用户名: 密码: 验证码:
青藏高原高寒草甸3种常见毛茛科植物繁殖对策的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
繁殖对策,尤其资源分配问题是植物生活史研究的核心。海拔等生长环境条件对植物的繁殖有很大影响,不同海拔地区生长的植株可能会采取不同的繁殖策略。在虫媒植物的传粉中,很多昆虫的访花行为是受视觉线索的吸引,那么如何把生长中所能获得的有限的资源在营养生长和繁殖,以及花器官内部分配是很重要的问题。青藏高原东部高寒草甸的植被类型包含了许多独特的植物类群。这些植物如何适应青藏高原特殊的环境条件,表现出什么样的繁殖对策,为繁殖生态学家、进化生物学家提供了独一无二的研究契机。因此,我们选择在青藏高原东部的高寒草甸,以比较原始的植物类群—毛茛科植物为研究对象,选择矮金莲花,钝裂银莲花和露蕊乌头3个常见物种,探讨其繁殖对策,如资源如何在花器官内部分配问题,试图揭示这些植物如何适应环境条件达到繁殖成功的,最后的结果表明:
     (1)花葶长度和植株对两性功能的资源投入之间的关系随物种和海拔不同而不同。在研究区域的所有海拔(2200m,3400m,3700m和3900m)种群中,自交不亲和的矮金莲花雄蕊数/雌蕊数和花葶长度都负相关。在合作这个较低海拔地区(2200m)的种群中,花葶长和雄蕊重/雌蕊重正相关;而对3个高海拔地区:3400m,3700m和3900m的种群,雄蕊重/雌蕊重和花葶长负相关。对于兼性自交的钝裂银莲花,在海拔2200m和2900m,雄蕊数/雌蕊数和花葶长度负相关,而在3400m却是负相关。雄蕊重/雌蕊重与花葶长度的关系刚好与雄蕊数/雌蕊数与花葶长度的关系呈现完全相反的变化趋势;矮金莲花和钝裂银莲花这两个交配系统不同的物种,花葶长度和雌雄两性功能的关系是不同的,也说明花葶对繁殖的影响不仅受海拔等生境的影响,也受到物种交配系统的影响。
     (2)对金莲花这种异交虫媒植物来说,高海拔植株受到花粉限制的程度要大于低海拔地区的植株。高海拔地区昆虫数目少,活动受限,植株为了得到受访的机会,增加了对萼片这种从视觉上展示花的结构的资源投入;而低海拔地区的植株则增加了对退化花瓣这种产蜜结构的生物量分配。控制实验表明花的展示结构对雌性繁殖成功的贡献要大于传粉报酬对雌性繁殖成功的贡献。这也是植物对待不同花粉限制程度,获得繁殖成功的策略;
     (3)露蕊乌头这个物种的雌蕊数在不同资源限制条件下和花位置之间是一个稳定的性状,而且不受基因型的控制;单粒种子大小也是一个较为稳定的种子性状,在家系和果实位置间没有变化,只受资源可利用性(即资源的相对充足或缺乏)的影响;花序内从基部—顶部的开花顺序,花的性分配偏雄,饱满的种子数和结籽率依次减小,而这种花序内的模式是“资源限制”和“位置效应”两方面原因造成的,顶部花的雄蕊数及花粉数更多,心皮数及胚珠数更少;同去叶这种开花前期受到资源限制处理的植株相比,遮阴(苗期即光合受限)植株表现出了极强的可塑性,通过减少营养生长,减少花数,降低对雄性资源的投入和增大花萼片和花瓣的展示面积等策略获得繁殖成功;
     (4)露蕊乌头花序内沿从基部—顶部的开花顺序,花寿命和雄蕊期都在逐渐延长,而雌蕊期没有变化,这与花序内性分配的变化相关;遮阴处理使植株的花期和雄蕊期缩短,也可能同样是受性分配的影响,遮阴减小了花的性分配。
     通过这些研究发现,这几种进化上属于比较原始的毛茛科物种物种,在对不同繁殖功能的资源分配(花展示,花报酬,雄性功能,雌性功能)之间互相关联,并且随着交配系统,海拔和花在花序中的位置变化而变化,构成了一个复杂的繁育系统,显示出了对高山极端环境的良好适应。
Reproductive strategies, especially resource allocation are central of study of plant life history. In the pollinating process, many pollinators are attracted by visual cues. Outcrossers at different altitudes can obtain more visitations through different strategies to release the absence of pollinators. Increasing the resources investment to their attractants and rewards of insect-pollinated plants in high arctic and alpine areas is regarded as an adaption to low pollinator abundance and consequent pollen limitation. There are a lot of unique plants in Alpine Meadow at Eastern QinghaiTibetan Plateau. How to adapt the especial environment of Alpine, and what reproductive strategies appear for these species, which provide a special chance for ecologists and evolutionists. Therefore, we selected 3 common species of Ranunculaceae, comparative primordial plants in Alpine Meadow at Eastern QinghaiTibetan Plateau, and studied the reproductive strategies, such as reproductive allocation, especially sex allocation, to understand how the plants adapt the environmental conditions. The results showed:
     (1) The results showed that relationship between scape length and male, female function vared with speices with different mating systems and with attitudes, In Trollius ranunculoides Hemsl. (self-incompatible) plants, the relationship between scape length and stamina:pistils number (the ratio of stamina number to pistils number of a flower) and stamina:pistils weight (the ratio of stamina weight to pistils weight of a flower) vried with altitude. Stamina:pistils number was negatively related to scape length at all attitudes (2900m,3400m,3700m and 3900m). Stamina:pistils weight was positively related with scape length at the lowest elevation (2900m) but negatively related at the other three higher elevations (3400m,3700m and 3900m). In Anemone obtusiloba D. Don (facultatively self-pollinated), stamina:pistils number was positively related to scape length at two lower elevations (2200m and 2900m), but negatively related to scape length at a higher elevation (3400m). In contrast, stamina:pistils weight was negatively at the two lower elevations (2200m and 2900m) but positively related at the higher elevation (3400m) with scape length.
     (2) In Trollius ranunculoides plants, conspicuous yellow sepals is a visual attractive structure of this species) while degenerate petals can be evaluated as reward to pollinators i.e. nectar output, because each petal has a nectary at the base and the number of petals has a positive relationship with visiting maintenance Pollen limitation and resources allocation to sepals and petals was studied in Trollius ranunculoides at four altitudes. Female fitness was more pollen limited at the higher altitudes. The plants invested more resources to sepals and less to petals at higher than at the lower altitues.
     (3) Both the number of pistil and seed size of Aconitum gymnandrum plants did not vary with flower position within inflorescence or with different genotypes. The seed size, but not the number of pistil was affected by different resource availability. From bottom to top flower within inflorescence floral sex allocation tends to be male-biased: more anther number and pollen, less carpel number and ovule, lower seed set at top flower. It was caused by "constructure effect" and "resource limitation"
     (4) Floral longevity and male phase duration of Aconitum gymnandrum increased and the female phase duration was invariable from bottom to top flowers. Shading plants starting from the seedling stage maintained reproduction success, which was attributable to strategies like less investment to vegetative growth and male function; less flowers and larger flower display size. Shaded plants also had shorter floral longevity and male phase duration.
     In summary, our studies showed that, generally alpine plant species were pollen limited. To overcme pollen limitatation, resources allocation to different parts of reproduction functions (floral display, floral longivtiy and male and femal function) was related with each other. They also varied with many interal and external factors related to reproduction, such as mating system, altitudes and flowers postions within inflorescence. The alpine plant species at high altitudes would increase floral display to increase the opportunity of pollinators' visitation. These results indicated the three species had evolved complex reproduction systems to well adapt to the alpine envionments.
引文
[1]Arroyo MTK, Armesto JJ and Villagran C (1981) Plant phonological patterns in the high Andean cordillera of central Chile. J Ecol 69:205-223
    [2]Arroyo MTK, Armesto JJ, Primack R (1985) Community studies in pollination ecology in the high temperate Andes of Central Chile. Ⅱ. Effect of temperature on visitation rates and pollination possibilities. Plant Syst Evol 149:187-203
    [3]Arroyo MTK, Primack R, Armesto JJ (1982) Community studies in pollination ecology in the high temperate Andes of Central Chile. Ⅰ. Am J Bot 69:82-97
    [4]Ashman T-L (1992) Indirect costs of seed production within and between seasons in a gynodioecious species. Oecologia 92:266-272
    [5]Ashman T-L, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction:ecological and evolutionary causes and consequences. Ecology 85:2408-2421
    [6]Ashman T-L, Morgan MT (2004) Explaining phenotypic selection on plant attractive characters:male function, gender balance or ecological context? Proc R Soc Lond B 271:553-559.
    [7]Ashman T-L, Hitchens MS (2000) Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species, Fragaria virginiana (Rosaceae). Am J Bot 87:197-204
    [8]Ashman T-L, Schoen DJ (1994) How long should flowers live? Nature 371:788-791
    [9]Ashman T-L, Schoen DJ (1996) Floral longevity:fitness consequences and resource costs. In:Lloyd D, Barret S (eds.) Floral biology, studies on floral evolution in animal-pollinated plants. Chapman & Hall, New York, USA, pp.113-152
    [10]Ashman T-L, Schoen DJ (1997) The cost of floral longevity in Clarkia tembloriensis: an experimental investigation. Evol Ecol 11:289-300
    [11]Ashman T-L and Stanton ML (1991) Seasonal variation in pollination dynamics of sexually dimorphic Sidalcea oregano spp. spicata (Malvaceae). Ecology 72: 993-1003
    [12]Baker AM, Barrett SCH, Thompson JD (2000) Variation of pollen limitation in the early flowering Mediterranean geophyte Narcissus assoanus (Amaryllidaceae). Oecologia 124:529-535
    [13]Bazzaz FA, Ackerly DD (1992) Reproductive allocation and reproductive effort in plants. In:Fenner M (Ed) Seeds. The ecology of regeneration in plant communities. Oxford, UK:CAB International. pp,1-26
    [14]Bazzaz FA, Grace J (1997) Plant Resource Allocation. Academic Press, San Diego
    [15]Bell G (1985) On the function of flowers. Proceedings of the Royal Society of London, B, Biological Science 224:223-265
    [16]Bell SA, Cresswell JE (1998) The phenology of gender in homogamous flowers: temporal change in the residual sex function of flowers of oil-seed rape (Brassica napus). Func Ecol 12:298-306
    [17]Berry PE, CalvoRN (1991) Pollinator limitation and position dependent fruit set in the high Andean orchid Myrosmodes cochleare (Orchidaceae). Plant Syst Evol 174: 93-101
    [18]Billings WD (1974) Arctic and alpine vegetation:plant adaptations to cold summer climates. In:Ives J D, Barry RG (eds.) Arctic and alpine environments. Methuen.
    [19]Billings MD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481-529
    [20]Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature 391: 238-239
    [21]Blionis GJ, Halley JM and Vokou D (2001) Flowering phenology of Campanula on Mt Olympos, Greece. Ecography 24:696-706
    [22]Blionis GJ, Vokou D (2001) Pollination ecology of Campanula species on Mt Olympos, Greece. Ecography 24:287-297
    [23]Bosch M, Simon J, Molero J, Blanche C (2001) Breeding systems in tribe Delphinieae (Ranunculaceae) in the western Mediterranean area. Flora 196:101-113
    [24]Broyles SB, Wyatt R (1997) The pollen donation hypothesis revisited:a response to Queller. Am Naturalist 149:595-599
    [25]Brunet J (1992) Sex allocation in hermaphroditic plants. Trends Ecol Evol 7:79-84
    [26]Brunet J, Charlesworth D (1995) Floral sex allocation in sequentially blooming plants. Evolution 49:70-79
    [27]Buide ML (2004) Intra-inflorescence variation in floral traits and reproductive success of the hermaphrodite Silenea cutifolia. Ann Bot 94:441-448
    [28]Burd M (1994) Bateman's principle and plant reproduction:the role of pollen limitation in fruit and seed set. Bot Rev 60:89-137
    [29]Burd M, Callahan HS (2000) What does the male function hypothesis claim? J Evol Biol 13:735-742
    [30]Campbell DR (2000) Experimental tests of sex-allocation theory in plants. Trend Ecol Evol 15:227-232
    [31]Campbell D, Waser N, Price M (1996) Mechanisms of humming-bird-mediated selection for flower width in Ipomopsis aggregate. Ecology 77:1463-1472
    [32]Cariveau D, Irwin RE, Brody AK, Garcia-Mayeya LS, von der Ohe A (2004) Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos 104:15-26.
    [33]Caruso CM (2000) Competition for pollination influences selection on floral traits of Ipomopsis aggregate. Evolution 54:1546-1557
    [34]Caruso CM, Peterson SB, Ridley CE (2003) Natural selection on floral traits of Lobelia (Lobeliaceae):spatial and temporal variation. Am J Bot 90 (9):1333-1340
    [35]Charnov EL (1996) Optimal flower lifetimes. Evol Ecol 10:245-248
    [36]Charnov EL (1982) The Theory of Sex Allocation. Princeton University Press: Princeton
    [37]Cheplick GP (1995) Genotypic variation and plasticity of clonal growth in relation to nutrient vailability in amphibromus-scabrivalvis. J Ecol 83:459-468
    [38]Conner JK, Rush S (1996) Effects of flower size and number on pollinator visitation to wild radish, Raphanus raphanistrum. Oecologia 105:509-516
    [39]Cruden RW (1972) Pollinators at high elevation ecosystems:Relative effectiveness of birds and bees. Science 176:1439-1440
    [40]Darwin C (1859) The origin of species by means of natural selection. John Murray, London.
    [41]Darwin C (1877) The different forms of flowers on plants of the same species. University of Chicago Press, Chicago
    [42]de Jong, TJ, Waser NM, Klinkhamer PGL (1993) Geitonogamy:the neglected side of selfing. Trends Ecol Evol 8:321-325.
    [43]Diggle PK (1995) Architectural effects and the interpretation of patterns of fruit and seed development. Annual Rev Ecol Syst 26:531-552
    [44]Diggle PK (1997) Ontogenic contingency and floral morphology:the effects of architecture and resource limitation, Int J Plant Sci 158:S99-S107
    [45]Donnelly SE, Lortie CJ, Aarssen LW (1998) Pollination in Verbascum thapsus (Scrophulariaceae):the advantage of being tall. Am J Bot 85:1618-1625
    [46]Du GZ, Wang G (1995) Succession and qualitative change of artificial grassland of Gan Nan sub-alpine meadow. Acta Bot Sin 37:306-313 (in Chinese with English abstract)
    [47]Duan YW, Zhang TF, Liu JQ (2009) Insect and wind pollination of an alpine biennial Aconitum gymnandrum (Ranunculaceae). Plant Bio 11:796-802
    [48]Dreisig H (1995) Ideal free distributions of nectar foraging bumblebees. Oikos 72: 161-172
    [49]Ehrlen J (1992) Proximate limits to seed production in a herbaceous perennial legume Lathyrus vernus. Ecology 73:1820-1831
    [50]Ehrlen J, Kack S, Agren J (2002) Pollen limitation, seed predation and scape length in Primula farinosa. Oikos 97:45-51
    [51]Elberling H, Olesen JM (1999) The structure of a high latitude plant-flower visitor system:the dominance of flies. Ecography 22:314-323
    [52]Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton
    [53]Endress PK (1994) Diversity and evolutionary biology of tropical flowers. University Press, Cambridge, UK
    [54]Evanhoe L, Galloway LF (2002) Floral longevity in Campanula Americana (Campanulaceae):a comparison of morphological and functional gender phases. Am J Bot 89:587-591
    [55]Fabbro T, Korner C (2004) Altitudinal differences in flower traits and reproductive allocation. Flora 199:70-81
    [56]Fenster CB, Cheely G, Dudash MR, Reynolds RJ (2006) Nectar reward and advertisement in hummingbird-pollinated Silene virginica (Caryophyllaceae). Am J Bot 93:1800-1807
    [57]Fishbein M, Venable DL (1996) Evolution of inflorescence design:theory and data. Evolution 50:2165-2177
    [58]Fukuda Y, Suzuki K, Murata J (2001) The function of each sepal in pollinator behavior and effective pollination in Aconitum japonicum var. montanum. Plant Spec Biol 16:151-157
    [59]Gallen C (1989) Measuring pollinator-mediated selection on morphometric floral traits:bumblebees and the alpine sky pilot, Polemonium viscosum. Evolution 43: 882-890
    [60]Garcia-Camacho R, Totland 0 (2009) Pollen limitation in the alpine:a meta-analysis. Arct Antarct Alp Res 41:103-111
    [61]Glaettli M, Barrett SCH (2008) Pollinator responses to variation in floral display and flower size in dioecious Sagittaria latifolia (Alismataceae). New Phytol 179: 1193-1201
    [62]Goldinggay RL, Whelan RJ (1993) The influence of pollinators on fruit positioning in the Australian shrub Telopea speciosissima (Proteaceae). Oikos 68:501-509
    [63]Gomez JM, Zamora R (1999) Generalization vs. specialization in the pollination system of Hormathophylla spinosa (Cruciferae). Ecology 80:796-805
    [64]Gugerli F (1998) Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia 114:60-66
    [65]Hainsworth FR, Wolf LL, Mercier T (1984) Pollination and pre-dispersal seed predation:net effects on reproduction and inflorescence characteristics in Ipomopsis aggregata. Oecologia 63:405-409
    [66]Harder LD, Barrett SCH (1992) The energy cost of bee pollination for Pontederia cordata (Pontederiaceae). Funct Ecol 6:226-233
    [67]Harder LD, Barrett SCH (1995) Mating cost of large floral display in hermaphydite plants. Nature 373:512-515
    [68]Harder LD, Barrett SCH (1996) Pollen dispersal and mating patterns in animal-pollinated plants. In:Lloyd DG, Barrett SCH (Eds.), Floral biology:studies on floral evolution in animal-pollinated plants. NewYork:Chapman & Hall, pp, 140-190
    [69]Harder LD, Barrett SCH, Cole WW (2000) The mating consequences of sexual segregation within inflorescences of fowering plants. Proc R Soc Lond B 267: 315-320
    [70]Harder LD, Cruzan MB (1990) An evaluation of the physiological and evolutionary influence of inflorescence size and flower depth on nectar production. Funct Ecol 4:559-572
    [71]Holtsford TP, Ellstrand NC (1992) Genetic and environmental variation in floral traits affecting outcrossing rate in Clarkia tembloriensis (Onagraceae). Evolution 46:216-225
    [72]Ishii HS, Sakai S (2000) Optimal timing of corolla abscission:experimental study on Erythronium japonicum (Liliaceae). Funct Ecol 14:122-128
    [73]Ishii HS, Sakai S (2001a) Effects of display size and position on individual floral longevity in racemes of Narthecium asiaticum (Liliaceae). Funct Ecol 15:396-405
    [74]Ishii HS and Sakai S (2001b) Implications of geitongamous pollination for floral longevity in Iris gracilipes. Funct Ecol 15:633-641
    [75]Itagaki T, Sakai S (2006) Relationship between floral longevity and sex allocation among flowers within inflorescences in Aquilegia buergeriana var. oxysepala (Ranunculaceae). Am J Bot 93:1320-1327
    [76]Iwasa Y (1991) Sex change evolution and the cost of reproduction. Behav Ecol 2: 56-68
    [77]Jones CE, Cruzan MB (1999) Floral morphological changes and reproductive success in deer weed(Lotus coparius, Fabaceae). Am J Bot 86:273-277
    [78]Jones CE, Little RJ (1983) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York
    [79]Jonhson SD, Bond WJ (1997) Evidence for widespread pollen limitation of fruiting success in Cape wildflowers. Oecologia 109:530-534
    [80]Kang H, Primack RB (1991) Temporal variation of flower and fruit size in relation to seed yield in celandine poppy (Chelidonium majus, Papaveraceae). Am J Bot 78: 711-722
    [81]Khadari B, Gibernau M, Anstett MC, Kjellberg E, Hossaert-McKey M (1995) When figs wait for pollinators:the length of fig receptivity. Am J Bot 82:992-999
    [82]Kliber A, Eckert CG (2004) Sequential decline in allocation among flowers within inflorescences:proximate mechanisms and adaptive significance. Ecology 85: 1675-1687
    [83]Klinkhamer PGL, de Jong TJ (1993) Size-dependent allocation to male and female reproduction. In:Bazzaz FA, Grace J (Eds.) Plant resource allocation. San Diego: Academic Press, pp,211-229
    [84]Klinkhamer PGL, de Jong TJ, de Bruyn GJ (1989) Plant size and pollinator visitation in Cynoglossum officinale. Oikos 54:201-204
    [85]Klinkhamer PGL, de Jong TJ, Metz H (1997) Sex and size in cosexual plants. Trends Ecol Evol 12:260-265
    [86]Knight TM (2003) Floral density, pollen limitation, and reproductive success in Trillium grandiflorum. Oecologia 137:557-563
    [87]Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman T-L (2005) Pollen limitation of plant reproduction:pattern and process. Annu Rev Ecol, Evol Syst 36:467-497
    [88]Kudo G, Maeda T and Narita K (2001) Variation in floral sex allocation and reproductive success within inflorescences of Corydalis ambigua (Fumariaceae): pollination efficiency or resource limitation? J Ecol 89:48-56
    [89]Kudoh H, Whigham DF(1998) The effect of petal size manipulation on pollinator/seed-predator mediated female reproductive success of Hibiscus moscheutos. Oecologia 117:70-79
    [90]Lee TD (1988) Patterns of fruit and seed production, In:Lovett-Doust J, Lovett-Doust L (Eds) Plant reproductive ecology:patterns and strategies. Oxford, UK:Oxford University Press. pp,179-202
    [91]Levine MJ, Feller IC (2004) Effects of forest age and disturbance on population persistence in the understory herb, Arisaema triphyllum (Araceae). Plant Ecol 172:73-82
    [92]Liu JQ, He YP, Duan YW and William KS (2005) Floral closure in response to temperature and pollination in Gentiana traminea (Gentianaceae), an alpine perennial in the Qinghai Tibetan Plateau. Plant Syst Evol 256:17-33
    [93]Lloyd DG (1980) Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytol 86:69-79
    [94]Lloyd DG and Bawa KS (1984) Modification of the gender of seed plants in varying conditions. Evolutionary. Biology 17:255-338
    [95]Lloyd DG, Webb CJ (1986) The avoidance of interference between the presentation of pollen and stigamas in angiosperms1 Dichogamy. New Zeal J Bot 24:135-162
    [96]Lortie CJ, Aarssen LW (1999) The advantage of being tall:higher flowers receive more pollen in Verbascum thapsus L. (Scrophulariaceae). Ecoscience 6:68-71
    [97]Luisa Buide M (2004) Intra-inflorescence Variation in Floral Traits and Reproductive Success of the Hermaphrodite Silene acutifolia. Ann Bot 94:441-448
    [98]Marten-Rodriguez S, Fenster CB (2010) Pollen limitation and reproductive assurance in Antillean Gesnerieae:a specialists vs. generalist comparison. Ecology 91: 155-165
    [99]Medrano M, Guitian P, Guitian J (2000) Patterns of fruit and seed set within inflorescences of Pancratium maritimum (Amaryllidaceae):nonuniform pollination, resource limitation, or architectural effects? Am J Bot 87:493-501
    [100]Miller J, Litvak KS, Vargo A (1994) Comparative reproductive biology of two alpine primrose species. Arct Alp Res 26:297-303
    [101]Mitchell RJ, Shaw RG, Waser NM (1998) Pollinator selection, quantitative genetics, and predicted evolutionary responses of floral traits in Penstemon centranthifolius (Scrophulariaceae). Int J Plant Sci 159:331-337
    [102]Miyake T, Yafuso M (2003) Floral scents affect reproductive success in fly-pollinated Alocasia odora (Araceae). Am J Bot 90:370-376
    [103]Molau U (1993) Relationships between flowering phenology and life history strategies in tundra plants. Arct Alp Res 25:391-402
    [104]Moldenke AR (1979) Pollination ecology within the Sierra Nevada. Phytologia 42: 223-282
    [105]Nobel PS (1977) Water relations of flowering in Agave deserti. Botanical Gazette 138:1-6
    [106]Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321-348
    [107]O'Connell LM, Johnston MO (1998) Male and female pollination success in a deceptive orchid, a selection study. Ecology 79:1246-1260
    [108]Ohara M, Higashi S (1994) Effects of inflorescence size on visits from pollinators and seed set of Corydalis ambigua (Papaveraceae). Oecologia 98:25-30
    [109]Ohashi K, Yahara T (1998) Effects of variation in flower number on pollinator visits in Cirsium purpuratum (Asteraceae). Am J Bot 85:219-224
    [110]Olivieri I, Couvet D, Slatkin M (1994) Allocation of reproductive effort in perennial plants under pollen limitation. Am Nat 144:373-394
    [111]Ornelas JF, Ordano M, De-Nova AJ, Quintero ME,Garland JrT (2007) Phylogenetic analysis of interspecific variation in nectar of hummingbird-visited plants. J Evol Bio 20:1904-1917
    [112]Peakall R, Handel SN (1993) Pollinators discriminate among floral heights of a sexually deceptive orchid:implications for selection. Evolution 47:1681-1687
    [113]Primack R (1985) Longevity of individual flowers. Annual Rev Ecol Syst 16:15-37
    [114]Primack RB, Silander JA (1975) Measuring the importance of different pollinators to plants. Nature 255:143-144
    [115]Rathcke B.J. (2003) Floral longevity and reproductive assurance:seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae). Am J Bot 90(9): 1328-1332
    [116]Ramesey M (1995) Causes and consequences of seasonal variation in pollen limitation of seed production in Blandfordia grandiflora (Liliaceae). Oikos 73:49-58
    [117]Real LA, Rathcke BJ (1991) Individual variation in nectar production and its effects on fitness in Kalmia latifolia. Ecology 72:149-155
    [118]Richards AJ (1986) Plant Breeding Systems. George Allen & Unwin, London
    [119]Richardson TE, Stephenson AG (1989) Pollen removal and pollen deposition affect the duration of the staminate and pistillate phases in Campanula rapunculoides. Am J Bot 76:532-538
    [120]Robertson AW (1992) The relationship between floral display size pollen carryover and geitonogamy in Myosotis colensoi (Kirk) Macbride (Boraginaceae). Bio J Linn Soc 46:333-349
    [121]Sakai A, Matsui K, Kabeya D, Sakai S (2003) Altitudinal variation in lifetime growth trajectory and reproductive schedule of a sub-alpine conifer, Abies mariesii. Evol Ecol Res 5:671-689
    [122]Sargent RD, Roitberg BD (2000) Seasonal decline in male-phase duration in a protandrous plant:a response to increased mating opportunities? Func Ecol 14: 484-489
    [123]Schemske DW (1978) Evolution of reproductive characteristics in Impatiens (Balsaminaceae):the significance of cleistogamy and chasmogamy. Ecology 59: 596-613
    [124]Schemske DW, Bradshaw JrHD (1999) Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). PNAS,11910-11915
    [125]Schoen DJ, Ashman TL (1995) The evolution of floral longevity:resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution 49:131-139
    [126]Snow AATP, Spira R. Simpson R. A. Klips 1996 The ecology of geitonogamous pollination. In:Lloyd DG, Barrett SCH (Eds) Floral biology:studies on floral evolution in animal-pollinated plants. Chapman & Hall, New York, USA. pp, 191-216
    [127]Solomon BP (1988) Patterns of pre-and postfertilization resource allocation within an inflorescence:evidence for interovary competition. Am J Bot 75:1074-1079
    [128]Spira TP, Pollak OD (1986) Comparative reproductive biology of alpine biennial and perennial gentians (Gentiana, Gentianaceae) in California. Am J Bot 73:39-47
    [129]Stanton ML, Preston RE (1988) Ecological consequences and phenotypic correlates of petal size variation in wild radish, Raphanus sativus (Brassicaceae). Am J Bot 75 (4):528-539
    [130]Stanton ML, Snow AA, Handel SN (1986) Floral evolution:attractiveness to pollinators increases male fitness. Science 232:1625-1627
    [131]Stead, AD (1992) Pollination-induced flower senescence:a review. Plant Growth Regul 11:13-20
    [132]Stearns SC (1992) The evolution of life histories. Oxford University Press, New York
    [133]Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms. Ann Rev Ecol Syst 1:307-326
    [134]Stratton DA (1989) Longevity of individual flowers in a Costa Rican cloud forest: ecological correlates and phylogenetic constraints. Biotropica 21:308-318
    [135]Sugiyama S, Bazzaz FA (1998) Size dependence of reproductive allocation:the influence of resource availability, competition and genetic identity. Funct Ecol 12: 280-288
    [136]Sutherland S (1987) Why hermaphroditic paints produce many more flowers than fruits, experimental tests with Agave mckelveyana. Evolution 41:750-759
    [137]Sutherland S, Delph LF (1984) On the importance of male fitness in paints patterns of fruit-set. Ecology 65:1093-1104
    [138]Sutherland S, Vickory RKJ (1988) Trade-offs between sexual and asexual reproduction in the genus mimulus. Oecologia 76:330-335
    [139]Thompson, JD (1988) Effects of variation in inflorescence size and floral rewards on the visitation rates of traplining pollinators of Aralia hispida. Evol Ecol 2:65-76
    [140]Thomson JD (1989) Deployment of ovules and pollen among flowers within inflorescences. Evol Trends Plants 3:65-68
    [141]Thomson J.D., Plowright R.C. (1980) Pollen carryover, nectar rewards, and pollinator behavior with special reference to Diervilla lonicera. Oecologia 46:68-74
    [142]Torang P, Ehrlen J, Agren J (2006) Facilitation in an insect-pollinated herb with a floral display dimorphism. Ecology 87:2113-2117
    [143]Totland 0 (2001) Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology 82:2233-2244
    [144]Totland O (2004) No evidence for a role of pollinator discrimination in causing selection on flower size through female reproduction. Oikos 106:558-564
    [145]Totland 0, Matthews I (1998) Determinants of pollinator activity and flower preference in the early spring flowering Crocus vernus. Acta Oecol 19:155-166
    [146]Underwood BA, Tieman DM, Shibuya K, Dexter RJ, Loucas HM, Simkin AJ, Sims CA, Schmelz EA, Klee HJ, Clark DG (2005) Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiol 138:255-266
    [147]Vanhoenacker D, Agren J, Ehrlen J (2006) Spatio-temporal variation in pollen limitation and reproductive success of two scape morphs in Primula farinosa. New Phytol 169:615-621
    [148]Vaughton G, Ramsey M (1998) Floral display, pollinator visitation and reproductive success in the dioecious perennial herb Wurmbea dioica (Liliaceae). Oecologia, 115:93-101
    [149]Vesprini JL, Pacini E (2005) Temperation-dependent floral longevity in two Helleborus species. Plant Syst Evol 252:63-70
    [150]Waser NM (1983) The adaptive nature of floral traits:ideas and evidence. In:Real L (ed) Pollination biology. Academic Press, Orlando. pp,241-285
    [151]Wesselingh RA, Arnold ML (2003) A top-down hierarchy in fruit set on inflorescences in Iris fulva (Iridaceae). Plant Biol 5:651-660
    [152]Worley AC, Barrett SCH (2001) Evolution of floral display in Eichhonia paniculata (Pontederiaceae):genetic correlations between flower size and number. J Evol Biol 14:469-481
    [153]Wolfe LM (1992) Why does the size of reproductive structures decline through time in Hydrophyllum appendiculatum (Hydrophyllaceae)? Developmental constraints versus resources limitation. Am J Bot 79:1286-1290
    [154]Wu ZY (1980) Vegetation of China. Beijing:Science Press. pp,624-649 (in Chinese)
    [155]Yasaka M, Nishiwaki Y, Konno Y (1998) Plasticity of flower longevity in Corydalis ambigua. Ecol Res 13:211-216.
    [156]Young HJ, Stanton ML (1990) Influences of floral variation on pollen removal and seed production in wild radish. Ecology 71:536-547
    [157]Zhang DY (2000) Resource allocation and the evolution of self-fertilization in plants. Am Nat 155(2):187-199
    [158]Zhang TF, Duan YW, Liu JQ (2006) Pollination ecology of Aconitum gymnandrum (Ranunculaceae) at two sites with different altitudes. Acta Phytotaxon Sin 44: 362-370
    [159]Zhao ZG, Du GZ (2003) Mating system characters and the strategies of resource allocation in Ranunculaceae. J Lanzhou University 39:70-74
    [160]Zhao ZG, Du GZ, Ren QJ (2004) Size-dependent reproduction and sex allocation in five species of Ranunculaceae. Acta Phytoecol Sin 28:9-16
    [161]Zhao ZG, Du GZ, Zhou XH, Wang MT, Ren QJ (2006) Variations with altitude in reproductive traits and resource allocation of three Tibetan species of Ranunculaceae. Aust J Bot 54:691-700
    [162]Zhao ZG, He YL, Wang MT, Du GZ (2007) Variations of flower size and reproductive traits in selfincompatible Trollius ranunculoides (Ranunculaceae) among local habitats at Alpine Meadow. Plant Ecol 193:241-251
    [163]Zhao ZG, Meng JL, Fan BL, Du GZ (2008) Reproductive patterns within racemes in protandrous Aconitum gymnandrum (Ranunculaceae):potential mechanism and among-family variation. Plant Syst Evol 273:247-256
    [164]何亚平,费世民,王鹏,陈秀明,蒋俊明,何飞,邹自英,刘建全(2004)海北种群麻花艽闭合花冠对雌性适合度的影响.四川林业科技(3):32-35
    [165]黄双全,郭友好(2000)传粉生物学的研究进展.科学通报45:25-237
    [166]廖万金,王峥媚,谢丽娜等(2007)草乌传粉过程中的广告效应与回报物质研究.生物多样性15(6):618-625
    [167]张大勇.植物生活史进化与繁殖生态学。科学出版社,北京,2004.
    [168]苏智先,张素兰,钟章成(1998)植物生殖生态学研究进展.生态学杂志17(1):39-46
    [169]孙鸿烈,郑度.青藏高原形成演化与发展.广州:广州科技出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700