用户名: 密码: 验证码:
相变蓄热对立式集热板太阳能热气流系统运行性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统太阳能热气流电站由于其集热棚直径很大,只能建在人口稀少的荒漠化地区,而且烟囱非常高,不易建造与保持稳定。课题组在传统太阳能热气流电站基础上设计了一种立式集热板太阳能热气流发电系统,该系统将集热板与烟囱合为一体,依附在高层建筑物上建造,这一设计大大减小了原有太阳能热气流电站的占地面积,将技术简单,清洁环保的太阳能热气流发电技术应用在太阳能资源同样丰富的城市中。由于太阳辐射的间断性与不稳定性,为了提高能源利用率,保证立式集热板太阳能热气流发电系统的连续运行,本文在系统中设置了以石蜡相变材料作为蓄热材料的蓄热层,研究了相变蓄热对系统运行性能的影响,并研究了强化空气与石蜡换热的方式。
     本文主要针对系统内空气流动与相变蓄热的耦合情况进行了非稳态数值计算研究,比较了系统有无相变蓄热层时竖直烟囱流道内空气的最大流速和系统最大功率,分析了蓄热层厚度对系统运行情况的影响。通过分析得出:系统内空气最大流速和系统最大功率随时间的变化关系与太阳辐射量随时间的变化关系相似,中午太阳辐射量达到最大值时,气流速度和功率也达到最大值;包含蓄热层的系统在夜间有0.79m/s的风速,系统功率有1.3W左右,正午时系统的最大功率值比没有蓄热层时低,但是由于石蜡的储能作用,使得该值随天数增加不断提高,并且夜间气流速度也不断增大,因此可得出蓄热层能保证电站系统的连续运行;另外本文比较了两种蓄热层厚度对竖直烟囱流道内空气最大流速和系统最大功率的影响,通过研究表明,当蓄热层厚度为0.2m时,系统获得的最大功率值略大,因此在本文的系统中可将蓄热层的厚度设置为0.2m。
     由于石蜡和空气的导热系数较低,本文采用扩展表面的方法强化空气与石蜡之间的换热,设计了多种表面带肋的蓄热层,并对其蓄放热能力进行了模拟和比较,结果表明:增加空气与石蜡的换热接触面积,能够有效强化二者之间的换热;且当蓄热层表面带有纵向矩形肋时,石蜡的蓄热和放热时间大大缩短,系统中空气的流速得到了提高,从而保证了系统运行的连续性。另外本文利用数值模拟法分析了在石蜡相变材料中添加不同含量的纳米粒子对其蓄放热过程的影响,对纳米粒子强化立式集热板太阳能热气流系统中相变材料的蓄放热能力进行了前瞻性的研究。
Due to the heat collector covers great area, the traditional solar chimney power plant system can only be built on the desertification area. The very high chimney is difficult to be built and keep stable. On the basis of traditional solar chimney power plant station, a new kind of system with vertical heat collector is designed. The solar chimney power plant system with vertical heat collector combines the chimney and heat collector, attached to the high-rise buildings, which greatly reduces the area of original design and expands the application of this simple and clean power plant technology to cities. Because the solar radiation is intermittent and instable, the heat storage layer made of paraffin phase change material is added to the system to improve the energy efficiency and guarantee the continuous working of the system. The influences of phase change heat storage on the system operation properties and the heat transfer strengthening methods between air and paraffin are studied.
     Unsteady conjugate numerical simulation of the air flow and phase change heat storage in the system is done. The air maximum velocity and system maximum power in the condition of no heat storage layer or having heat storage layer are compared and the influence of thickness of heat storage layer on the system operation is analyzed. The conclusions include: the changing relationships of air velocity and system power with time are similar to the change of solar radiation with time; when the solar radiation reaches to the maximum value, the air velocity and system power also have their maximum values. The air velocity is 0.79m/s and the system power can be 1.3W at night in the system with heat storage layer. At noon the maximum power of system with heat storage layer is lower than that of system without heat storage layer, but because of the energy-storage role of paraffin, the power increases along with the increase of days, so does air velocity at night. Therefore the heat storage layer can make the system run continuously. The effects of thickness of heat storage layer on the air velocity and system power are compared. When the thickness is 0.2m, the system maximum power is bigger. So the thickness of heat storage layer in the system can be set as 0.2m.
     Because paraffin and air has low heat-conducting coefficient, different surface forms of heat storage layer are designed in order to enhance the heat transfer between the air and paraffin, and their abilities of heat storage are simulated and compared. The results show that the increase of contact area between air and paraffin can strengthen the heat exchange between them; when longitudinal rectangular fins are added to the surface, the melting or solidification time of paraffin reduces greatly, the air velocity is enhanced, so the continuity of system operation is ensured. The influence of adding nanoparticles to paraffin on the heat storage process is analyzed by numerical simulation and the heat storage ability of phase change materials in the solar chimney power plant system with vertical heat collector strengthened by the nanoparticles is prospectively studied.
引文
[1]新一轮全国油气资源评价,石油可采资源量212亿吨-搜狐新闻[EB/OL]. http://news.sohu.com/20080818/n258971371.shtml 2008年8月18日.
    [2]二氧化碳污染与低碳生活-百度文库[EB/OL]. http://wenku.baidu.com/view/68384c2458fb770bf78a5572.html 2010年12月12日.
    [3]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京:化学工业出版社,2005. 7-28.
    [4]黄岳海.被动式太阳房简介[EB/OL]. http://www.ehome.gov.cn/Article/Class10/Class18/200409/1116.html 2004年9月6日.
    [5]缪仁杰,李淑兰.太阳能利用现状与发展前景[J].应用能源技术,2007,5:28-33.
    [6]胡赛纯,汤青云.太阳能利用现状与趋势[J].湖南城建高等专科学校学报,2003,12(1):47-49.
    [7]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2005.8.
    [8]太阳能发电成本下降15年后将接近煤电-新闻中心-新浪网[EB/OL]. http://news.sina.com.cn/green/p/2010-08-26/110920979496.shtml 2010年8月26日.
    [9]张建锋,杨家宽,肖波等.太阳能烟囱发电技术现状及展望[J].可再生能源,2003,1:5-7.
    [10]卢峰,张华,姚秀平等.太阳能热风发电技术研究进展[J].中国电力,2006.9,39(9):24-27.
    [11]明廷臻,刘伟,许国良等.太阳能热气流电站系统的热力学分析[J].华中科技大学学报(自然科学版),2005.8,33(8):1-4.
    [12]马国湘.关于大力发展可再生能源,抢占经济科技制高点的提案-中国政协新闻网-人民网[EB/OL]. http://cppcc.people.com.cn/GB/34955/8952954.html 2009年3月12日.
    [13] M. A. K. Lodhi. Application of helio-aero-gravity concept in producing energy and suppressing pollution[J]. Energy Conversion & Management, 1999(3): 407-421.
    [14] Pasurmarthi N., Sherif S.A. Experimental and theoretical performance of a demonstration solar chimney model partⅠ: mathematical model develop[J]. International Journal of Energy Research, 1998, 22: 277-288.
    [15] GANNON AJ, VONB TW. Solar chimney cycle analysis with system loss and solar collector performance[J] . ASME, Journal of Solar Energy Engineering, 2000(122): 133- 137.
    [16] VONB TW, GANNON AJ. Compressible flow through solar chimneys power plant[J]. ASME, Journal of Solar Energy Engineering, 2000(122): 138-145.
    [17] VONB TW, GANNON A J. Solar chimney turbine characteristics[J]. Solar Energy, 2004(76):235-241.
    [18] Pastohr H, Komadt O, Gurlebeck K. Numerical and analytical calculations of the temperature and flow field in the upwind power plant[J]. International Journal of Energy Research, 2004(28): 495-510.
    [19]明廷臻,刘伟,许国良等.太阳能热气流电站系统研究[J].工程热物理学报,2006.5,27(3):505-507.
    [20]明廷臻,刘伟,熊宴斌等.太阳能热气流系统内传热与流动的实验模拟[J].工程热物理学报,2008.4,29(4):681-684.
    [21]毛宏举,李戬洪.集热棚对太阳能烟囱发电系统效率的影响[J].可再生能源,2006.6,130:6-9.
    [22]黄惠兰,张华,武卫东等.太阳能热风发电系统能量流的数值分析[J].太阳能学报,2008.7,29(7):827-831.
    [23]卢峰,张华,姚秀平等.太阳能热风发电系统集热器热物理模型及分析[J].可再生能源,2007,25(2):7-9.
    [24]周新平.基于西部太阳能烟囱热气流发电及应用研究[D].华中科技大学博士论文,2008.
    [25]全国首个太阳能热气流发电厂在灵武落户[EB/OL]. http://www.nx.xinhuanet.com/special/no1/2009-02/09/content_15639546.htm 2009年2月9日.
    [26]周艳,李洁浩,李庆领.依托高楼的新型太阳能热气流电站系统[J].热力发电,2009,38(7):4-6.
    [27]周艳,李庆领,李洁浩等.立式集热板太阳能热气流电站系统研究[J].工程热物理学报,2010,31(3):465-468.
    [28]周艳,李洁浩,李庆领.依托高楼的太阳能热气流电站系统的CFD模拟[J].热能动力工程,2010,25(2):226-229.
    [29]周艳,李洁浩,李庆领等.立式集热板式太阳能热气流发电系统性能研究[J].热力发电,2010,39(4):27-30.
    [30] Belen Zalba, Jose M-Marnn, Luisa F.Cabeza, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23: 251-283.
    [31]张仁元等编著.相变材料与相变储能技术[M].北京:科学出版社,2009.
    [32]张寅平,胡汉平,孔祥冬等.相变贮能—理论和应用[M].合肥:中国科技大学出版社,1996:9-22.
    [33]谭羽非.新型相变蓄能墙体的应用探讨[J].新型建筑材,2003.2:3-5.
    [34]王娟,曹祥.相变储能材料的研究进展[J].广东化工,2008,6(35):75-78.
    [35]熊辉东.太阳能相变蓄热槽的数值模拟研究[D].郑州大学硕士论文,2006.
    [36] Neeper D A. Thermal dynamics of wallboard with latent heat storage [J]. Solar Energy, 2000, 68(5): 393-403.
    [37] Farid M, Kong W J. Underfloor heating with latent heat storage [J]. Proceedings of Institute of Mechanical Engineers, 2001, 215(5): 601-609.
    [38] Hammou Z A, Lacroix M. A new PCM storage system for managing simultaneously solar and electric energy[J]. Energy and Buildings, 2006, 38(3): 258-265.
    [39] Zouhair Ait Hammou, Marcel Lacroix. A hybrid thermal energy storage system for managing simultaneously solar and electric[J]. Energy Conversion and Management, 2006, (47): 273-288.
    [40] G Hed, Bellander R. Mathematical modeling of PCM air heat changer[J]. Energy and Building, 2006, 38: 82-89.
    [41]江混,张寅平,徐继军等.板式相变储换热器的储换热性能实验研究[J].太阳能学报,2000,21(4):358-363.
    [42]肖敏,龚克成.良导热、形状保持相变蓄热材料的制备及性能[J].太阳能学报,2001,22(4):427-430.
    [43]王昊.采用新型相变材料蓄热槽蓄放热特性数值计算方法探讨[D].北京工业大学硕士论文,2003.
    [44]郑立辉,李斌,余磊.石蜡微胶囊的热性能研究[J].浙江化工,2004,(35):11-12.
    [45]陈枭,张仁元,毛凌波.石蜡类相变材料的研究及应用进展[J].材料研究与应用,2008.6,2(2):89-92.
    [46]彭培英,崔海亭.相变潜热储能堆积床蓄热放热性能的数值分析[J].河北大学学报(自然科学版),2009,29(2):146-149.
    [47]崔海亭,袁修干,邢玉明.高温相变蓄热容器的优化设计及参数分析[J].太阳能学报,2003,24(4):513-517.
    [48]王芳,郑茂余,李忠建等.相变材料在太阳能-地源热泵系统中的应用[J].太阳能学报,2006,27(12):1231-1234.
    [49] Vikram D, Kaushik S, Prashanth V, et al. An improvement in the solar water heating systems by thermal storage using phase change materials[C]. International Solar Energy Conference, 2007: 409-416.
    [50]曲良苗,臧春城.碟式太阳能聚光器与太阳能热发电系统[J].科技中国,2006,(11):60.
    [51]邱林,吴秀芬,刘星等.地面辐射供暖系统相变蓄能地板热工性能研究[J].煤气与热力,2007,27(2):79-82.
    [52]杨培莹,章学来,吕磊磊等.太阳能蓄热墙相变蓄热材料的研究进展[J].能源技术,2008,29(1):38-40.
    [53] M Amar. Khudhair, M Mohammed. Farid. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials[J]. Energy Conversion and Management, 2004, 45: 263-275.
    [54]帕坦卡S V.传热与流体流动的数值计算[M].北京:科学出版社,1984.
    [55]王京平.建筑相变材料保温性能试验研究[D].武汉理工大学硕士论文,2009.
    [56]杨世铭,陶文铨.传热学第三版[M].北京:高等教育出版社,1998.
    [57]陶文铨编著.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.5.
    [58]于树轩,章学来,陆钧.石蜡相变材料强化传热技术进展[J].制冷空调与电力机械,2009,30(1):15-19.
    [59]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [60]温正,石良臣,任毅如编著. FLUENT流体计算应用教程[M].北京:清华大学出版社,2009.1.
    [61]谢望平,朱冬生,汪南等.石蜡熔化蓄热的实验研究[J].广东化工,2008,35(1):10-13.
    [62] Sari A. Thermal Reliability Test of Some Fatty Acids as PCMs Used for Solar Thermal Latent Heat Storage Applications[J]. Energy Conversion and Management, 2003, 44: 2277.
    [63]邹复炳,章学来.石蜡类相变蓄热材料研究进展[J].能源技术,2006,27(1):29-31.
    [64]王福军编著.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.9.
    [65]闫全英,王威.低温相变石蜡储热性能的实验研究[J].太阳能学报,2006,27(8):805-810.
    [66]明廷臻,刘伟,黄晓明.太阳能热气流发电系统非稳态耦合数值分析[J].工程热物理学报,2009,30(2):305-308.
    [67] A mathematical model of a solar chimney[J]. Renewable Energy. 2003, 28: 1047-1060.
    [68]明廷臻,刘伟,许国良等.太阳能热气流发电系统的性能分析[J].可再生能源,2007,25(1):6-9.
    [69] Ismail K A R, Alves C L F, Modesto M S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder[J]. Applied Thermal Engineering, 2001, 21: 53-77.
    [70] Stritih U, Novak P. Heat transfer enhancement in phase-change processes[J]. Solar Energy, 2001, 65(3): 171-180.
    [71]吴双应,苏芬仙,李友荣等.肋片强化传热的热力学判据[J].重庆大学学报(自然科学版),2000,23(5):135-138.
    [72]周骞,卢玫,余敏等.肋片间距对环形通道流动和换热的影响[J].工程热物理学报,2008,29(10):1768-1770.
    [73]胡凌霄,付海明,刘栋栋等.采用肋片强化相变蓄热器传热的模拟分析[J].能源技术,2009,30(6):324-327.
    [74]朱恂,廖强,李隆键等.添加物对石蜡相变螺旋盘管蓄热器蓄热和放热性能的影响[J].热科学与技术,2005,4(1):14-19.
    [75] Eman-Bellah S M, Ghazy M R A. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy, 2007, 81: 839-845.
    [76]李夔宁,郭宁宁,王贺.改善相变材料导热性能研究综述[J].制冷学报,2008,29(6):46-50.
    [77] Mesalhy O, Lafdi K, Elgafy A, et al. Numerical study for enhancing the thermal conductivity of phase change material(PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005, 46: 847-867.
    [78]程文龙,韦文静.高孔隙率泡沫金属相变材料储能、传热特性[J].太阳能学报,2007,28(7):739-744.
    [79]刘芳,于航.泡沫金属/石蜡复合相变材料蓄热过程的数值模拟[J].建筑节能,2010,2:38-40.
    [80] Fukai J, Hamada Y, Morozumi Y. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling[J]. International Journal of Heat and Mass Transfer, 2003, 46: 4513-4525.
    [81] Hamada Y, Otsu W, Fukai J, et al. Anisotropic heat transfer in composites based on high-thermal conductive carbon fibers[J]. Energy, 2005, 30: 221-233.
    [82] Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27: 1271-1277.
    [83]张正国,王学泽,方晓明.石蜡/膨胀石墨复合相变材料的结构与热性能[J].华南理工大学学报(自然科学版),2006,34(3):1-5.
    [84]张正国,邵刚,方晓明.石蜡膨胀石墨复合相变储热材料的研究[J].太阳能学报,2005,26(5):698-702.
    [85]李强,宣益民.纳米流体强化导热系数机理初步分析[J].热能动力工程,2002,17(102):568-571.
    [86]宣益民,李强,姚正平.纳米流体的格子Boltzmann模拟[J].中国科学E辑技术科学,2004,34(3):280-287.
    [87]范庆梅,卢文强.纳米流体热导率和粘度的分子动力学模拟计算[J].工程热物理学报,2004,25(2):268-270.
    [88]王涛,骆仲泱,郭顺松等.可控纳米流体的制备及热导率研究[J].浙江大学学报,2007,41(3):514-518.
    [89]苏俊敏,张兴祥,孟庆杰等.多壁碳纳米管对正十八烷相变性能的影响[J].化工新型材料,2008,36(8):62–65.
    [90]邹得球,肖睿,何世辉等.基于纳米粒子/相变石蜡乳状液的研究[J].材料导报:综述篇2009,23(8):103-107.
    [91] Murshed S M S, Leong K C, Yang C. Thermophysical and electrokinetic properties of nanofluids-A critical review[J]. Appl Therm Eng, 2008, 28: 2109.
    [92]李新芳,朱冬生,王先菊.纳米流体强化相变蓄冷的数值模拟[J].低温工程,2009,1:53-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700