008,39:1107-1110
    5.方静.天府肉鸭中枢免疫器官胚胎及胚后发育期细胞凋亡及神经肽表达的研究.[博士学位论文].四川:四川农业大学图书馆,2009
    6.刘燕强,辛天蓉,任自立.生长抑素及受体.生理科学进展,2005,36:86-92
    7.江青东,王艳玲,王月影.生长抑素及其受体的研究进展.动物医学进展,2005,26:25-28
    8.靳涛.生长抑素在斑马鱼胰腺中的表达及敲降对其发育的影响.[硕士学位论文].重庆:西南大学图书馆,2012
    9.李丽霞,安书成.红腹锦鸡胃肠道内分泌细胞的免疫组织化学定位.动物学杂志,2009,44:24-32
    10.李沛,何敏,袁已方,杨杰,郭旅天.中国黄羽鹌鹑消化道生长抑素细胞的免疫组织化学研究.西北农林科技大学学报(自然科学版),2013,41:13-18
    11.李英,李玉谷,叶远兰,等.Ghrelin在BALB/c小鼠胸腺中的定位分布与发育性表达.畜牧兽医学报,2010,41:1024-1030
    12.李月,朱向蕾,杨桂红,等.Ghrelin及其受体在兔淋巴器官的分布及发育性变化.畜牧与兽医,2009,41:63-66
    13.潘秀芳,孙品伟,朱晓辉等.成年小鼠胸腺内神经肽免疫组织化学研究.北京医科大学学报,1998,30:407-409
    14.彭克美.动物组织学及胚胎学.北京:高等教育出版社,2009:146-279
    15.沈霞芬.家畜组织学与胚胎学.北京:中国农业出版社,2010:155-156
    16.王修启,谭会泽,苏海林,代发文,冯定远.鸡胃肠道生长抑素(SS) mRNA表达的组织特异性.农业生物技术学报,2006,12:170-173
    17.王月影,王艳玲,杨国宇,范光丽,江青东.泌乳晚期大鼠乳腺生长抑素免疫组织化学研究.解剖学报,2006,37:458-459
    18.魏凤梅,李玉谷,叶远兰.Ghrelin免疫反应阳性细胞在鸡外周器官中的定位分布与发育性变化.畜牧兽医学报,2010:341-346
    19.许春芳.生长抑素治疗消化系统疾病的进展.国外医学:内科学分册,1994,21:295
    20.杨倩,陈思怀,赵茹茜,陈杰.猪十二指肠中生长抑素阳性细胞和免疫细胞发育的研究.畜牧兽医学报,2004,35:60-63
    21.訾芙玮,李淑兰.家鸽消化道生长抑素免疫活性内分泌细胞的研究.中国农学通报,2010,26:23-26
    22. Alumets J, Sundler F, Hakanson R. Distribution, ontogeny and ultrastructure of somatostatin immunoreactive cells in the pancreas and gut. Cell Tissue Res,1977,185: 465-479
    23. Abdu F, Hicks GA, Gareth A, Hennig Q Allen JP, Grundy D. Somatostatin SST2 receptors inhibit peristalsis in the rat and mouse jejunum. Am J Physiol:Gastrointest Physiol,2002,282:624-633
    24. Aguila MC, Dees WL, Haensly WE, McCann SM. Evidence that somatostatin is localized and synthesized in lymphoid organs. Proc Natl Acad Sci U S A,1991,88: 11485-11489.
    25. Ban E, Gagnerault M C, Jammes H, et al. Specific binding sites for growth hormone in cultured mouse thymic epithelial cells. Life Sci,1991,48:2141-2148
    26. Barnett P. Somatostatin and somatostatin receptor physiology. Endocrine,2003,20: 255-264
    27. Barr IG, Khalid BA, Pearce P, Toh BH, Bartlett PF, Scollay RG, Funder JW. Dihydrotestosterone and estradiol deplete corticosensitive thymocytes lacking in receptors for these hormones. J Immunol,1982,128:2825-2828
    28. Bazzoni N, Ambrosi B, Arosio M, et al. Acromegaly and thymic hyperplasia:a case report. J Endocrinol Invest,1990,13:931-935
    29. Berczi I, Chalmers IM, Nagy E, Warrington RJ. The immune effects of neuropeptides.Baillieres Clin Rheumatol,1996,10:227-257
    30. Bjelakovic G, Stojanovic I, Jevtovic-Stoimenov T, et al. Thymus as a target tissue of glucocorticoid action:what are the consequences of glucocorticoids thymectomy? J Basic Clin Physiol Pharmacol,2009,20:99-125
    31. Blalock JE. Shared ligands and receptors as a molecular mechanism for communication between the immune and neuroendocrine systems. Ann N Y Acad Sci, 1994,741:292-298
    32. Blum AM, Metwali A, Mathew RC, et al. Granuloma T lymphocytes in murine schistosomiasis mansoni have somatostatin receptors and respond to somatostatin with decreased IFNg secretion. J Immunol,1992,149:3621-3626
    33. Boyd RL, Tucek CL, Godfrey DI, Izon DJ, Wilson TJ, Davidson NJ, Bean AG, Ladyman HM, Ritter MA, Hugo P. The thymic microenvironment. Immunol Today, 1993,14:445-459
    34. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of imrnunoreactive pituitary growth hormone. Science,1973,179:77-79
    35. Brewer JA, Sleckman BP, Swat W, et al. Green fluorescent protein-glucocorticoid receptor knockin mice reveal dynamic receptor modulation during thymocyte development[J]. J Immunol.2002,169(3):1309-1318
    36. Butts CL, Sternberg EM. Neuroendocrine factors alter host defense by modulating immune function. Cell Immunol,2008,252:7-15
    37. Capone M, Romagnoli P, Beermann F, MacDonald HR, van-Meerwijk JP. Dissociation of thymic positive and negative selection in transgenic mice expressing major histocompatibility complex class I molecules exclusively on thymic cortical epithelial cells. Blood,2001,97:1336-1342
    38. Cardoso A, el Ghamrawy C, Gautron JP, Horvat B, Gautier N, Enjalbert A, Krantic S. Somatostatin increases mitogen-induced IL-2 secretion and proliferation of human Jurkat T cells via sst3 receptor isotype. J Cell Biochem,1998,68:62-73
    39. Casnici C, Lattuada D, Perego C, Franco P, Marelli O. Inhibitory effect of somatostatin on human T lymphocytes proliferation. Int J Immunopharmacol,1997, 19:721-727.
    40. Castaldo L, Lucini C. Ontogenesis of some endocrine cells in the duck gastrointestinal tract. Eur J Histochem,1994,38:319-326
    41. Clark R. The somatogenic hormones and insulin-like growth factor-1:stimulators of lymphopoiesis and immune function. Endocr Rev,1997,18:157-179
    42. Corleto VD, Severi C, Romano G, Tattoli I, Weber HC, Stridsberg M, Rindi G, Campanini N, Tomassoni F, Pagotto U, Coy DH, Jensen RT, Delle Fave G. Somatostatin receptor subtypes mediate contractility on human colonic smooth muscle cells. Neurogastroenterol Motil,2006,18:217-225
    43. Corleto VD. Somatostatin and the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes,2010,17:63-68
    44. Elliott DE, Li J, Blum AM, Metwali A, Patel YC, Weinstock JV. SSTR2A is the dominant somatostatin receptor subtype expressed by infammatory cells, is widely expressed and directly regulates T cell IFN-g release. Eur J Immunol,1999,8:2454-2463
    45. DeMan JG, Shatterjee S, DeWinter BY, Vrolix G, VanMarck EA, Herman AG, Pelckmans PA. Effect of somatostatin on gastrointestinal motility in Schistosoma mansoni infected mice. Int J Parasitol,2002,32:1309-1320
    46. Dialynas E, Brown-Borg H, Bartke A. Immune function in transgenic mice overexpressing growth hormone (GH) releasing hormone, GH or GH antagonist. Proc Soc Exp Biol Med,1999,221:178-183
    47. Dixit VD, Yang H, Sun Y, et al. Ghrelin promotes thymopoiesis during aging. J Clin Invest,2007,117:2778-2790.
    48. Ferone D, van Hagen PM, Semino C, Dalm VA, Barreca A, Colao A, Lamberts SW, Minuto F, Hofiand LJ. Somatostatin receptor distribution and function in immune system. Dig Liver Dis,2004,36:S68-77
    49. Ferone D, van Hagen P M, van Koetsveld P M, et al. In vitro characterization of somatostatin receptors in the human thymus and effects of somatostatin and octreotide on cultured thymic epithelial cells. Endocrinology,1999,140:373-380
    50. Finley JCW, Maderdrut JL, Roger LJ, Petrusz P. The immunocytochemical localization of somatostatin-containing neurons in the rat central nervous system. Neurosci,1981,6:2173-2192
    51. Fuller PJ, Verity K. Somatostatin gene expression in the thymus gland. J Immunol, 1989,143:1015-1017
    52. Gagnerault MC, Postel-Vinay MC, Dardenne M. Expression of growth hormone receptors in murine lymphoid cells analyzed by flow cytofluorometry. Endocrinology, 1996,137:1719-1726
    53. Gahete MD, Cordoba-Chacon J, Duran-Prado M, Malagon MM, Martinez-Fuentes AJ, Gracia-Navarro F, Luque RM, Castano JP. Somatostatin and its receptors from fish to mammals. Ann N Y Acad Sci,2010,1200:43-52
    54. Gameiro J, Nagib P, Verinaud L. The thymus microenvironment in regulating thymocyte differentiation. Cell Adhes Migr,2010,4:382-390
    55. Geenen V, Achour I, Robert F, et al. Evidence that insulin-like growth factor 2 (IGF2) is the dominant thymic peptide of the insulin superfamily. Thymus,1993,21:115-127
    56. Goetzl EJ, Payan DG. Inhibition by somatostatin of the release of mediators from human basophils and rat leukemia basophils. J Immunol,1984,133:3255-3259
    57. Gray DH, Ueno T, Chidgey AP, Malin M, Goldberg GL, Takahama Y, Boyd RL. Controlling the thymic microenvironment. Curr Opin Immunol,2005,17:137-143
    58. Grossman CJ, Sholiton LJ, Nathan P. Rat thymic estrogen receptor--I. Preparation, location and physiochemical properties. J Steroid Biochem,1979,11:1233-1240
    59. Grider JR. Neurotransmitters mediating the intestinal peristaltic reflex in the mouse. J Pharmacol Exp Ther,2003,307:460-467
    60. Gulmez N, Nazli M, Aslan S, Liman N. Immunolocalisation of serotonin, gastrin, somatostatin and glucagon in entero-endocrine cells of the goose (Anser anser). Acta Vet Hung,2003,51:439-449
    61. Hamad M. The role of adenosine receptor engagement in murine fetal thymocyte development. APMIS,1999,107:896-902
    62. Hansson HA, Nilsson A, Isgaard J, et al. Immunohistochemical localization of insulin-like growth factor I in the adult rat. Histochemistry,1988,89:403-410
    63. Haynes BF. The human thymic microenvironment. Adv Immunol,1984,36:87-142
    64. Hellman B, Lernmark A. Inhibition of the in vitro secretion of insulin by an extract of pancreatic alpha-1 cells. Endocrinology,1969,84:1484-1488
    65. Heng TS, Goldberg GL, Gray DH, et al. Effects of castration on thymocyte development in two different models of thymic involution. J Immunol,2005,175: 2982-2993
    66. Hinton PS, Peterson CA, Dahly EM, et al. IGF-I alters lymphocyte survival and regeneration in thymus and spleen after dexamethasone treatment. Am J Physiol, 1998,274:912-920
    67. Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PP, O'Carroll AM, Patel YC, Schonbrunn A, Taylor JE. Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci,1995,16:86-88
    68. Hull KL, Thiagarajah A, Harvey S. Cellular localization of growth hormone receptors/binding proteins in immune tissues. Cell Tissue Res,1996,286:69-80
    69. Ishihara S, Hassan S, Kinoshita Y, Moriyama N, Fukuda R, Maekawa T, Okada A, Chiba T. Growth inhibitory effects of somatostatin on human leukemia cell lines mediated by somatostatin receptor subtype 1. Peptides,1999,20:313-318
    70. Johansson O, Hokfelt T, Elde RP. Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience, 1984,13:265-339
    71. Karalis K, Mastorakos G, Sano H, Wilder RL, Chrousos GP. Somatostatin may participate in the antiinflammatory actions of glucocorticoids. Endocrinology,1995, 136:4133-4138
    72. Kaupmann K, Bruns C, Raulf F, Weber HP, Mattes H, Lubbert H. Two amino acids, located in transmembrane domains VI and VII, determine the selectivity of the peptide agonist SMS 201-995 for the SSTR2 somatostatin receptor. EMBO J,1995, 14:727-735
    73. Kecha O, Brilot F, Martens H, et al. Involvement of Insulin-Like Growth Factors in Early T Cell Development:A Study Using Fetal Thymic Organ Cultures. Endocrinology,2000,141:1209-1217
    74. Kendall MD. Functional anatomy of the thymic microenvironment. J Anat,1991,177: 1-29
    75. Kimata H, Yoshida A, Fujimoto M, Mikawa H. Effect of vasoactiveintestinal peptide, somatostatin and substance P on spontaneous IgE and IgG4 production in atopic patients. J Immunol,1993,150:4630-4640
    76. King JA, Millar RP. Phylogenetic and anatomical distribution of somatostatin in vertebrates. Endocrinology,1979,105:1322-1329
    77. Kooijman R, Malur A, Van Buul-Offers S C. Growth hormone expression in murine bone marrow cells is independent of the pituitary transcription factor Pit-1. Endocrinology,1997,138:3949-3955
    78. Kooijman R, Scholtens L E, Rijkers G T. Type I insulin-like growth factor receptor expression in different developmental stages of human thymocytes. J Endocrinol, 1995,147:203-209
    79. Kruisbeek AM. Introduction:regulation of T cell development by the thymic microenvironment. Semin Immunol,1999,11:1-2
    80. Krulich L, Dhariwal AP, McCann SM. Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro. Endocrinology,1968,83:783-790
    81. Kruisbeek AM. Introduction:regulation of T cell development by the thymic microenvironment. Semin Immunol,1999,11:1-2
    82. Kumar U, Grant M. Somatostatin and somatostatin receptors. Results Probl Cell Differ,2010,50:137-84
    83. Ku SK, Lee HS, Lee JH. The regional distribution and relative frequency of gastrointestinal endocrine cells in the nude mice, Balb/c-nu/nu:an immunohistochemical study. Anat Histol Embryol,2006,35:104-110
    84. Ladi E, Yin X, Chtanova T, Robey EA. Thymic microenvironments for T cell differentiation and selection. Nat Immunol,2006,7:338-343
    85. Larsson LI, Golterman N, De Magistris L, Rehfeld JF, Schwartz TW. Somatostatin cell processes as pathways for paracrine secretion. Science,1979,205:1393-1395
    86. Lechner O, Dietrich H, Wiegers GJ, Vacchio M, Wick G. Glucocorticoid production in the chicken bursa and thymus. Int Immunol,2001,13:769-776
    87. Lechner O, Wiegers GJ, Oliveira-Dos-Santos AJ, Dietrich H, Recheis H, Waterman M, Boyd R, Wick G. Glucocorticoid production in the murine thymus. Eur J Immunol, 2000,30:337-346
    88. Levite M, Cahalon L, Hershkoviz R, Steinman L, Lider O. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin. J Immunol.1998,160: 993-1000
    89. Low MJ, Otero-Corchon V, Parlow AF, Ramirez JL, Kumar U, Patel YC, Rubinstein M. Somatostatin is required for masculinization of growth hormone-regulated hepatic gene expression but not of somatic growth. J Clin Invest,2001,107:1571-1580
    90. Maggiano N, Piantelli M, Ricci R, et al. Detection of growth hormone-producing cells in human thymus by immunohistochemistry and non-radioactive in situ hybridization. J Histochem Cytochem,1994,42:1349-1354
    91. Marinova TT, Kuerten S, Petrov DB, et al. Thymic epithelial cells of human patients affected by myasthenia gravis overexpress IGF-I immunoreactivity. APMIS,2008, 116:50-58
    92. Mascardo RN, Barton RW, Sherline P. Somatostatin has an antiproliferative effect on concanavalin A-activated rat thymocytes. Clin Immunol Immunopathol,1984,33: 131-138
    93. Mello-Coelho DV, Villa-Verde DM, Dardenne M, Savino W. Pituitary hormones modulate cell-cell interactions between thymocytes and thymic epithelial cells. J Neuroimmunol,1997,76:39-49
    94. Mertani HC, Morel G. In situ gene expression of growth hormone (GH) receptor and GH binding protein in adult male rat tissues. Mol Cell Endocrinol,1995,109:47-61
    95. Min H, Montecino-Rodriguez E, Dorshkind K. Reassessing the role of growth hormone and sex steroids in thymic involution. Clin Immunol,2006,118:117-123
    96. Nio DA, Moylan RN, Roche JK. Modulation of T lymphocyte function by neuropeptides. Evidence for their role as local immunoregulatory elements. J Immunol,1993,150:5281-5288
    97. Panetta R, Patel YC. Expression of mRNA for all five human somatostatin receptors (hSSTRl-5) in pituitary tumors. Life Sci,1995,56:333-42.
    98. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol,1999,20: 157-198
    99. Patel YC, Reichlin S. Somatostatin in hypothalamus, extrahypothalamic brain, and peripheral tissues of the rat. Endocrinology,1978,102:523-530
    100.Pazirandeh A, Xue Y, Rafter I, Sjovall J, Jondal M, Okret S. Paracrine glucocorticoid activity produced by mouse thymic epithelial cells. FASEB J,1999,13:893-901
    101.Pearce P, Khalid B A, Funder JW. Androgens and the thymus. Endocrinology,1981, 109:1073-1077
    102.Peluso G, Petillo O, Melone MA, Mazzarella G, Ranieri M, Tajana GF. Modulation of cytokine production in activated human monocytes by somatostatin. Neuropeptides, 1996,30:443-451
    103.Petrie HT. Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat Rev Immunol,2003,3:859-866
    104.Petrovic-Djergovic DM, Rakin AK, Kustrimovic NZ, Ristovski JS, Dimitrijevic LA, Mileva MV. Somatostatin modulates T cells development in adult rat thymus. Regul Pept,2007,142:101-110
    105.Piqueras L, Martinez V. Role of somatostatin receptors on gastric acid secretion in wild-type and somatostatin receptor type 2 knockout mice. Naunyn Schmiedebergs Arch Pharmacol,2004,370:510-520
    106.Polak JM, Bloom SR. Somatostatin localization in tissues. Scand J Gastroenterol, 1986,119:11-21
    107.Postel-Vinay MC, de Mello CV, Gagnerault MC, et al. Growth hormone stimulates the proliferation of activated mouse T lymphocytes. Endocrinology,1997,138:1816-1820
    108.Pradayrol L, Jornvall H, Mutt V, Ribet A. N-terminally extended somatostatin:The primary structure of somatostatin 28. FEBS Lett,1980,109:55-58
    109.Qiao S, Chen L, Okret S, Jondal M. Age-related synthesis of glucocorticoids in thymocytes. Exp Cell Res,2008,314:3027-3035
    110.Olsen NJ, Olson G, Viselli S M, et al. Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology,2001,142:1278-1283
    111.Radu CG, Cheng D, Nijagal A, et al. Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death-associated gene 8 receptor. Mol Cell Biol,2006,26:668-677
    112.Reisine T, Bell GL Molecular biology of somatostatin receptors. En docr Rev,1995, 16:427-442
    113.Rijhsinghani AG, Thompson K, Bhatia SK, Waldschmidt TJ. Estrogen blocks early T cell development in the thymus. Am J Reprod Immunol,1996,36:269-277
    114.Rufener C, Dubois MP, Malaisse Lagae F, Oric L. Immuno-fluorescent reactivity to anti-somatostatin in the gastro-intestinal mucosa of the dog. Diabetologia,1975,11: 321-324
    115.Sabharwal P, Varma S. Growth hormone synthesized and secreted by human thymocytes acts via insulin-like growth factor I as an autocrine and paracrine growth factor. J Clin Endocrinol Metab,1996,81:2663-2669
    116.Savino W, Dardenne M. Neuroendocrine. control of thymus physiology. Endocr Rev, 2000,21:412-443
    117.Savino W, de Mello-Coelho V, Dardenne M. Control of the thymic microenvironment by growth hormone/insulin-like growth factor-I-mediated circuits. Neuroimmunomodulation,1995,2:313-318
    118.Schuurman HJ, Kuper CF, Kendall MD. Thymic microenvironment at the light microscopic leve. Microsc Res Tech,1997,38:216-226
    119.Shen LP, Picket PL, Rutter WJ. Human somatostatin I:sequence of the cDNA. Proc Natl Acad Sci USA,1982,79:4575-4579
    120.Sirianni MC, Annibale B, Fais S, Delle Fave G Inhibitory effect of somatostatin-14 and some analogues on human natural killer cell activity. Peptides,1994,15:1033-1036
    121.Saito T, Yamada J, Kitamura N, Yamashita T. An immunohistochemical study on the distribution of endocrine cells in the gastrointestinal tract of domestic pigeon, (Columba livia var domestica). Z Mikrosk Anat Forsch,1989,103:237-246
    122.Sandstrom O, Mahdavi J, el-Salhy M. Age-related changes in antral endocrine cells in mice. Histol Histopathol,1999,14:31-36
    123.Savino W. Neuroendocrine control of T cell development in mammals:role of growth hormone in modulating thymocyte migration. Exp Physiol,2007,92:813-817
    124.Savino W, Smaniotto S, Binart N, et al. In vivo effects of growth hormone on thymic cells. Ann N Y Acad Sci,2003,992:179-185
    125.Scicchitano R, Dazin P, Bienenstock J, Payan DG, Stanisz AM. The murine IgA-secreting plasmacytoma MOPC-315 expresses somatostatin receptors. J Immunol, 1988,141:937-941
    126.Shen Y, Wu J, Gao Y. Development of somatostatin and bombesin-secreting cells of proventriculus from Shao ducks. World J Gastroenterol,2000,6(S3):80
    127.Silva AB, Aw D, Palmer DB. Evolutionary conservation of neuropeptide expression in the thymus of different species. Immunology,2006,118:131-140
    128.Silva AB, Aw D, Palmer DB. Functional analysis of neuropeptides in avian thymocyte development. Dev Comp Immunol,2008,32:410-420
    129.Silva AB, Palmer DB. Evidence of conserved neuroendocrine interactions in the thymus:intrathymic expression of neuropeptides in mammalian and non-mammalian vertebrates. Neuroimmunomodulation,2011,18:264-270
    130.Smaniotto S, de Mello-Coelho V, Villa-Verde D M, et al. Growth hormone modulates thymocyte development in vivo through a combined action of laminin and CXC chemokine ligand 12. Endocrinology,2005,146:3005-3017
    131.Solomou K, Ritter MA, Palmer DB. Somatostatin is expressed in the murine thymus and enhances thymocyte development. Eur J Immunol,2002,32:1550-159
    132.Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol,2003,21:139-176
    133.Strnad J, Hadcock JR. Identification of a critical aspartate residue in transmembrane domain three necessary for the binding of somatostatin to the somatostatin receptor SSTR2. Biochem Biophys Res Commun,1995,216:913-921
    134.Sundler F, Carraway RE, Hakanson R, Alumets J, Dubois MP. Immunoreactive neurotensin and somatostatin in the chicken thymus:A chemical and histochemical study. Cell Tissue Res,1978,194:367-376
    135.Tannenbaum GS, Zhang WH, Lapointe M, Zeitler P, Beaudet A. Growth hormone-releasing hormone neurons in the arcuate nucleus express both Sstl and Sst2 somatostatin receptor genes. Endocrinology,1998,139:1450-1145
    136.Taub DD, Murphy WJ, Longo DL. Rejuvenation of the aging thymus:growth hormone-mediated and ghrelin-mediated signaling pathways. Curr Opin Pharmacol, 2010,10:408-424
    137.Throsby M, Homo-Delarche F, Chevenne D, Goya R, Dardenne M, Pleau JM. Pancreatic hormone expression in the murine thymus:localization in dendritic cells and macrophages. Endocrinology,1998,139:2399-2406
    138.Throsby M, Homo-Delarche F, Chevenne D, Goya R, Dardenne M, Pleau JM. Pancreatic hormone expression in the murine thymus:localization in dendritic cells and macrophages. Endocrinology,1998,139:2399-2406
    139.Timsit J, Savino W, Safieh B, et al. Growth hormone and insulin-like growth factor-I stimulate hormonal function and proliferation of thymic epithelial cells. J Clin Endocrinol Metab,1992,75:183-188
    140.Timsit J, Safieh B, Gagnerault MC, et al. Increase of circulating levels of thymulin in hyperprolactinemia and acromegaly. C R Acad Sci III,1990,310:7-13
    141.Tsuji Y, Kinoshita Y, Hato F, et al. The in vitro proliferation of thymus epithelial cells stimulated with growth hormone and insulin-like growth factor-I. Cell Mol Biol, 1994,40:1135-1142
    142.Tsuji Y, Kinoshita Y, Hato F, et al. Marked differences in proliferative response to stimulation of growth hormone and insulin-like growth factor-I between thymoma-and normal thymus-derived epithelial cell lines. Cell Mol Biol,1997,43:149-156
    143.Vacchio MS, Lee JY, Ashwell JD. Thymus-derived glucocorticoids set the thresholds for thymocyte selection by inhibiting TCR-mediated thymocyte activation. J Immunol,1999,163:1327-1333
    144.Vacchio MS, Papadopoulos V, Ashwell JD. Steroid production in the thymus: implications for thymocyte selection. J Exp Med,1994,179:1835-1846
    145.Verland S, Gammeltoft S. Functional receptors for insulin-like growth factors I and II in rat thymocytes and mouse thymoma cells. Mol Cell Endocrinol,1989,67:207-216
    146.Vitari F, Di Giancamillo A, Deponti D, Carollo V, Domeneghini C. Distribution of ghrelin-producing cells in the gastrointestinal tract of pigs at different ages. Vet Res Commun,2012,36:71-80
    147.Vockel M, Pollok S, Breitenbach U, Ridderbusch I, Kreienkamp HJ, Brandner JM. Somatostatin inhibits cell migration and reduces cell counts of human keratinocytes and delays epidermal wound healing in an ex vivo wound model. PLoS One,2011,6: e19740
    148.Weigent DA, Blalock JE. Effect of the administration of growth-hormone-producing lymphocytes on weight gain and immune function in dwarf mice. Neuroimmunomodulation,1994,1:50-58
    149.Yamada J, Kitamura N, Yamashita T. The relative frequency and topographical distribution of somatostatin-, GRP-, APP-, glucagon-,5-HT-, and neurotensin-immunoreactive cells in the proventriculus of seven species of birds, Arch Histol Jpn,1985,48:305-314
    150.Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Sein S. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci USA,1992,89:251-255
    151.Yamanaka Y, Yamada J, Kitamura N, Yamashita T. An immunohistochemical study on the distribution of endocrine cells in the chicken gastrointestinal tract. Z Mikrosk AnatForsch,1989,103:437-446
    152.Yamashita U, Sugiura T, Yoshida Y, Kuroda E. Effect of endocrine disrupters on thymocytes in vitro.J UOEH,2003,25:161-170.
    153.Yang J, Zhang L, Li X, Zhang L, Liu XJ, Peng, KM. An immunohistochemical study on the distribution of endocrine cells in the digestive tract of gray goose(Anser anser). Turk J Vet Anim Sci,2012,36:373-379
    154.Yin XY, Koshimizu T, Yokota Y, Shibayama K, Ohyama Y, Yashiro K. Ontogenic expression of somatostatin-messenger RNA in the intestinal tract of neonatal rats. Acta Paediatr Jpn,1992,34:6-11
    155.Vacchio MS, Ashwell JD. Glucocorticoids and thymocyte development. Semin Immunol,2000,12:475-485
    156.Van Op den Bosch J, Adriaensen D, Van Nassauw L, Timmermans JP. The role(s) of somatostatin, structurally related peptides and somatostatin receptors in the gastrointestinal tract:a review. Regul Pept,2009,156:1-8
    157.Vacchio MS, Lee JY, Ashwell JD. Thymus-derived glucocorticoids set the thresholds for thymocyte selection by inhibiting TCR-mediated thymocyte activation. J Immunol,1999,163:1327-1333
    158.Viollet C, Lepousez G, Loudes C, Videau C, Simon A, Epelbaum J. Somatostatinergic systems in brain:networks and functions. Mol Cell Endocrinol,2008,286:75-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700