用户名: 密码: 验证码:
罗汉果遗传图谱构建及农艺性状QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罗汉果(Siraitia grosvenorii (Swingle) C. Jeffrey)是葫芦科多年生雌雄异株植物,是广西特有的经济植物。罗汉果是高度杂合的二倍体植物(2n=28),其果实称为“罗汉果”,具有重要的医疗和保健价值。罗汉果具有清热润肺等功效,常用于治疗咳嗽,咽喉痛,肠燥便秘等症。其果实中含有热量极低而甜度很高的天然甜味物质—罗汉果苷,它是一种葫芦烷三萜甙类化合物。其中,罗汉果甜苷V甜度是蔗糖的300倍,被用作肥胖症患者和糖尿病患者的食糖代用品,其药理作用已明确并已开始工业化生产
     本研究以野红一号为母本,长滩果为父本构建的150个F1子代为作图群体,利用ISSR和SRAP技术,构建了罗汉果的第一张遗传连锁图谱,并首次对10个农艺性状进行了QTL定位。主要结果如下:
     1、建立了罗汉果第一份遗传图谱构建的F1群体材料。该群体以野生红毛一号和长滩果杂交获得了150株F1子代,种植于广西桂林兴安县实验基地,用于罗汉果遗传图谱构建及农艺性状QTL定位。
     2、从100条ISSR引物中筛选出17条扩增清晰且具有多态性的引物,扩增出51条ISSR多态性条带,平均每条引物扩增出3条,片段大小200-2000 bp;从196对SRAP引物组合中筛选出74对引物对子代进行扩增,共获得222个多态性位点,平均每个引物获得3.07个多态性位点,122对引物未扩增出多态性位点。此外,我们还调查了5个质量性状用于遗传图谱构建。
     3、本研究总共获得278个多态性位点,其中包括51个ISSR位点,222个SRAP位点和5个质量性状位点,有203个位点定位到27个连锁群上,包括29个ISSR位点,173个SRAP位点和1个性别标记。连锁群总长度为1474.1cM,平均图距是7.3 cM,最大图距是52.6 cM。大部分标记在连锁群上均匀分布,只有LG2一端的标记稍有聚集。27个连锁群上的标记为2-36个,连锁群长度为19.5-152.6 cM,遗传图谱覆盖率为65.2%。
     4、利用该图谱,运用软件Windows QTL Cartographer V2.5的复合区间作图法对所考察罗汉果的茎粗,叶柄长,叶宽,叶长,叶绿素含量,叶片全氮含量,果实鲜重,果实横径,果实纵径,果形指数10个性状进行QTL定位研究。取LOD临界值为2.5,共获得QTLs位点三十三个,分别位于LG1, LG2, LG3, LG4, LG5, LG7, LG9, LG10, LG11, LG13, LG14, LG17, LG22, LG27十三个不同的连锁群上单位点遗传贡献率8.40%-32.95%。三十三个QTLs的LOD值介于2.60-7.40之间,其中控制茎粗的QTL有1个,控制叶柄长的QTL有4个,控制叶宽的QTL有5个,控制叶长的QTL有4个,控制叶绿素含量的QTL有3个,控制果实鲜重的QTL有3个,控制果实横径的QTL有3个,控制果实纵径的QTL有5个,控制果形指数的QTL有2个,控制叶片全氮的QTL有3个。
Siraitia grosvenorii (Swingle) C. Jeffrey (Cucurbitaceae family), a dioecious, perennial and liana plant with root tubers, is an economically important species endemic to southern China, with the most planting in Guilin. It is a highly heterozygous diploid species with a chromosome number of 2n=28. The fruits of Siraitia grosvenorii, called "Luohanguo" have long been used as a food and beverage material as well as a traditional Chinese medicine. The pharmacological characteristics of Luohanguo make it a pulmonary demulcent and emollient for the treatment of dry cough, sore throat, dire thirst and constipation. The fruit contains zero-calorie high intensive natural sweeteners known as mogrosides, a group of terpene glycosides. Among these, the mogrosides v is about 300 times sweeter than sucrose and pharmacological effects have been known, and have been produced on an industrial scale. As such, Luohanguo has been used as a sugar substitute for patients with adiposity and diabetes.
     The first genetic linkage map of Luohanguo (Siraitia grosvenorii [Swingle] C. Jeffrey) was constructed with 150 F1 individuals derived from a cross between the cultivars Yehong 1 and Changtanguo using inter-simple sequence repeat (ISSR) and sequence related amplified polymorphism (SRAP) markers, and the QTL of ten agronomic traits was analyzed for the first time. The main conclusions are as follows:
     1. The first F1 mapping population of Luohanguo was constructed. The population consisted of 150 F1 progenies derived from a cross between the wild species Hongmaoyihao and cultivar Changtanguo performed at Xing'an County, Guilin City, Guangxi Province, for genetic map construction and QTLs analysis of ten agronomic traits.
     2. Out of 100 ISSR primers examined, only 17 (17%) of the ISSR primers were selected for efficient amplification and detection of polymorphism between the two parents and 150 F1 progenies. They produced 51 ISSR markers. The average number of markers produced per primer was 3. Fragment sizes ranged from 200 to 2,000bp. A total of 196 SRAP primer combinations were used to screen for polymorphisms between parents and 74 primer combinations showed polymorphisms.The 74 primer pairs yielded 222 polymorphic loci with an average of 3.07 polymorphic loci, and 122 primer pairs produced no polymorphic loci. In addition, we investigated five qualitative traits for genetic map construction.
     3. The genetic map of Luohanguo (Siraitia grosvenorii [Swingle] C. Jeffrey) was constructed using 278 polymorphic loci(51 ISSR and 222 SRAP polymorphic loci and 5 qualitative traits). Among the 278 markers obtained,203 markers (29 ISSRs,173 SRAPs and 1 sex marker) were mapped to 27 linkage groups. The map covered 1474.1 cM with an average map distance of 7.3 cM between adjacent markers and a maximum map distance of 52.6 cM between two markers. The markers distributed randomly in 27 groups except for minor clusters in the distal region of LG2. All 27 linkage groups consisted of 2-36 loci ranging in length from 19.5 to 152.6 cM and accounted for 65.2% of the total map distance.
     4. Composite interval mapping method of Windows QTL cartographer V2.5 was employed in QTL analysis of ten agronomical traits including stem diameter, petiole length, leaf width, leaf length, chlorophyll content, fruit fresh weight, fruit width, fruit length, fruit index and leaf total nitrogen content in Siraitia grosvenorii. A total of thirty-three QTLs were mapped on thirteen linkage groups for the ten triats with LOD≧ 2.5. Phenotypic variation explained by the single putative QTL varied from 8.40% to 32.95%, and the LOD score ranged from 2.60 to 7.40. These QTL included one for stem diameter,four for petiole length,five for leaf width, four for leaf length, three for chlorophyll content, three for fruit fresh weight, three for fruit width, five for fruit length,two for fruit index and three for leaf total nitrogen content.
引文
[1]李典鹏,张厚瑞.广西特产植物罗汉果的研究与应用[J].广西植物,2000,20(3):270-276.
    [2]汤宽泽.海鲜野味与祛病健身[M].上海:上海医科人学出版社,1993:8.
    [3]竹本常松.日本公开特许公报[P].1978,34966(C1.A23L1/22).
    [4]加茂贵妃.日本公开特许公报[P].1979,14562(C1.A23LⅠ/22).
    [5]Hayashibara日本公开特许公报[P].1981,14562(C1.A23L1/22).
    [6]路安民,张志耘.中国罗汉果属植物[J].广西植物,1984,4(1):27-33.
    [7]中国药材总公司编.中国中药资源志要[M].北京:科学出版社,1996:748.
    [8]江西新医学院编.中药大辞典[M].上海:上海科技出版社,1986:1356.
    [9]李荫昆.广西特产药物罗汉果[J].中草药,1980,11(8):368.
    [10]钟树权.罗汉果的用途[J].中药材,1985,(4):49.
    [11]周良才,张碧玉.罗汉果品种资源调查研究和利用意见[J].广西植物,1981,1(3):29-33.
    [12]周良才.罗汉果栽培技术[J].广西植物,1983,3(2):117-120.
    [13]李锋.罗汉果种子繁殖及其栽培研究[J].广西植物,1990,10(3):261-267.
    [14]曾俊龙.罗汉果栽培技术经验总结[J].中药材科技,1983,(4):4-5.
    [15]林荣,王秀琴,王润珍.罗汉果叶组织培养的研究[J].广西植物,1981,1(1),18-24.
    [16]李锋,蒋汉明,江新能,等.罗汉果组培苗的栽培研究[J].广西植物,1990,10(4):359-363.
    [17]徐位坤,盂丽珊,李荫昆,等.烘烤罗汉果的适宜温度探讨[J].广西植物,1984,4(4):333-335.
    [18]齐一萍,唐明仪.罗汉果果实的化学成分与应用研究[J].福建医药杂志,2001,23(5):158.
    [19]杨秀伟,张建业,钱忠明.罗汉果中一新葫芦烷型三萜皂苷—光果木鳖皂苷Ⅰ[J].中草药,2005,36(9):1285.
    [20]徐位坤,孟丽珊,李仲瑶,等.罗汉果嫩果中一个苦味成分的分离和鉴定[J].广西植物,1992,12(2):136.
    [21]常琪,陈迪华,斯建勇,等.罗汉果中总皂苷的含量测定[J].中国中药杂,1995,20(9):554.
    [22]陈全斌,陈海燕,李俊,等HPLC法测定罗汉果多糖的相对分子质量[J].中草 药,2003,34(12):1075.
    [23]陈全斌,义祥辉,余丽娟.不同生长周期的罗汉果鲜果中罗汉果甜甙V和总黄酮含量变化规律研究[J].广西植物,2005,25(3):274-277.
    [24]陈全斌,杨建香,程忠泉,等.罗汉果叶的茶用价值研究[J].福建茶叶,2004,(3):12-15.
    [25]李典鹏,张厚瑞.广西特产植物罗汉果的研究与应用[J].广西植物,2000,20(3):270-276.
    [26]陈全斌,程忠泉,许子竟,等.罗汉果种仁油脂的提取及其性质研究[J].粮油食品科技,2004,12(2):25-27.
    [27]斯建勇,陈迪华,沈连钢,等.广西特产植物罗汉果根的化学成分研究[J].药学学报,1999,34(12):918.
    [28]周欣欣,宋俊生.罗汉果及罗汉果提取物药理作用的研究[J].中医药学刊,2004,22(9):1723-1724.
    [29]戚向阳,陈维军,宋云飞,等.罗汉果对糖尿病小鼠的降血糖作用[J].食品科学,2003,24(12):124-127.
    [30]张俐勤,戚向阳,陈维军,等.罗汉果皂苷提取物对糖尿病小鼠血糖血脂及抗氧化作用的影响[J].中国药理学通报,2006,22(2):237-240.
    [31]王勤,王坤,戴盛明,等.罗汉果甜苷对小鼠细胞免疫功能的调节作用[J].中药材,2001,24(11):811.
    [32]王勤,李爱媛,李献萍,等.罗汉果的药理作用研究[J].中国中药杂志,1999,24(7):425-428.
    [33]穆静.罗汉果浸出液对变链菌致龋作用的实验室研究[J].中华口腔医学杂志,1998,33(3):183.
    [34]黎海彬,王邕,白先放,等.微波辐射对罗汉果提取物中活性成分的影响[J].精细化工,2006,23(3):264-268.
    [35]张俐勤,戚向阳,陈维军.罗汉果提取物的抗氧化活性研究[J].食品科学,2006,27(1):213-216.
    [36]郝桂霞.罗汉果提取液对自由基的清除作用[J].江西化工,2004,22(4):89-90.
    [37]陈全斌,沈钟苏,韦正波,等.罗汉果黄酮的活血化瘀药理作用研究[J].广西科学,2005,12(4):316-319.
    [38]王勤,李爱媛,李献萍,等.罗汉果的药理作用研究[J].中国中药杂志,1999,24(7):425-428.
    [39]木岛孝夫.罗汉果中甘味物质的抑癌作用[J].国外医学,中医中药分册,2003,25(3):174.
    [40]陶莉,王跃进,尤敏,等.AFIP用于构建罗汉果DNA指纹图谱及其幼苗雌雄鉴别[J].武汉植物学研究,2005,23(1):77.
    [41]韦弟,杨美纯,陈廷速,庾韦花,江文.罗汉果性别的RAPD标记研究[J].栽培与育种,2006,29(4):311-313.
    [42]秦新民,黄夕洋,蒋水元.罗汉果性别相关的RAPD标记[J].广西师范大学学报:自然科学版,2007,25(3):109-112.
    [43]韦素玲,黄姿梅,杨华,秦新民.罗汉果性别相关RAPD标记的克隆与序列分析[J].湖北农科学,2008,47(3):251-253.
    [44]周俊亚,唐绍清.栽培罗汉果遗传多样性的RAPD分析[J].分子植物育种,2006,4(1):71-78.
    [45]周俊亚,唐绍清,向悟生,宾晓芸.栽培罗汉果遗传多样性的ISSR分析[J].广西植物,2005,25(5):431-436.
    [46]Shao-Qing Tang, Xiao-Yun Bin,Yun-Tao Peng, et al. Assessment of genetic diversity in cultivars and wild accessions of Luohanguo (Siraitia grosvenorii [Swingle] A. M. Lu et Z. Y. Zhang), a species with edible and medicinal sweet fruits endemic to southern China, using RAPD and AFLP markers[J]. Genet Resour Crop Evol,2007,54: 1053-1061.
    [47]彭云滔,唐绍清,李伯林,刘燕华.野生罗汉果遗传多样性的ISSR分析[J].生物多样性,2005,13(1):36-42.
    [48]黄江,蒋慧萍,陈廷速,李杨瑞,刘永明.罗汉果不同种质亲缘关系的RAPD分析[J].福建果树,2006,1:15-17.
    [1]陈东明.遗传标记及其在园艺植物研究中的应用[J].农生物技术科学,2005,21(7):66-69.
    [2]方宣钧,吴为人,唐纪良.作物DNA标i记辅助育种[M].北京:科学出版社,2001:181-182.
    [3]Shoemaker RC, Olson TC. Molecular linkage map of soybean(Glycine max L.Merr), In O'Bren S J ed,Genetic Maps:locus maps of complex genomes[J]. Cold Spring Harbor Laboratory Press,1993,131-138.
    [4]刘勋甲,郑用琏,尹艳.遗传标记的发展及分子标记在农作物遗传育种中的应用Ⅱ:分子标记在农作物遗传育种中的应用及原理[J].湖北农业科学,1998,3:327-332.
    [5]周延清.遗传标记的发展[J].生物学通报,2000,35:17-18.
    [6]Bohuonl EJR, Keith DJ, Parkin IAP, Sharpe AG, Lydiate DJ. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus[J]. Theor. Appl. Genet., 1996,93:833-839.
    [7]谢皓.小麦基因定位研究进展[J].北京农学院学报,2000,15(4):74-79.
    [8]罗林广,王新望.分子标记及其在作物遗传育种中的应用[J].江西农业学报,1997,9:45-54.
    [9]沈法富,刘风珍,于元杰.分子标记在植物遗传育种的应用[J].山东农业大学学报,1997,28:83-91.
    [10]张鲁刚,王鸣,陈杭,刘玲.中国白菜RAPD分子遗传图谱的构建[J].植物学报,2000,42:484-489.
    [11]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农科学,1996,29(4):1-10.
    [12]McCouch SR, Cho YGs, M, Paul E, et al. Mori-shims H and Kinoshita T Report on QTL nomenclature[J]. Rice. Genet. Newsl.,1997,14:11-13.
    [13]Zhu LH, Chen Y, Xu YB, et al. Construction of a molecular map of rice and gene mapping using a double haploid population of across between Indica and Japonica varieties[J]. Rice Genetics, Nesletter,1993,10:132-135.
    [14]Kojima T, Nagaoka T, Noda K, Ogihara Y. Genctic likage map of ISSR and RAPD markers in einkorn wheat in relation to that of RFLP markers[J]. Theor. Appl. Genet., 1998,96:37-45.
    [15]Tsumura Y, Ohba K, Strauss SH. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir(Pseudotsuga menziesii)and sugi(Cryptomeria japonica) [J]. Theor. Appl. Genet.,1996,92:40-45.
    [16]VosP, HogersR, BleekerM. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Research,1995,23(21):4407-4414.
    [17]翁跃进.AFLP—一种DNA分子标记新技术[J].遗传,1996,18(6):29.
    [18]Savelkoul P. H. M, Aarts H. J. M. Haas J. D, et al. Amplified-Fragment Length Polymorphism Analysis:the State of an Art. J Clin[J]. Micorbiol,1999,37(10): 3083-3091.
    [19]Shirasawa K., Maeda H., et al. The number of genes having different alleles between rice cultivars estimated by SNP analysis[J]. Theoretical and Applied Genetics,2007,115(8):1067-1074.
    [20]Wang L., Hao L., et al. SNP deserts of Asian cultivated rice:genomic regions under domestication[J]. Journal of Evolutionary Biology,2009,22(4):751-761.
    [21]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet,2001,103:455-461.
    [22]Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers[J]. Genetic Resources and Crop Evolution,2003,50(3):227-238.
    [23]Lin X, Kaul S, Rounsley S. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana[J]. Nature,1999,402:761-768.
    [24]Copenhaver G P, Nikel K, Kuromori T, et al. Genetic definition and sequence analysis of Arabidopsis centromeres [J]. Science,1999,286:2486-2474.
    [25]EU Arabidopsis Genome Sequencing Consortium and Cold Spring Harbor, Washington University in St. Louis, and the PE Bio-systems Arabidopsis Sequencing Consortium Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature,1999,291:484-488.
    [26]林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679.
    [27]潘俊松,王刚,李效尊,等.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位[J].自然科学通报,2005,15(2):167-172.
    [28]王建设,姚建春,刘玲,王永健,李唯.利用中国香瓜与哈密瓜的F2群体构建SRAP连锁遗传图谱[J].园艺学报,2007,34(1):135-140.
    [29]Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers[J]. Theor Appl Genet,2003,107:271-282.
    [30]LI Y, ZHANG C Q. A molecular marker-SRAP technique optimization and application analysis[J]. Chinese Agricultural Science Bulletin,2005,21(5):108-112.
    [31]Hu j, Vick B A. Target Region Amplification Polymorphism:A novel marker technique for plant genotyping[J]. Plant Molecular Biology Reporter,2003,21:289-294.
    [32]Liu Z H, Anderson JA, Hu J, Frieson T L, et al. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci[J]. Genet,2005,111:782-794.
    [33]Xu S. S., Hu J. G., Faris J. D. Molecular characterization of the langdon durum-Triticum dicoccoides chromosome substitution lines using target region amplification polymorphism (TRAP)markers. In:Wheat Genetics International Symposium Proceedings[C].2003,12-17.
    [34]Hu J, Seiler G J, Jan C C, Vick B A. Assessing genetic variability among sixteen perennial Helianthus species using PCR-based TRAP markers[C]. Proceeding 25th Sunflower Research Workshop, Fargo, ND Jan.2003,6-17.
    [35]方宣钧,吴为人,唐纪良.作物DNA标i记辅助育种[M].北京:科学出版社,2001:181-182.
    [36]徐云碧,申宗坦,陈英,等.利用最大似然法进行水稻产量性状基因的分子作图[J].遗传学报,1995,22(1):46-52.
    [37]Morton NE. Sequential tests for the detection of linkage[J]. Am. J. Hum. Genet, 1955,7:277-318.
    [38]Haldane JBS. The combination of linkage values and the calculation of distance between the loci of linked factors[J]. Genet,1919,8:299-309.
    [39]Kosambi DD. The estimation of map distances from recombination values[J]. Ann. Eugen,1944,12:172-175.
    [40]Bohn M, M Khairallah D. QTL mapping in tropical maize:I Genomic region affecting leaf feeding resistance to sugarcane borer and other traits[J]. Crop Sci,1996, 36(4):1352-1361.
    [41]谭远德.构建分r标记连锁图谱德一种新方法:三点自交法[J].遗传学报,2001,28(1):83-94.
    [42]刘树兵,贾继增.高等植物的遗传作图[J].山东农业大学学报,1999,30:73-78.
    [43]Helentjaris T, Slocum M, Wright S, et al. Construction of genetic linkage maps in maize and tomato using RFLP[J]. Theor Appl Gene,1986,72:761-769.
    [44]McCouch S, Kochert G, Yu Z, et al. D:Molecular mapping of rice chromosomes[J]. Theor Appl Genet,1988,76:815-829.
    [45]席章营,朱芬菊,台国琴,李志敏.作物QTL分析的原理与方法[J].中国农学通报,2005,21:88-92.
    [46]冯宗云,荀琳,何萍,等.DNA分子标记与作物数量性状改良[J].西南农业学报,1998,11(增刊):67-72.
    [47]沈金雄,易斌,傅廷栋,等.植物数量性状基因定位研究概述[J].植物学通报,2003,20(3):257-263.
    [48]阮成江,何祯详,钦佩.我国农作物QTL定位研究的现状和进展[J].植物学通报,2003,20(1):10-22.
    [49]李维明,吴为人,卢浩然.小麦7D染色体数量性状基因定位和效应估计的研究[J].作物学报,2000,22(6):641-645.
    [50]景润春,黄青阳,朱英国.图位克隆技术在分离植物基因中的应用[J].遗传,2000,22(3):180-185.
    [51]王永飞,马三梅,刘翠萍,等.分子标记在植物遗传育种中应用原理及现状[J].西北农林科技大学学报(自然科学版),2001,29(增刊):106-113.
    [52]易小麦,朱祯,周开达.水稻抗性基因定位及相关分子标记研究进展[J].生物工程学报,1998,18(5):40-44.
    [53]Song W Y, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance geneXa21[J]. Science,1995,270:1804-1806.
    [54]Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression ofXal, a bacterial blight-resistance gene in rice is induced by bacterial inoculation [J]. Proc Natl Acad Sci USA,1998,95(4):1663-1668.
    [55]沈利爽,朱立煌.植物的比较基因组研究和大遗传系统[J].生物工程进展,1995,15(2):23-28.
    [56]Devos K M, Gale M D. Genome relationships:the grass model in current research[J]. The Plant Cell,2000,12:637-646.
    [57]Sterward C N Jr, Via L E. A rapid CTAB DNA isolation technique used for RAPD fingerprinting and other PCR application[J]. Bio Techniques,1993,14:748-751.
    [58]Chakravarti A, Lasher LK, Reefer JE. A maximum likelihood for estimating genome length using genetic linkage data[J]. Genetics,1991,128(1):175-182.
    [59]陶莉,王跃进,尤敏,等AFLP用于构建罗汉果DNA指纹图谱及其幼苗雌雄鉴别[J].武汉植物学研究,2005,23(1):77-80.
    [60]秦新民,黄夕洋,蒋水元.罗汉果性别相关的RAPD标记[J].广西师范大学学报:自然科学版,2007,25(3):109-112.
    [61]周俊业,唐绍清.栽培罗汉果遗传多样性的RAPD分析[J].分子植物育种,2006,4(1):71-78.
    [62]彭云滔,唐绍清,李伯林,等.野生罗汉果遗传多样性的ISSR分析[J].生物多样性,2005,13(1):36-42.
    [63]周俊亚,唐绍清,向悟生,等.栽培罗汉果遗传多样性的ISSR分析[J].广西植
    物,2005,25(5):431-436.
    [64]任羽,王得元,张银东,等.辣椒SRAP-PCR反应体系的建立与优化[J].分子植物育种,2004,2(5):689-693.
    [65]武志朴,杨文香,刘大群,等.小麦基因组SRAP扩增体系的初步研究[J].河北农业大学学报,2005,28(3):665-669.
    [66]周春娥,谷凤平,路淑霞,等.怀地黄SRAP分子标记优化体系的建立[J].湖北农业科学,2009,48(3):536-540.
    [67]徐莹莹,屈淑平,崔崇士.大白菜SRAP-PCR反应体系的优化[J].东北农业大报,2008,39(8):31-34.
    [68]曾柏全,邓子牛,杨迎花,等.湖南宽皮柑橘SRAP的反应体系[J].中南林业科技大学学报,2008,28(6):71-74.
    [69]邹枚伶,夏志强,吉家敏,等.白木香SRAP-PCR反应体系的建立[J].基因组学与应用生物学,2009,28(1):137-140.
    [70]Levi, A., Thomas, C.E., Joobeur, T., et al. A genetic linkage map for watermelon derived from a testcross population:(Citrullus lanatus var. citroides×C. lanatus var. lanatus)×Citrullus colocynthi[J]. Theor. Appl. Genet.,2002,105:555-563.
    [71]Venkateswarlu, M., Raje Urs, S., Surendra Nath, B., et al. A first genetic linkage map of mulberry (Morus spp.) using RAPD, ISSR, and SSR markers and pseudotestcross mapping strategy[J]. Tree Genetics & Genomes,2006,3:15-24.
    [72]Wei, Z.G., Zhang, K.X., Yang C.P., et al. Genetic linkage maps of Betula platyphylla Suk. based on ISSR and AFLP markers[J]. Plant Mol. Biol. Rep.,2010,28: 169-175.
    [73]Zietkiewicz, E., Rafalski, A., and Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification[J]. Genomics, 1994,20:176-183.
    [74]Salimath, S.S., Oliveira de, A.C., Godwin, I.D., Bennetzen, J.L. Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers [J]. Genome,1995,38:757-763.
    [75]Levi, A., Rowl, L.J. Identifying blueberry cultivars and evaluating their genetic relationships using randomly amplified polymorphic DNA (RAPD) and simple sequence repeat-(SSR-) anchored primers[J]. J. Am. Soc. Hort. Sci.,1997,122:74-48.
    [76]Wolff, K., Morgan-Richards, M.. PCR markers distinguish Plantago major subspecies[J]. Theor. Appl. Genet.,1998,96:282-286.
    [77]Ajibade, S.R., Weeden, N.F., Chite, S.M.. Inter-simple sequence repeat analysis of genetic relationships in the genus Vigna[J]. Euphytica,2000,111:47-55.
    [78]Cervera, M.T., Storme, V., Ivens, B., et al. Dense genetic linkage maps of three populus species (Populus deltoides, P. nigra and P.trichocarpa) based on AFLP and microsatellite markers[J]. Genetics,2001,158:787-809.
    [79]Gupta, S., Pandey, R.S., Srivastava, S., et al. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus[J]. J. Genet,2007,86:259-268.
    [80]Gupta, S.K., Souframanien, J., Gopalakrishna, T. Construction of a genetic linkage map of black gram, Vigna mungo (L.) Hepper, based on molecular markers and comparative studies[J]. Genome,2008,51:628-637.
    [81]Mishra, R.K., Kumar, A., Chaudhary, S., Kuma,r S. Mapping of multifoliate pinna (mfp) leaf-blade morphology mutation in grain pea Pisum sativum[J]. J. Genet,2009,88: 227-232.
    [82]Sun ZD, Wang ZN, Tu JX, et al. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers [J]. Theor Appl Genet,2007,114: 1305-1317.
    [83]Hemmat M, Weeden N F, Manganaris A G, et al. Molecular marker linkage map for apple[J]. Journal of Heridity,1994,85:4-11.
    [84]房经贵,章镇,马正强,等.AFLP标记在两个芒果品种间杂交F1代的多态性及分离方式[J].中国农业科学,2000,33(3):19-24.
    [85]张新叶,尹佟明,诸葛强,等.利用RAPD标记构建美洲黑杨×欧美杨分子标记连锁图谱[J].遗传,2000,22(4):209-213.
    [86]Serquen F.C., BacherJ., Straub J.E.. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativu L.)using random amplified polymorphic DNA markers[J]. Molecular Breeding,1997,3:257-268.
    [87]Staub J.E., Serquen F.C.. Towards an integrated linkage map of cucumber (Cucumis sativus L.):map merging experiments[J]. Acta Hort.,2000,510:357-366.
    [88]Bradeen J.M., Staub J.E., Wye C., et al. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.)[J]. Genome,2001,44:111-119.
    [89]Hawkin L.K., Dane F.. Kubisiak T.L., et al.2001, Linkage mapping in a watermelon opulation segregation for fusarium wilt resistance[J]. J. Amer. Soc. Hort. Sci.,126(3): 344-350.
    [90]Hashizume T., Shimamoto I., Hirai M.. Construction of a linkage map and QTL analysis of horticultural traits for watermelon using RAPD, RFLP and ISSR markers[J]. TAG,2003,106:779-785.
    [91]Brotman Y., Silberstein L., Kovalski J., et al. Linkage groups of Cucumis melo, including resistance gene homlogues and known genes[J]. Acta Hort.,2000,510: 441-448.
    [92]Silberstein L., Kovalski I., Brotman Y., et al. Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes[J]. Genome,2003,46(5): 761-773.
    [93]Neuhausen S.L.. Evaluation of restriction fragment length polymorphisms in cucumis melo.[J]. TAG,1992,83:379-384
    [94]Wang, J.S., Yao, J.C., Liu, L., Wang, Y.J., Li, W. Construction of a molecular genetic map for melon (Cucumis melo L.)based on SRAP[J]. Acta. Horticulturae Sinica, 2007,34(1):135-140.
    [95]Amine, Z., Gertraud, S., Martin, P., et al. A consensus map for Cucurbita pepo[J]. Mol. Breeding,2007,20:375-388.
    [96]Wang, G., Pan, J.S., Li, X.Z., et al. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits[J]. Science in China Ser. C Life Sciences,2005,48(3):213-220.
    [97]Hawkins, L.K., Dane, F., Kubisiak, T.L., Rhodes, B.B., Jarret, R.L. Linkage mapping in a watermelon population segregating for fusarium wilt resistance[J]. J. Am. Soc. Hort. Sci.,2001,126:344-350.
    [98]Barreneche, T., Bodenes, C, Lexer, C., et al. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD. SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers[J]. Theor. Appl. Genet.,1998,97:1090-1103.
    [99]Cervera, M.T., Storme, V., Ivens, B., et al. Dense genetic linkage maps of three populus species (Populus deltoides, P. nigra and P.trichocarpa) based on AFLP and microsatellite markers[J]. Genetics,2001,158:787-809.
    [100]Hanley, S., Barker, J.H.A., Van Ooijen, J.W., et al. A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers[J]. Theor. Appl. Genet.,2002,105:1087-1096.
    [101]Pekkinen, M., Varvio, S., Kulju, K.K.M., et al. Linkage map of birch, Betula pendula Roth, based on microsatellites and amplified fragment length polymorphisms[J]. Genome,2005,48(4):619-625.
    [102]曾云超,李俊,杨玉敏,等.利用SSR标记分析川育12×人工合成小麦Syn780重组自交系群体中的偏分离现象[J].西南农业学报,2007,20(2):230-233.
    [103]张丽.早美酥—红香酥F1代群体分子遗传图谱的构建[D].河北保定:河北农业大学,2006.
    [104]刘贤德,刘晓,张国范.皱纹盘鲍杂交F1 AFLP标记偏分离现象初析[J].海洋科学,2007,31(10):71-75.
    [105]Cervera, M.T., Storme, V., Ivens, B.. Dense genetic linkage maps of three populus species (Populus deltoides, P. nigra and P.trichocarpa) based on AFLP and microsatellite markers. Genetics,2001,158:787-809.
    [106]张穗生.试述罗汉果开发急需解决的几个问题[J].广西园艺,2002(4):9-10.
    [107]黄夕洋.罗汉果性别性状的遗传标记研究[D].广西南宁,广西师范大学,2006.
    [108]黄姿梅.罗汉果性别的分子标记研究[D].广西南宁,广西师范大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700