用户名: 密码: 验证码:
409L铁素体不锈钢凝固组织的细晶均匀化及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸过程中,宽厚的钢坯由于内部的冷却速度慢,将主要以柱状晶的方式生长,导致晶粒粗大、中心偏析等缺陷,在后续热轧时容易产生边部裂纹。解决这一问题的关键是扩大铸坯等轴晶区比例,细化晶粒尺寸。研究表明当钢液凝固前沿存在有效的异质形核核心时,大量细小的等轴晶晶粒可以在熔体中形成,从而可以取代固有的柱状晶组织,在减少中心偏析等缺陷的同时提高钢坯热延展性和抗热裂性能。近年来,人们已经认识并重视第二相颗粒在改善钢坯凝固微观组织结构中起到的重要作用。目前,尽管目前存在多种铁素体异质形核机制,但是不同理论假说分歧严重,且与实验现象存在矛盾。同时,市场上并没有用于钢的晶粒细化剂,相反对于铸铁和镁铝合金行业,已经广泛的使用晶粒细化剂用于对凝固微观组织结构进行细化。因此,对铁素体异质形核机制的完善以及研制钢的晶粒细化剂将具有重要的实用价值和理论意义。
     本论文通过计算机模拟技术采用第一性原理方法以及从头算分子动力学方法从原子尺度揭示了TiN的表面性质以及Fe原子在TiN表面通过吸附堆垛规律的科学问题,为δ-Fe异质形核行为的实验现象提供了理论解释。阐明了δ-Fe在TiN、TiC及ZrN上异质形核能力的差异,为δ-Fe最佳异质形核核心的选择提供了理论依据。同时,提出409L铁素体不锈钢晶粒细化剂的制备工艺。采用Fe-Ti合金熔体与氮气原位反应制备出含有弥散分布TiN颗粒的Fe-Ti-N中间合金,并对制备Fe-Ti-N中间合金的工艺参数进行优化以及对其细化效果进行了检验。
     取得以下主要研究结果:
     对4种TiN低指数表面的第一性原理计算表明,(001),(110),Ti终止以及N终止(111)面分别在具有5,11,13,以及11层原子结构时收敛即表面构型内部具有体相特征;(001)面在绝大部分N化学势区间内表面能最低稳定性最好。
     通过对3种Fe原子在TiN(001)表面吸附初始构型进行分子动力学模拟,研究表明高温下,Fe原子在TiN(001)面上的最佳吸附位置在N原子上方。研究发现3种δ-Fe/TiN初始界面构型经过充分结构弛豫后,Fe-Ti型以及Fe-bridge型的δ-Fe/TiN界面经过结构弛豫后均转变为Fe-N型δ-Fe/TiN界面构型,说明Fe-N型δ-Fe/TiN界面结构最稳定。
     借助从头算分子动力学方法从能量的角度对Fe原子在TiN,TiC以及ZrN表面吸附以及δ-Fe在TiN,TiC以及ZrN表面异质形核的难易程度进行研究。计算结果表明Fe原子在TiN(001),TiC(001)以及ZrN(001)面上的吸附能分别为-3.15eV/atom,-3.12eV/atom以及-1.68eV/atom,同时计算得到δ-Fe/TiN、δ-Fe/TiC、δ-Fe/ZrN三个界面的界面能分别为1.08J/m~2,1.09J/m~2,1.14J/m~2。通过对比上述吸附能及界面能可以得出如下结论:TiN促进δ-Fe形核能力最强,TiC次之,ZrN最弱。
     通过对包括初始钛含量、氮气分压、反应时间以及冷却方式在内制备Fe-Ti-N中间合金的工艺参数进行优化,获得一组最佳制备工艺参数:反应温度为1600℃,初始钛含量为5wt.%,炉内氮气分压为0.06MPa,刚玉管所通氮气气体流量为400ml/min,原位反应总时间为10min,冷却方式为随炉冷却。
     应用Fe-Ti-N中间合金细化工业纯铁凝固组织的实验结果表明,向工业纯铁中添加2wt.%含量的Fe-Ti-N中间合金后细化效果明显,细化前后工业纯铁凝固组织中等轴晶区比例由30%提高至50%,等轴晶区平均晶粒尺寸由700μm减小至400μm。
     研究Fe-Ti-N中间合金添加量、添加Fe-Ti-N中间合金时熔体的温度以及添加Fe-Ti-N中间合后的保温静置时间等3个工艺参数对409L铁素体不锈钢凝固组织细化效果的影响。借助热力学以及动力学计算对细化实验结果进行分析,研究表明提高Fe-Ti-N中间合金的添加量,降低添加Fe-Ti-N中间合金时的钢液温度以及缩短添加Fe-Ti-N中间合后的保温静置时间有利于提高409L铁素体不锈钢凝固组织中等轴晶区比例以及细化其晶粒尺寸。
     通过与直接添加单质Ti以及添加409L铁素体不锈钢自身细化进行对比,证明本研究制备所得Fe-Ti-N中间合金细化效果更加显著。在宝钢50KG真空中频感应炉内进行的中试实验再次验证了Fe-Ti-N中间合金对409L铁素体不锈钢凝固组织的细化作用。研究表明Fe-Ti-N中间合金的添加并没有引起凝固组织晶界处第二相颗粒以及有害元素的偏聚。
Under traditional technical conditions, continuous casting steel billet with coarse columnar grains and centerline segregation is almost inevitable. Further more, during subsequent processing and heat treatment, the quality of as-cast steel billet is subject to high-temperature cracking and ridging. The key to solve this problem is to refine the solidification microstructure and improve the proportion of equiaxed grain zone. In the presence of effective heterogeneous nucleation sites ahead of the solidifying front, fine equiaxed grains form directly in the melt, so that the equiaxed grain structure may override the inherent columnar grain structure, which, in turn, give rise to hot ductility and hot cracking resistance. In recent year, the beneficial effect of the second phase particles on improving the solidification microstructure has been highlighted and recognized. At present, there is several heterogeneous nucleation mechanism ofδ-Fe, however, they are controversial and disagree with the experimental phenomena in the grain refinement. Although, no grain refiners are commercially available for steels, as opposed to cast iron, magnesium alloy and aluminum alloy where such remedies widely used to refine the solidification microstructure. Therefore, the exploration of heterogeneous nucleation mechanism ofδ-Fe and the preparation of grain refiner for steel have important practical and theoretical significance.
     In this thesis, the surface properties of TiN and the adsorption and stacking sequence of Fe atoms on the TiN surface were revealed through computer simulation using first-principles calculations and ab-initio molecular dynamics simulations, which will contribute to the understanding of heterogeneous nucleation mechanism ofδ-Fe. The nucleant potencies of TiN, TiC and ZrN particles were also analyzed, which is beneficial to provide theoretical basis for choosing the best heterogeneous nucleation sites forδ-Fe. Meanwhile, a preparation method of grain refiner for 409L ferritic stainless steel has been put forward. The Fe-Ti-N master alloy has been synthesized by reaction of Fe-Ti melts with nitrogen gas. The processing parameters of preparation of the Fe-Ti-N master alloy have been optimized and the grain refinement performance of the Fe-Ti-N master alloy has been tested. The main results are listed as follows:
     Four kinds of low-index surfaces of TiN have been studied by means of the first-principles calculations, it appears that 5, 11, 13, and 11 layers are thick enough to make interlayer distance converge and thus assure the bulk-like interior for (001), (110), Ti-and N-terminated(111)surfaces, respectively. The surface energy of the (001) surface is the lowest among all surfaces over most range of the nitrogen chemical potential, so that the (001) surface is thermodynamically more favorable than other surfaces.
     The three kinds of adsorption mold of atomic Fe-Ti(001) surface was investigated by dynamics simulation, it was found that the N site is more preferable than Ti and bridge sites for Fe atom. After the configurations of the threeδ-Fe/TiN initial interfaces have been fully relaxed, it was found that both of the configurations of the Fe-Ti type and the Fe-bridge type ofδ-Fe/TiN interface has been transformed into Fe-N typeδ-Fe/TiN interface after configuration relaxation, which means that the Fe-N typeδ-Fe/TiN interface is more stable than other interfaces.
     The degrees of difficulties for the Fe atomic adsorption and for theδ-Fe heterogeneous nucleation on the surface of TiN, TiC and ZrN have been investigated using ab-initio molecular dynamics simulations in a energy sense. The calculation results shows that the adsorption energies of Fe atom on TiN(001), TiC(001) and ZrN(001) surface are -3.15eV/atom ,-3.12eV/atom and -1.68eV/atom, respectively. The interface energies of forδ-Fe/TiN,δ-Fe/TiC andδ-Fe/ZrN interface are 1.08J/m~2,1.09J/m~2 and 1.14J/m~2, respectively. By comparing the adsorption energy and the interfacial energy, it can be concluded that the nucleant potency of TiN onδ-Fe is the strongest, followed by TiC, ZrN is the weakest.
     By optimizing the Fe-Ti-N master alloy preparation parameters including initial Ti content, nitrogen partial pressure, reaction time, cooling method and so on, a set of optimally preparation parameters has been obtained: reaction temperature is 1600℃, initial Ti content is 5wt.%, the nitrogen partial pressure in the furnace is 0.06Mpa, the gas flow rate of nitrogen through corundum tube is 400ml/min, the total reaction time is 10min, the cooling method is cooling within the furnace.
     The grain refinement experiments of the Fe-Ti-N master alloy on solidification structure of industry pure iron has been carried out. 2wt.% Fe-Ti-N master alloy has been added into the industry pure iron and the gain refinement performance is clear, the proportion of equiaxed grain zone increases from 30% to 50%, and the average equiaxed grain size decreases from 700μm to 400μm.
     In order to test the grain refinement performance of the Fe-Ti-N master alloy on solidification structure of 409L ferritic stainless steel, three processing parameters including the addition level, the melts temperature, have been tested. The mechanisms of these experimental phenomena have been analyzed in terms of thermodynamics and kinetics. It was found that the shows that decrease the addition level, lower the melts temperature, decrease the thermal holding time, have a significant impact on refining the grain size and improving the proportion of equiaxed grain zone of the as-cast solidification structure of 409L ferritic stainless steel.
     In order to investigate the feasibility of the grain refinement effectiveness of the Fe-Ti-N master alloy, some reference heats were done with addition of 409L ferritic stainless steel and with addition of elemental Ti. It was found that the addition of Fe-Ti-N master alloy caused a substantially greater refinement effect than that obtained through addition of 409L ferritic stainless steel or elemental Ti. Meanwhile, a group of pilot experiments have been carried out on 50KG castings at Baoshan Iron and Steel Corporation, the validity of refinement effectiveness of the Fe-Ti-N master alloy on the 409L ferritic stainless steel solidification structure has been confirmed. Furthermore, it was found that there was no segregation of the second-phase particles and the harmful elements on the grain boundary as a result of the Fe-Ti-N master alloy addition.
引文
[1]翁宇庆.超细晶钢:钢的组织细化理论与控制技术,北京:冶金工业出版社, 2003
    [2]翁宇庆.超细晶钢理论及技术进展,钢铁, 2005,40(3): 1-8
    [3]张树松,全爱莲编著.钢的强韧化机理与技术途径,北京:兵器工业出版社, 1995: 12
    [4]翁宇庆.新一代钢铁材料重大基础研究论文集序言,北京, 2000: 1
    [5]董翰.低合金钢的强化和韧化理论研究.高洁净度超细晶微合金化高强高韧钢文集1, 1999: 76
    [6]翁宇庆,董瀚.新一代超细晶粒钢及其力学性能特征,新一代钢铁材料重大基础研究论文集, 2000: 23
    [7]卫星. 2010年我国炼钢-连铸技术的发展展望,上海金属, 2009, 1: 59
    [8]潘秀兰,王艳红,梁慧智,冯士超.日本新日铁自主创新的连铸技术,世界钢铁, 2010, 2: 31-35
    [9]邢书明,张励忠,胡汉起,马静,李亚敏.无柱状晶钢坯的连铸技术-半固态连铸,特种铸造及有色合金, 2002, 3: 28-29
    [10]张兴中,倪满森.连铸技术的发展状况及高效连铸,中国冶金, 2003, 3: 17-20
    [11]倪满森.扩大连铸钢品种提高钢质量,连铸, 2003, 1: 1-4
    [12]倪满森.我国连铸技术的进步及连铸技术发展动向,连铸, 2002, 1: 1-4
    [13]梁志峰,毛卫民,张宏.提高连铸钢水质量的措施,山西冶金, 2007, 4: 45-46
    [14]费劲,张卫文,罗宗强,李元元.连续铸造技术的发展概况及展望,铸造技术, 2002, 2: 74-76
    [15] Dieter Janke,职建军.连铸钢浇铸性能和质量的改善,世界钢铁, 2000, 3: 6-13
    [16] W.B. Morrison. The effect of grain Size on the stress-strain relationship in low carbon steel, Transactions of the ASM, 1996, 59: 825-846
    [17] R.L. Miller. Ultrafine-grained microstructures and mechanical properties of alloy steels, Met. Trans. B, 1972, 3 (4): 905-912
    [18] M.R. Hickson, R.K. Gibbs. The effect of chemistry on the formation of ultrafine ferrite in steel, ISIJ International, 1999, 39(11): 1176-1180
    [19]赵沛,干勇,翟启杰.高洁净钢的凝固细化及均质化研究,新一代钢铁材料重大基础研究论文集, 2000: 316
    [20]周尧和,胡壮麒,介万奇.凝固技术,北京:机械工业出版社,1998
    [21]潘金生,仝健民,田民波.材料科学基础,北京:清华大学出版社, 1998
    [22]胡赓祥,蔡珣.材料科学基础,上海:上海交通大学出版社, 2000
    [23] M.C. Flemings. Solidification processing, 1974.中译本,凝固过程,关玉尤译.北京:冶金工业出版社, 1981
    [24] B. Chalmers. Principles of solidification, New York, John Wiley, 1964
    [25]大野笃美著.金属凝固学,唐产斌等译,北京:机械工业出版社, 1983
    [26] G.J. Dacies. Solidification and casting, London,1973.中译本,凝固与铸造,陈邦迪、舒震译, 1981
    [27]介万奇,周尧和.凝固过程液相区内晶体形成的模拟研究,航空学报, 1987, 8(11): A605-612
    [28]贾生建,贾国栋,关胜.宽厚板连铸坯中心偏析的产生原因及控制,包钢科技, 2010, 1: 15-17
    [29]吕佐明,郑晓明.连铸板坯中心偏析对钢板组织和性能的影响,金属世界, 2009, 1: 20-24
    [30]朱志红.连铸板坯中心偏析的成因及预防措施,重钢技术, 2007, 50(4): 7-11
    [31]沈厚发,方大成.钢锭中通道型(A、V)偏析的形成原因,钢铁研究, 1995, 4: 45-51
    [32] J.J.弗劳利,金百坤摘译.大型铸钢件中的V型和倒V型偏析缺陷,大型铸锻件, 1983, 4: 72-77
    [33]卢峰,陈文达,刘金超,李凤安,孙国栋.转炉优钢连铸坯中心裂纹的研究与控制,莱钢科技, 2010, 1: 58-59
    [34]崔天燮,刘鹏,陈建礼,葛学元,田培凤. P20中厚板中心裂纹产生原因分析,山西冶金, 2010, 1: 9-11
    [35]余鲁,赵吉宏,刘栋林. 35CrMoA连铸坯中心疏松原因分析及防范措施,江苏冶金, 2005, 33(4): 17-19
    [36]邹冰梅.中心偏析与中心疏松的形成与预防,钢铁技术, 2005, 2: 1-3
    [37]胡晓伟.新钢公司一钢厂小方坯中心缩孔和疏松探讨,江西冶金, 2002, 22(1): 14-15
    [38]张克强,李永东.方坯高碳钢连铸中心缩孔模型及其应用,北京科技大学学报, 2001, 23(6): 511-513
    [39] A. Banerji, W. Reif. Development of Al-Ti-C Grain refiners, Metal.Trans. A, 1986, 17(12): 2127-2137
    [40] L. Arnberg, L. Backerud, H. Klang. Grain refinement of aluminium. I - Production and properties of master alloys of Al-Ti-B type and their ability to grain refine aluminium, Metals Technology, 1982, (9): 1-6
    [41] L. Backerud, P. Gustafson, M. Johnsson. Grain refining mechanisms in aluminium as a result of additions of titanium and boron, Aluminium, 1991, (67): 910-915
    [42] J.C. Li, B.F. Wang, Y.L. Ma, J.Z. Cui. Effect of complex electromagnetic stirring on inner quality of high carbon steel bloom, Mater. Sci. Eng. A, 2006, 425: 201-204
    [43]齐雅丽,贾光霖,赵玉华.电磁搅拌对注定凝固组织的影响,沈阳航空工业学院学报, 2004, 21(2): 17-18
    [44]张宏丽,贾光霖,王恩刚,赫冀成.电磁搅拌改善铸坯内部质量的实验研究,东北大学学报, 2001, 22(3): 315-318
    [45] W.Q. Jie, W. Reif. Grain refinement of aluminum by titanium of hypoperitectic content, Proceedings of China-Japan International Conference on Foundry Engineering, 1994: 311-317
    [46] V.A. Bramov, O. Abramov, V. Bulgakov, F. Sommer. Solidification of aluminum alloys under ultrasonic irradiation using water-cooled resonator, Mater. Lett., 1998, 37: 27-34
    [47] J. Li, W.Q. Chen, Q. Liu, X.F. Wang. Effect of ultrasonic treatment on the solidification structure of high carbon steel containing rare earth elements, steel research int., 2008, 79(5): 358-363
    [48] Q.M. Liu, Q.J. Zhai, F.P. Qi, Y. Zhang. Effects of power ultrasonic treatment on microstructure and mechanical properties of T10 steel, Mater. Lett., 2007, 61: 2422-2425
    [49]张磊.连铸机二冷配水对铸坯鼓肚的改善,特殊钢, 2001, 1: 38-39
    [50]焦晓凯,秦勤,吴迪平,宁振宇.板坯连铸坯鼓肚变形的仿真研究,冶金设备, 2007, 1: 9-12
    [51]熊继春,李嘉荣,韩梅,刘世忠.浇注温度对DD6单晶高温合金凝固组织的影响,材料工程, 2009, 2: 43-46
    [52]王庆奎.钢液浇注温度在线控制技术,炼钢, 1996, 3: 50-52
    [53]赵劲松,张玉宝.拉坯速度对连铸大方坯凝固的影响,包头钢铁学院报, 2007, 1: 46-49
    [54] C.M. Raihle, H. Fredriksson. On the formation of pipes and centerline segregates in continuously cast billets, Met. Mater. Trans. B, 1994, 25(1): 123-133
    [55]韩志伟,冯科,毛敬华.合金钢方坯连铸机二次冷却制度的研究,铸造技术, 2009, 3: 388-391
    [56]王先勇,刘青,胡志刚,卿家胜,王欣,李玉盘,赵彦华,孙玉虎,李金波.喷嘴布置方式对中厚板坯连铸二次冷却效果的影响,北京科技大学学报, 2010, 8: 1064-1070
    [57] ?. Grong, L. Kolbernsen, C.V.D. Eijk, G. Tranell. Microstructure control of steels through dispersoid metallurgy using novel grain refining alloys, ISIJ, 2006, 46: 824-831
    [58] C.V.D. Eijk, ?. Grong, F. Haakonsen, L. Kolbernsen, G. Tranell. Progress in the development and use of grain refiner based on cerium sulfide or titanium compound for carbon steel, ISIJ, 2009, 49: 1046-1050
    [59] E.F. Nordstrand, ?. Grong, C.V.D. Eijk, S. Gaal. Phase relations in Ce–Al–Fe–S based grain refiners for steels, ISIJ, 2009, 49: 1051-1058
    [60] ?. Grong.钢的晶粒细化方法、钢的晶粒细化合金以及生产晶粒细化合金的方法,发明专利, 2003, CN 1396960 A
    [61] B.L. Bramfitt. The effect of carbide and nitride additions on the heterogeneous nucleationbehavior of liquid Iron, Met.Trans., 1970, 1:1987-1994
    [62]李庆春.铸锭形成理论基础,北京:机械工业出版社, 1982: 95
    [63]沈宁福,汤亚力,关绍康,张东捷.凝固理论进展与快速凝固,金属学报, 1996, 7: 673-684
    [64]王东君,周瑞,沈军.快速凝固水雾化高速钢粉末的凝固特征,金属学报, 2008, 2: 159-164
    [65]刘涛,王川舟,程南山.快速凝固316L微晶不锈钢的制备及耐蚀性初探,功能材料, 1991, 6: 344-347
    [66]董光军.钢板边部小纵裂纹控制与探讨,连铸, 2010, 2: 44-46
    [67]黄卫华.洁净钢形核规律研究,学位论文,北京:北京科技大学, 2000
    [68]李大忠,田凤纪,田萍,程大海,刘杰,刘景元,陆晓旭.降低铸坯夹杂物含量减少大规格角钢废品,连铸, 2005, 3: 29-32
    [69]李维彪,王芳,齐凤生,李宝宽.结晶器喂钢带连铸坯凝固过程的数学模拟,金属学报, 2007, 43(11): 1191-1194
    [70] G. Muller, G. Neumann. Tenfold growth rates in the traveling heater method of GaSb crystals by forced convection on a centrifuge, J. Crystal Growth, 1983, 63:58-66
    [71] M.H. Johnson, P.A. Curreri, R.A. Parr. Superalloy microstructural variations induced by gravity level during directional solidification, Met. Trans. A, 1985, 16A: 1683-1687
    [72] D.R. Uhlmann, J.F. Hays, D. Turnbull. The effect of high pressure on crystallization kinetics with special reference to fused silica, Phys. Chem. Glasses, 1966, 7: 159-168
    [73]坚增运.净化和熔体温度处理对铝合金凝固组织和性能的影响,学位论文,西安:西北工业大学, 1995
    [74]于艳.悬浮浇注对连铸轴承钢凝固过程影响的基础研究,学位论文,北京:北京科技大学,1998
    [75]邢长虎.洁净钢微量流生核处理的基础研究,学位论文,北京:北京科技大学, 2000
    [76] M.M. Guzowski, G.K. Sigworh, D.A. Sentner. The role of boron in the grain refinement of aluminum with titanium, Metall.Trans. A, 1987, 18(4): 603-619.
    [77]高泽生.新一代Al-Ti-C晶粒细化剂的研究与开发,轻合金加工技术, 1999, (3): 8-11
    [78] Q. Ma, P. Cao. Discussions on grain refinement of magnesium alloys by carbon inoculation, Scr. Mater., 2005, 52: 415-419
    [79] Y.X. Wang, X.Q. Zeng, W.J. Ding. Effect of Al–4Ti–5B master alloy on the grain refinement of AZ31 magnesium alloy, Scr. Mater., 2006, 54: 269-273
    [80] G.S.V. Kumar, B.S. Murty, M. Chakraborty. Grain refinement response of LM25 alloy towards Al–Ti–C and Al–Ti–B grain refiners, J. Alloys Compd., 2009, 472: 112-120
    [81]梅志,娄德春,段汉桥.稀土对原位TiCp/Fe复合材料微观结构的影响,特种铸造及有色合金,2002, 4: 8-9
    [82]杨庆祥,廖波,崔占全,姚枚,万鑫.凝固温度对稀土夹杂物成为初生奥氏体非均质形核核心作用的影响,材料研究学报, 1999, 13(4): 353-358
    [83]杨庆祥,高聿为,廖波,姚枚.夹杂物在中高碳钢堆焊金属中成为初生奥氏体非均质形核核心的探讨,中国稀土学报, 2000, 18(2): 138-141
    [84]林勤,陈邦文,唐历,宋波,朱兴元,王怀斌.微合金钢中稀土对沉淀相和性能的影响,中国稀土学报, 2002, 20(3): 256-260
    [85] Y. Nuri, T. Ohashi, T. Hiromoto, O. Kitamura. Solidification microstructure of ingots and continuously cast slabs treated with rare earth metals, Trans. ISIJ, 1982, 22: 399-407
    [86]黄进峰,方鸿生,余贵春,郑燕康.稀土、钛复合变质剂对贝氏体钢铸态晶粒细化的研究,金属热处理学报, 1999, 9: 5-9
    [87]秦紫瑞,赵军,钟蕊,尹大伟.低碳铸钢的Re-Ca复合变质处理的研究,稀土, 1995, l16(4): 22-27
    [88]李凤照,敖青,姜江,刘鹏,李斗星.含稀土元素和Al贝氏体钢的相变和组织性能,金属热处理, 2000, (8): 15-17
    [89]杨志刚.晶内铁素体在夹杂物上形核机制的讨论,金属热处理, 2005, 30(1): 20-23
    [90]余圣甫,雷毅,谢明立,黄安国,李志远.晶内铁素体的形核机理, 2005, 17(1): 47-50
    [91] M.W. Finnis. The theory of metal-ceramic interfaces, J. Phys. Cond. Mat., 1996, 8: 5811-5836
    [92] E.A. Jarvis, E.A. Carter, Importance of open-shell Effects in adhesion at metal-ceramic interfaces, Phys. Rev. B, 2002, 66: 100103-100106
    [93] D.J. Siegel, L.G. Hector Jr., J.B. Adams. Adhesion, atomic structure, and bonding at the Al(111)/α-Al2O3(0001) interface: a first principles study, Phys. Rev. B, 2002, 65: 085415
    [94] L.M. Liu, S.Q. Wang, H.Q. Ye. First-principles study of polar Al/TiN(1 1 1) interfaces, Acta Mater, 2004, 52(12): 3681-3688
    [95] D.J. Siegel, L.G. Hector, J.B. Adams. Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC, Surface Science, 2002, 498: 321-336
    [96] J. Hoekstra, M. Kohyama. Ab initio calculations of theβ-SiC(001)/Al interface, Phys. Rev. B, 1998, 57: 2334-2241
    [97]赵莉萍,王宝峰,麻永林,曹建刚,丁国. 409L不锈钢的凝固特性与连铸中的质量控制,钢铁, 2003, 38(2): 22-23
    [98]杨军,王立江,盛建华. AISI409L铁素体不锈钢板坯连铸过程工艺研究,钢铁, 2008, 43(3): 29-32
    [99]王伟明,毛惠刚.汽车排气系统用409型铁素体不锈钢的开发研究,宝钢技术, 2005, 4: 56-60
    [100]毕洪运,李鑫,欧响波,武勇.汽车尾气排放系统低温端用铁素体不锈钢开发,宝钢技术, 2007, 4: 1-4
    [101]王伟明,余海峰,毛惠刚.热轧后退火工序对409L钢带表面起皱的影响,轧钢, 2006, 23(6): 8-11
    [102]张文茹,杨成义,谢建国.汽车排气系统用铁素体不锈钢的发展,机械管理开发, 1999, 4: 46-48
    [103]荣惠康.中国汽车产业发展对铁素体不锈钢的需求,不锈市场与信息, 2004, 24 :20-22
    [104]雍岐龙,田建国,杨文勇.钛在钢中的物理冶金学基础数据,云南工业大学学报, 1999, 15(2): 7-10
    [105] Z.T. Ma, D. Janke. Characteristics of oxide precipitation and growth during solidification of deoxidized steel, ISIJ, 1998, 38(1): 46-52
    [106] S.K. Maity, N.B. Ballal, R. Kawalla. Development of ultrahigh strength steel by electroslag refining: effect of inoculation of titanium on the microstructures and mechanical properties, ISIJ, 2006, 46(9): 1361-1370
    [107] K.F.A. Hajeri, C.I. Garcia, M.J. Hua, A.J. Deardo. Particle-stimulated nucleation of ferrite in heavy steel sections, ISIJ, 2006, 46(8): 1233.
    [108] K. He, D.V. Edmonds. Formation of acicular ferrite and influence of vanadium alloying, Mater. Sci. Technol., 2002, 18: 289-296
    [109] J.H. Shim, Y.J. Oh, J.Y. Suh, Y.W. Cho, J.D. Shim, J.S. Byun. Ferrite nucleation potency of non-metallic inclusions in medium carbon steels, Acta Mater, 2001, 49: 2115-2122
    [110] J.H. Park, D.S. Kim, S.B. Lee. Inclusion control of ferrite stainless steel by aluminum deoxidation and calcium treatment, Metall. Mater. Trans.B, 2005, 36(1): 67-73
    [111] J.L. Lee, Y.T. Pan. The formation of intragranular ferrite in simulated heat-affected zone, ISIJ, 1995, 35(8):1027-1033
    [112] F. Ishikawa, F. Takahashi, T.Ochi. Intragranular ferrite nucleation in medium-carbon vanadium steels, Metall. Mater. Trans., A, 1994, 25: 929-936
    [113] K. Yamamoto, T. Hasegawa, J. Takamura. Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels, ISIJ, 1996, 36(1): 80-86
    [114] Y. Li, D.N. Crowther, M.J. W. Green, P.S. Mitchell, T.N. Baker. The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat affected zone in low carbon microalloyed steels, ISIJ, 2001, 41(1): 46-55
    [115] H.L. Zou, J.S. Kirkaldy. Thermodynamic calculations and experimental verification of the carbonitride austenite equilibrium in Ti-Nb, Micro alloyed Steels, 1992, 23A: 651-657
    [116] W.J. Pool, A. Mitchell, F. Weinberg. Inoculating stainless steel with titanium nitride, High Temp. Mater. Processes, 1997, 16(3): 173-182
    [117] S.Y. Lee, Y.J. Oh, K.W. Yi. Effects of titanium and oxygen content on microstructure in low carbon steel, Mater.Trans. JIM, 2002, 43(3): 518-522
    [118] K. Nakajima, H. Hasegawa, S. Khumkoa, M. Hayashi. Effect of catalyst on heterogeneous nucleation in Fe-Ni-Cr alloys, ISIJ, 2006, 46(6): 801-806
    [119] K. Nakajima, H. Ohta, H. Suito, P. Jonsson. Effect of oxide catalyst on heterogeneous nucleation in Fe-10mass%Ni alloys. ISIJ, 2006, 46(6): 807-813
    [120] K. Nakajima, H. Hasegawa, S. Khumkoa, S. Mizoguchi. Effect of a catalyst on heterogeneous nucleation in pure Fe and Fe-Ni alloys, Metall. Mater. Trans. B, 34B: 539-547
    [121] H. Suito, H. Ohta, S. Morioka. Refinement of solidification microstructure and austenite grain by fine inclusion particles, ISIJ International, 2006, 46(6): 840-846
    [122]王囯承,方克明,王铁明.高温纯铁熔体中外加氮化钛超细颗粒的研究,钢铁钒钛, 2006, 27(2): 21-25
    [123] E.T. Turkdogan. Causes and effects of nitride and carbonitride precipitation during continuous casting, Iron and Steelmaker, 1989, 16(5): 61–75
    [124]杨颖,王福明,宋波,罗志涛,杨占兵.非调质钢中钛氧化物冶金行为,北京科技大学学报, 2005, 27(5): 540.
    [125] K.I. Suzuki, S. Miyagawa, Y. Saito, K. Shiotani. Effect of microalloyed nitride forming elements on precipitation of carbonitride and high temperature ductility of continuously cast low carbon Nb containing steel slab, ISIJ, 1995, 35(1): 34-41
    [126] T. Suzuki, J. Inoue, T. Koseki. Solidification of iron and steel on single-crystal oxide, ISIJ, 2007, 47(6): 847-852
    [127] R. Kuziak. Microstructure control of ferrite-pearlite high strength low alloy steels utilizing microalloying additions, Journal of Materials Processing Technology, 1995, 53: 255-262
    [128] B. Garbarz. The effect of some continuous casting parameters and microalloying elements on the effectiveness of controlling of austenite grain size, J. Mater. Process. Technol., 1995, 53: 147-158
    [129] B. Lehtinen, P. Hansson. Characterization of micro alloy precipitates in HSLA steels subjected to different weld thermal cycles, Scand. J. Metall., 1989, 18: 295-300
    [130] M.A. Linaza, J.L. Romero, J.M. Rodriguez-Ibabe, J.J. Urcola. Influence of the misconstrue on the fracture toughness and fracture mechanisms of forging microalloyed with titanium with ferrite pearlite structures, Scripta Metallurgica et. Materialia, 1993, 29(4): 451-456
    [131] W.J. Liu, J.J. Jonas. Characterization of Ti carbosulfide precipitation in Ti micro alloyed steels, Met. Mater. Trans. A, 1989, 20: 1907-1915
    [132]钱永兰,乐敏毅.微钦处理45钢的研究,钢铁钒钛, 1990, 11(1): 41-49
    [133]刘兴乾.钢中的微量钛,钢铁钒钛, 1986, 3: 95-103
    [134] J.M.G. Regg, H.K.D.H. Bheadeshia. Solid-state nucleation of acicular ferrite on minerals added to molten steel, Acta Mater, 1997, 45(2): 739-748
    [135]彭岩峰.原位自生TiN凝固细晶技术基础研究,学位论文,北京:北京科技大学, 2002
    [136] L.P. Zhang, C.L. Davis, W.M. Strang. Effect of TiN particles and microstructure on fracture toughness in simulated heat-affected zones of a structural steel, Met. Mater. Trans. A, 1999, 30A (8):2089-2096
    [137] K. Inoue , I. Ohnuma , H. Ohtani, K. Ishida, T. Nishizawa. Solubility product of TiN in austenite, ISIJ,1998, 38(9): 991-997
    [138]成国光,朱晓霞,彭岩峰,王玉钢,赵沛.洁净钢TiN凝固细化技术的基础,北京科技大学学报, 2002, 24(3): 273-276
    [139]史彩霞,成国光,石超民,李战军,赵沛. 430铁素体不锈钢TiN形核细化凝固组织的研究,中国稀土学报, 2006, 24: 423-426
    [140]朱晓霞. TiN细化洁净钢凝固组织的基础研究,学位论文,北京:北京科技大学, 2002
    [141]成国光,朱晓霞,彭岩峰等.洁净钢氮化钦凝固细化技术的基础研究,新一代钢铁材料研讨会, 2001: 452-455
    [142]成国光,朱晓霞,赵沛. TiN细化洁净钢凝固组织的有关物理化学问题,中国稀土学报, 2002, 20: 266-268
    [143]傅杰,朱剑,迪林等.微合金钢中TiN的析出规律研究,金属学报, 2000, 36(8): 801-804
    [144] J.C. Villafuerte, H.W. Kerr. The effect of abrasive cleaning on columnar-to-equiaxed transitions in ferritic stainless steel GTA welds, ASM, Metal Park, 1993
    [145] J.C. Villafuerte. 3rd Int. Conf. on trends in welding research, ASM, Metal Park, 1992
    [146]王国承,王铁明,尚礼得,方克明.超细第二相粒子强化钢铁材料的研究进展,钢铁研究学报, 2007, 19(6): 5-8
    [1] M.W. Finnis.The theory of metal-ceramic interfaces, Journal of Physics: Condensed Matter, 1996, 8: 5811-5836
    [2]张跃,谷景华,尚家香,马岳.计算材料科学基础,北京:北京航空航天大学出版社, 2007:26
    [3] W. Kohn, L.J. Sham. Self-consistent equations including exchange and correlation effects, Physical Review A, 1965, 140: 1133-1138
    [4] D.M. Ceperley, B.J. Alder. Ground state of the electron gas by stochastic method, Physical Review Letters, 1980, 45: 566-569
    [5] J.P. Perdew, J.A. Chevary, S.H. Vosko, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Physical Review B, 1992, 46: 6671-6687
    [6] G.P. Srivastava, D. Weaire. The theory of the cohesive energies of solids, Advanced Physics, 1987, 26: 463-517
    [7] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B, 1990, 41: 7892-7895
    [8] R. Car, M. Parrinello. Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett., 1985, 55:2471-2474
    [9] M.D. Segall, P.J.D. Lindan, M.J. Probert, et al. First-principles simulation: ideas, illustrations and the CASTEP code, Journal of physics: Condensed Matter, 2002, 14: 2417-2743
    [10] B.L. Bramfitt. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid rion, Metallurgical Transactions, 1970, 1:1987-1995
    [11] H.J. Monkhorst, J.D. Pack. Special points for Brillouin-zone integrations, Physical Review B, 1976, 13: 5188-5192
    [12] B.G. Pfrommer, M. Cote, S.G. Louie, et al. Relaxation of crystals with the quasi-Newton method, Journal of Computational Physics, 1997, 131: 133-140
    [13] M.D. Segall, C.J. Pickard, R. Shah, et al. Population analysis in plane wave electronic structure calculations, Molecular Physics, 1996, 89: 571-577
    [14] M.D. Segall, R. Shah, C.J. Pickard, et al. Population analysis of plane-wave electronic structure calculations of bulk materials, Physical Review B, 1996, 54: 16317-16320
    [15] S. Nose. A unified formulation of the constant temperature molecular dynamics methods, J. Phys. Chem., 1984, 81:511-519
    [16] L. Verlet. Computer "experiments" on classical fluids.I.Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 1967, 159:98-103
    [1] J.L. Lee, Y.T. Pan. The formation of intragranular ferrite in simulated heat-affected zone, ISIJ, 1995, 35(8):1027-1033
    [2]李新明,郑少波,郑庆,朱立新.钢的氧化物冶金技术,上海金属, 2005, 5: 58-63
    [3] F. Ishikawa, F. Takahashi. The formation of intragranular ferrite plates in medium-carbon steels for hot-forging and its effect on the toughness, ISIJ, 1995, 35(9): 1128-1133
    [4] I. Madariage, J. Romem. Role of the particle–matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel, Acta. Mater, 1999, 47(3): 951-960
    [5] K. Yamamoto, T. Hasegawa, J. Takamura. Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels, ISIJ, 1996, 36(1): 80-86
    [6] Y. Li, D.N. Crowther, M.J. W. Green, P.S. Mitchell, T.N. Baker. The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat affected zone in low carbon microalloyed steels, ISIJ, 2001, 41(1): 46-55
    [7] G. Samsonov. The Oxide Handbook 2nd edition. Ed. New York. 1982: 128
    [8] D. Brooksbank, K.W. Andrews. Stress fields around inclusions and their relation to mechanical properties, J. Iron Steel Inst., 1972, 210(4): 246-255
    [9] H. Mabuchi, R. Uemori, M. Fujioka. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels, ISIJ, 1996, 36(11): 1406-1412
    [10] J. Shim, Y. Cho, S. Chung, J. Shim, D. Lee. Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel, Acta Mater., 1999, 47(9): 2751-2760
    [11] E.A. Jarvis, E.A. Carter, Importance of open-shell Effects in adhesion at metal-ceramic interfaces, Physical Review B, 2002, 66: 100103-100106
    [12] D.J. Siegel, L.G. Hector, J.B. Adams. Adhesion, atomic structure, and bonding at the Al(111)/α-Al2O3(0001) interface: A first principles study, Physical Review B, 2002, 65: 085415
    [13] L.M. Liu, S.Q. Wang, H.Q. Ye. First-principles study of polar Al/TiN(1 1 1) interfaces, Acta Mater, 2004, 52(12): 3681-3688
    [14] D.J. Siegel, L.G. Hector, J.B. Adams. Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC, Surface Science, 2002, 498: 321-336.
    [15] B.L. Bramfitt. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Mettall. Trans., 1970, 1:1987-1995
    [16] M. Marlo, V. Milman. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals, Phys. Rev. B, 2000, 62: 2899-2907
    [17] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 1992, 46: 6671-6687
    [18] V. Fiorentini, M. Methfessel. Extracting convergent surface energies from slab calculations, J. Phys.: Condens. Matter, 1996, 8: 6525-6529
    [19] F. Bechstedt, Principles of Surface Physics. Springer, Berlin, 2003
    [20] S.S. Carara, L.A. Thesing, P. Piquini. First principles study of vacancies and Al substitutional impurities inδ-TiN, Thin Solid Films, 2006, 515: 2730-2733
    [21] I. Barin, G. Platzki. Thermochemical data of pure substances, Weinheim, New York, 1995
    [22] P. Patsalas, C. Charitidis, S. Logothetidis. The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films Surf. Coat. Technol. 2000, 125: 335-340
    [23] M.D. Segall, C.J. PickardJ, R. Shah, M.C. Payne. Population analysis in plane wave electronic structure calculations, Mol. Phys., 1996, 89: 571-577
    [24]张怀征,刘利民,王绍青. IVB和VB过渡族金属元素碳化物及其表面的结构和电子态的第一原理研究,金属学报, 2006, 42(5): 554-560
    [25] ?. Grong, L. Kolbernsen, C.V.D. Eijk, G. Tranell. Microstructure control of steels through dispersoid metallurgy using novel grain refining alloys, ISIJ., 2006, 46: 824-831
    [26] C.V.D. Eijk,Φ. Grong, F. Haakonsen, L. Kolbernsen, G. Tranell. Progress in the development and use of grain refiner based on cerium sulfide or titanium compound for carbon steel, ISIJ., 2009, 49: 1046-1050
    [27] E.F. Nordstrand,Φ. Grong, C.V.D. Eijk, S. Gaal. Phase Relations in Ce–Al–Fe–S Based Grain Refiners for Steels, ISIJ., 2009, 49: 1051-1058
    [28] B. Cantor. Heterogeneous nucleation and adsorption, Phil. Trans. R. Soc. Lond. A., 2003, 361: 409-417
    [29] W.T. Kim, B. Cantor. An adsorption model of the heterogeneous nucleation of solidification, Acta. Metall. Mater., 1994, 42: 3115-3127
    [30] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B., 1990, 41: 7892-7895
    [31] M.A.S. Miguel, J. Oviedo, J.F. Sanz. Influence of temperature on the interaction between Pd clusters and the TiO2 (110) surface, Phys. Rev. Lett., 2007, 99: 066102
    [32] N. Todorova, M.J.S. Spencer, I. Yarovsky. Ab initio study of S dynamics on iron surfaces, Surf. Sci., 2007, 601: 665-671
    [33] M. Mizuno, I. Tanaka, H. Adachi. Chemical bonding at the Fe/TiX (X=C, N or O) interfaces, Acta.Mater., 1998, 46: 1637-1645
    [34] W.S. Jung, S.H. Chung, H.P. Ha, J.Y. Byun. An ab initio study of the energetics for interfaces between group V transition metal Nitrides and bcc iron, Modelling Simul. Mater. Sci. Eng., 2006, 14: 479-495
    [35] J. Hartford. Interface energy and electron structure for Fe/VN, Phys. Rev. B., 2000, 61: 2221-2229
    [36] S.A.E. Johansson, M. Christensen, G. Wahnstrom. Interface energy of semicoherent metal-ceramic interfaces, Phys. Rev. Lett., 2005, 95: 226108
    [37] D.J. Siegel, L.G. Hector Jr., J.B. Adams. Adhesion, atomic structure, and bonding at the Al(111)/α-Al2O3(0001) interface: a first principles study, Phys. Rev. B, 2002, 65: 085415
    [38] W. Zhang, J.R. Smith, A.G. Evans. The connection between ab initio calculations and interface adhesion measurements on metal/oxide system: Ni/Al2O3 and Cu/Al2O3, Acta. Mater., 2002, 50: 3803-3816
    [1]傅杰,朱剑,迪林等.微合金钢中TiN的析出规律研究,金属学报, 2000, 36(8): 801-804
    [2]陈家祥.炼钢常用图表数据手册,北京:冶金工业出版社, 1984:567
    [3]黄希祐.钢铁冶金原理,北京:冶金工业出版社, 1990:138
    [4]雍崎龙,陈明昕,赵昆渝,曹建春. Fe4N及氮在铁基体中的平衡固溶度公式,特殊钢, 2007, (1):4-7
    [5] ?. Grong, L. Kolbernsen, C.V.D. Eijk, G. Tranell. Microstructure control of steels through dispersoid metallurgy using novel grain refining alloys, ISIJ, 2006, 46: 824-831
    [6] C.V.D. Eijk, ?. Grong, F. Haakonsen, L. Kolbernsen, G. Tranell. Progress in the development and use of grain refiner based on cerium sulfide or titanium compound for carbon steel, ISIJ, 2009, 49: 1046-1050
    [7] E.F. Nordstrand, ?. Grong, C.V.D. Eijk, S. Gaal. Phase relations in Ce–Al–Fe–S based grain refiners for steels, ISIJ, 2009, 49: 1051-1058
    [8] ?. Grong.钢的晶粒细化方法、钢的晶粒细化合金以及生产晶粒细化合金的方法,发明专利, 2003, CN 1396960 A
    [9] E.T. Turkdogan. Causes and effects of nitride and carbonitride precipitation during continuous casting, Iron and Steelmaker, 1989, 16(5): 61–75
    [10] K.I. Suzuki, S. Miyagawa, Y. Saito, K. Shiotani. Effect of microalloyed nitride forming elements on precipitation of carbonitride and high temperature ductility of continuously cast low carbon Nb containing steel slab, ISIJ, 1995, 35(1): 34-41
    [11] J.H. Park, D.S. Kim, S.B. Lee. Inclusion control of ferrite stainless steel by aluminum deoxidation and calcium treatment, Metall. Mater. Trans.B, 2005, 36(1): 67-73
    [12] Z. Morita, T. Tanaka. Thermodynamics of solute distributions between solid and liquid phases in iron-base ternary alloys, 1983, 23(10): 824-833
    [13] T. Hong, T. Debroy. Effects of time, temperature, and steel composition on growth and dissolution of inclusions in liquid steels, Iron and Steelmaking, 2001, 28(6): 450-454
    [14] T. Hong, T. Debroy. Time-Temperature-Transformation diagrams for the growth and dissolution of inclusions in liquid steels, Scripta Mater, 2001, 44: 847-852
    [15] T. Hong, T. Debroy. Nonisothermal growth and dissolution of inclusions in liquid steels, Metall. Mater. Trans. B, 2003, 34B: 267-269
    [16] J.W. Christian. The theory of transformations in metals and alloys—part 1:equilibrium and general kinetic theory, 2nd ed., Oxford, Pergamon press, 1981: 544-545
    [17] M.J. Whelan. On the kinetics of particle dissolution, Met. Sci. J., 1969, 3: 95-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700