用户名: 密码: 验证码:
新型纳米TiO_2复合薄膜的制备及其染料敏化太阳能电池应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO2是一种被广泛用作染料敏化太阳能电池阳极的半导体材料,主要起吸附染料分子和传输光电子的作用,其形貌尺寸及排布对电池性能影响巨大。理想的光阳极结构应同时具有大的比表面积和优良的电子传输能力。目前常用的TiO2结构包括纳米管(线)阵列及纳米颗粒堆垛薄膜,两者各有优势。TiO2一维阵列理论上具有更快捷的电子传输通道,但易于团聚,从而降低了比表面积,使染料吸附量减少;而TiO2纳米颗粒堆垛薄膜比表面积大,染料吸附量多,但大量的界面造成电子传输性能降低。因此,两类结构中电子传输能力与比表面积相互制约。为了充分发挥其各自的优势,发展新的TiO2纳米结构合成方法和调控途径是目前染料敏化太阳能电池领域的研究热点。为此,本文针对上述两类TiO2纳米结构进行了改进。一方面在TiO2纳米管阵列内制备出了TiO2纳米线阵列,获得了一种比表面积大且高度分离的TiO2纳米“管中线”复合阵列;另一方面向TiO2纳米颗粒堆垛薄膜内复合连续的碳纳米管(CNTs)导电网络,获得了TiO2/CNTs复合光阳极,既保证了其大比表面积又增加了电子传输性能。
     为解决TiO2纳米管阵列团聚,本文通过对阳极氧化制备的TiO2纳米管阵列进行碱-酸(KOH-HCl)两步法处理,制备出了TiO2管内嵌有纳米线的纳米“管中线”阵列。该复合纳米管/线结构是一种高度分离的纳米一维阵列,其中纳米线由于纳米管的保护,可很好避免纳米线之间及纳米线-纳米管之间的团聚。实验研究了阳极氧化制备TiO2纳米管和“管中线”阵列的条件;考察了碱、酸液浓度及处理时间对TiO2纳米“管中线”阵列形成的影响;采用冷冻干燥及电化学阻抗技术研究了TiO2纳米“管中线”阵列的形成机制;研究了TiO2纳米管和“管中线”阵列作为染料敏化太阳能电池光阳极的性能。结果表明,(1)TiO2纳米“管中线”的形成包含两个阶段,首先碱处理使纳米管内壁破碎于管内形成大量表面羟基化的TiO2纳米团簇,随后的酸处理使TiO2纳米团簇脱水缩合形成纳米线。电化学阻抗测试发现,TiO2薄膜阻抗特征随着TiO2纳米团簇的形成与组装表现出循环特性,因此可根据电化学阻抗的变化探测TiO2纳米团簇的存在;(2)碱处理后TiO2纳米团簇的出现是纳米线形成的必要条件,碱处理时间和阳极氧化电解液浓度是影响纳米团簇形成数量与形成速率的主要因素;酸处理过程中TiO2纳米团簇的组装是纳米线形成的关键,纳米团簇经酸处理后,其表面的羟基主要由H+占据,快速脱水缩合形成纳米线,碱处理形成的纳米团簇在0.5M HCl作用下可在10min内完成组装生成纳米线;(3) HCl对TiO2纳米团簇(包括其前驱体及产物——纳米管内壁与纳米线)具有溶解作用,溶解速率与HCl浓度成正比,0.5M HCl需要8h才能完全溶解TiO2纳米团簇,而2M HCl只需1h,因此,TiO2纳米线直径可由HCl处理时间进行调控;(4)TiO2纳米“管中线”阵列比TiO2纳米管阵列具有更好的光电特性,厚度8μm的“管中线”阵列的光电转换效率可达3.48%,而厚度8.5μm的纳米管阵列效率仅为0.92%。
     为增强TiO2纳米颗粒堆垛光阳极的电子传输性能,本实验制备了一种新型TiO2/CNTs(石墨烯)复合光阳极。首先通过龟裂法在FTO导电玻璃上制备带有通底微裂纹的TiO2薄膜,利用裂纹内表面为模板填充CNTs或石墨烯构建导电网络,再用TiO2修复裂纹获得TiO2/CNTs(石墨烯)复合结构,实现了CNTs(石墨烯)网络与集流体(FTO玻璃)直接接触,提高了电子输运效率。主要研究了TiO2薄膜用浆料中乙基纤维素含量、成膜过程中的烘干、煅烧以及后期浸泡与干燥过程对薄膜龟裂尺寸的影响,研究了TiO2/CNTs(石墨烯)复合光阳极的电池性能。结果表明,(1)浆料中乙基纤维素含量对裂块尺寸有重要影响,龟裂所需最低乙基纤维素含量为3g(TiO26g,松油醇20g),随着其含量上升,裂块尺寸先减小后增大,平均宽度可达26.2μm,电子从TiO2传输至CNTs(石墨烯)网络的平均距离理论上小于13.1μm,接近文献报道的TiO2薄膜中电子平均传输自由程;(2)薄膜浸泡也是产生龟裂的重要因素,TiO2薄膜在水中浸泡6h以上才能发生龟裂;(3)薄膜烘干、煅烧及后期干燥对龟裂形成和形态均有不同程度影响,300~400煅烧的薄膜均能龟裂,随着煅烧温度升高,龟裂所需时间缩短;在一定煅烧时间内,薄膜龟裂均匀;时间过长,导致均匀性降低,尺寸增大;(4)CNTs与石墨烯的加入可明显提升阳极光电转换效率,石墨烯的提升作用最明显,电池效率可提升一倍。
Nano-TiO2has been widely used in dye sensitized solar cells (DSSC) as theacceptor of photoelectrons from excited dyes, and the morphology, size andconfiguration of TiO2influence the DSSC performance significantly. An ideal TiO2photoanode of DSSC is required to have huge surface area and superior electrontransport. One dimensional TiO2nanotube/nanowire array favors the electrontransport; however, the surface area is reduced largely because of the easy bundling.On the other hand, TiO2film composed of nanoparticles has larger surface area thanthat of nanotube array, but it suffers poor electron transport due to the numerousinterfaces among nanoparticles. In this context, it is a big challenge to developnanostructured TiO2photoanodes with both big surface area and good electrontransport. In this thesis, we report a novel TiO2nanostructure called “wire-in-tube”,which has a huge surface area since the inner nanowires are well separated from theouter nanotubes. We also prepared a novel TiO2/CNTs (or graphene) complexphotoanode by planting continuous CNTs (or graphene) network into the TiO2filmcomposed of nanoparticles so as to enhance the electron transport property whilekeeping the large surface area. The performance of DSSC fabricated usingabove-mentioned photoanodes is significantly improved.
     The TiO2nano “wire-in-tube” array was prepared by soaking the pre-anodizedTiO2nanotube array into KOH and HCl alternately. The obtained TiO2nanowires arehighly separated from each other owing to the protection of surrounding TiO2nanotube walls. In this study, we systematically investigated the effects of variousparameters including anodization conditions (voltage, current, etc), concentration ofKOH and HCl, and the time of KOH(HCl) treatment on the configuration of TiO2nano “wire-in-tube” array. Moreover, freeze drying and electrochemical impedancespectroscopy (EIS) were employed to study the formation mechanism of TiO2nanowires. The performance of DSSC using TiO2nano “wire-in-tube” array as thephotoanode was also evaluated. The main results are as follows:(1) The TiO2nano“wire-in-tube” array is formed in two steps, i.e., alkali treatment firstly destroys theinner layer of the tube wall to form TiO2nanoclusters inside the tubes, then theseclusters assemble to form nanowires through dehydration of the hydroxyl group onthe surface of clusters catalyzed by protons;(2) The pre-formation of TiO2nanoclusters during the alkali treatment is important to the final formation ofnanowires. The time of alkali treatment influences the amount of clusters and the concentration of electrolyte for anodization determines the formation rate of TiO2nanoclusters.(3) Acid treatment plays a crucial role in the assembly of TiO2nanoclusters to form nanowire. During the acid treatment, the–OH radicals on thesurface of nanoclusters react with protons and dehydrate quickly (ca.10min in0.5MHCl) to form nanowires. TiO2nanoclusters including their precursor (inner layer oftube wall) and their derivative (nanowires) could be dissolved by HCl, and thedissolving rate is proportional to the concentration of HCl, allowing us to control thediameter of TiO2nanowires to a large extent by adjusting the concentration of HCl;(4)TiO2nano “wire-in-tube” array exhibits a much better DSSC performance (3.48%conversion efficiency) than TiO2nanotube array (0.92%conversion efficiency) underthe same conditions.
     The TiO2/CNTs(graphene) complex photoanodes were prepared by a three-stepmethod. Firstly, cracked TiO2film was fabricated on FTO conductive glass bychapping, then CNTs or graphene was filled in the cracks to form a continuousnetwork, and finally the cracks were filled by TiO2to form a complete film. TheCNTs (graphene) network contacts the FTO substrate (electron collector) directly,making the electron transport easier. Various parameters including the content ofethylcellulose, drying process for film formation and chapping, calcination andsoaking were studied to clarify their influence on the crack size. The performance ofTiO2/CNTs(graphene) complex photoanode was also evaluated. The results show that:(1) A sufficient content of ethylcellulose in the TiO2slurry is important to thechapping. By adjusting the content of ethylcellulose, the mean width of TiO2islandsin the cracked film can be achieved as26m, indicating that the longest way forelectrons to transport from the TiO2island to the CNTs(graphene) network is13m,which is very close to the mean free path distance of electrons in TiO2film;(2)Soaking in H2O is crucial to the chapping, and the least soaking time is6h forobtaining a cracked TiO2film;(3) The calcination and drying process influences themorphology of chapping more or less. Chapping can occur in the TiO2filmscalcinated at300~400, and the calcination time for chapping becomes shorter asthe temperature increases;(4) Addition of CNTs, especially graphene, cansignificantly improve the DSSC performance by two times increase in thephoto-to-electrical conversion efficiency.
引文
[1] M A Green, K Emery, Y Hishikawa, et al, Solar cell efficiency tables (version41),Progress in Photovoltaics,2013,21(17071):1-11.
    [2] B G O’Regan, M.Gratzel, Nature,1991,353(764737).
    [3] A Yella, H W Lee, H N Tsao, et al, Porphyrin-sensitized solar cells with cobalt(II/III)-based redox electrolyte exceed12percent efficiency, Science,2011,334(6146056):629-634.
    [4] Q Wang, S Ito, M Graetzel, et al, Characteristics of high efficiency dye-sensitizedsolar cells, Journal of Physical Chemistry B,2006,110(30150):25210-25221.
    [5] B C O'Regan, K Bakker, J Kroeze, et al, Measuring charge transport fromtransient photovoltage rise times. A new tool to investigate electron transport innanoparticle films, Journal of Physical Chemistry B,2006,110(49734):17155-17160.
    [6] B C O'Regan, J R Durrant, P M Sommeling, et al, Influence of the TiCl4treatmenton nanocrystalline TiO2films in dye-sensitized solar cells.2. Charge density, bandedge shifts, and quantification of recombination losses at short circuit, Journal ofPhysical Chemistry C,2007,111(49837):14001-14010.
    [7] A Forneli, M Planells, M A Sarmentero, et al, The role of para-alkyl substituentson meso-phenyl porphyrin sensitised TiO2solar cells: control of thee(TiO2)/electrolyte(+) recombination reaction, Journal of Materials Chemistry,2008,18(13714):1652-1658.
    [8] H Lindstrom, A Holmberg, E Magnusson, et al, A new method for manufacturingnanostructured electrodes on plastic substrates, Nano Letters,2001,1(3982):97-100.
    [9] H Lindstrom, E Magnusson, A Holmberg, et al, A new method for manufacturingnanostructured electrodes on glass substrates, Solar Energy Materials and Solar Cells,2002,73(3991):91-101.
    [10] T Yamaguchi, N Tobe, D Matsumoto, et al, Highly efficient plastic substratedye-sensitized solar cells using a compression method for preparation of TiO2photoelectrodes, Chemical Communications,2007,70945):4767-4769.
    [11] F Pichot, J R Pitts, B A Gregg, Lowt.emperature sintering of TiO2colloids:Application to flexible dye-sensitized solar cells, Langmuir,2000,16(165313):5626-5630.
    [12] D S Zhang, T Yoshida, H Minoura, Lowt.emperature fabrication of efficientporous titania photoelectrodes by hydrothermal crystallization at the solid/gasinterface, Advanced Materials,2003,15(73910):814-817.
    [13] N G Park, K M Kim, M G Kang, et al, Chemical sintering of nanoparticles: Amethodology for lowt.emperature fabrication of dye-sensitized TiO2films, AdvancedMaterials,2005,17(51019):2349-2353.
    [14] N G Park, J van de Lagemaat, A J Frank, Comparison of dye-sensitized rutile-and anatase-based TiO2solar cells, Journal of Physical Chemistry B,2000,104(164738):8989-8994.
    [15] K J Jiang, T Kitamura, H Yin, et al, Dye-sensitized solar cells using brookitenanoparticle TiO2films as electrodes, Chemistry Letters,2002,2609):872-873.
    [16] X Chen, S S Mao, Titanium dioxide nanomaterials: Synthesis, properties,modifications, and applications, Chemical Reviews,2007,107(917):2891-2959.
    [17] M Saito, S Fujihara, Large photocurrent generation in dye-sensitized ZnO solarcells, Energy&Environmental Science,2008,1(5482):280-283.
    [18] K Keis, J Lindgren, S E Lindquist, et al, Studies of the adsorption process of Rucomplexes in nanoporous ZnO electrodes, Langmuir,2000,16(29510):4688-4694.
    [19] M Quintana, T Marinado, K Nonomura, et al, Organic chromophore-sensitizedZnO solar cells: Electrolyte-dependent dye desorption and band-edge shifts, Journalof Photochemistry and Photobiology a-Chemistry,2009,202(5372-3):159-163.
    [20] T T O Nguyen, L M Peter, H Wang, Characterization of Electron Trapping inDye-Sensitized Solar Cells by Near-IR Transmittance Measurements, Journal ofPhysical Chemistry C,2009,113(47119):8532-8536.
    [21] Y-J Shin, J-H Lee, J-H Park, et al, Enhanced photovoltaic properties ofSiO2-treated ZnO nanocrystalline electrode for dye-sensitized solar cell, ChemistryLetters,2007,36(58312):1506-1507.
    [22] H Minoura, T Yoshida, Electrodeposition of ZnO/dye hybrid thin films fordye-sensitized solar cells, Electrochemistry,2008,76(4272):109-117.
    [23] T Yoshida, M Iwaya, H Ando, et al, Improved photoelectrochemical performanceof electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption, ChemicalCommunications,2004,7254):400-401.
    [24] T Yoshida, M Tochimoto, D Schlettwein, et al, Self-assembly of zinc oxide thinfilms modified with tetrasulfonated metallophthalocyanines by one-stepelectrodeposition, Chem Mater,1999,11(79710):2657-2667.
    [25] A B F Martinson, J E McGarrah, M O K Parpia, et al, Dynamics of chargetransport and recombination in ZnO nanorod array dye-sensitized solar cells, PhysicalChemistry Chemical Physics,2006,8(42040):4655-4659.
    [26] B Onwona-Agyeman, S Kaneko, A Kumara, et al, Sensitization ofnanocrystalline SnO2films with indoline dyes, Japanese Journal of Applied PhysicsPart2-Letters&Express Letters,2005,44(48820-23): L731-L733.
    [27] K Tennakone, V P S Perera, I R M Kottegoda, et al, Dye-sensitized solid statephotovoltaic cell based on composite zinc oxide tin (IV) oxide films, Journal ofPhysics D-Applied Physics,1999,32(6214):374-379.
    [28] G Kumara, K Tennakone, V P S Perera, et al, Suppression of recombinations in adye-sensitized photoelectrochemical cell made from a film of tin IV oxide crystallitescoated with a thin layer of aluminium oxide, Journal of Physics D-Applied Physics,2001,34(3486):868-873.
    [29] A Kay, M Gratzel, Dye-sensitized core-shell nanocrystals: Improved efficiency ofmesoporous tin oxide electrodes coated with a thin layer of an insulating oxide,Chemistry of Materials,2002,14(2947):2930-2935.
    [30] S Ito, Y Makari, T Kitamura, et al, Fabrication and characterization ofmesoporous SnO2/ZnO-composite electrodes for efficient dye solar cells, Journal ofMaterials Chemistry,2004,14(2503):385-390.
    [31] B Tan, E Toman, Y Li, et al, Zinc stannate (Zn2SnO4) dye-sensitized solar cells,Journal of the American Chemical Society,2007,129(167914):4162-4163.
    [32] P Guo, M A Aegerter, RU(II) sensitized Nb2O5solar cell made by the sol-gelprocess, Thin Solid Films,1999,351(15931-2):290-294.
    [33] Y Bessekhouad, D Robert, J V Weber, Synthesis of photocatalytic TiO2nanoparticles: optimization of the preparation conditions, J Photoch Photobio A,2003,157(8621):47-53.
    [34] A Chemseddine, T Moritz, Nanostructuring titania: Control over nanocrystalstructure, size, shape, and organization, European Journal of Inorganic Chemistry,1999,8952):235-245.
    [35] K D Kim, H T Kim, Synthesis of TiO2nanoparticles by hydrolysis of TEOT anddecrease of particle size using a two-stage mixed method, Powder Technology,2001,119(10802-3):164-172.
    [36] K D Kim, H T Kim, Synthesis of titanium dioxide nanoparticles using acontinuous reaction method, Colloids and Surfaces a-Physicochemical andEngineering Aspects,2002,207(10791-3):263-269.
    [37] I N Kuznetsova, V Blaskov, I Stambolova, et al, TiO2pure phase brookite withpreferred orientation, synthesized as a spin-coated film, Materials Letters,2005,59(110329-30):3820-3823.
    [38] S Yang, L Gao, Fabrication and shape-evolution of nanostructured TiO2via asol-solvothermal process based on benzene-water interfaces, Materials Chemistry andPhysics,2006,99(14902-3):437-440.
    [39] Y Li, T J White, S H Lim, Lowt.emperature synthesis and microstructural controlof titania nano-particles, Journal of Solid State Chemistry,2004,177(11274-5):1372-1381.
    [40] A Pottier, C Chaneac, E Tronc, et al, Synthesis of brookite TiO2nanoparticles bythermolysis of TiCl4in strongly acidic aqueous media, Journal of Materials Chemistry,2001,11(12684):1116-1121.
    [41] A S Pottier, S Cassaignon, C Chaneac, et al, Size tailoring of TiO2anatasenanoparticles in aqueous medium and synthesis of nanocomposites. Characterizationby Raman spectroscopy, Journal of Materials Chemistry,2003,13(12694):877-882.
    [42] T Sugimoto, X P Zhou, Synthesis of uniform anatase TiO2nanoparticles by thegel-sol method-2. Adsorption of OH-ions to Ti(OH)4gel and TiO2particles, J.Colloid Interface Sci.,2002,252(13442):347-353.
    [43] T Sugimoto, X P Zhou, A Muramatsu, Synthesis of uniform anatase TiO2nanoparticles by gel-sol method-1. Solution chemistry of Ti(OH)(n)((4-n)+)complexes, J. Colloid Interface Sci.,2002,252(13432):339-346.
    [44] T Sugimoto, X P Zhou, A Muramatsu, Synthesis of uniform anatase TiO2nanoparticles by gel-sol method3. Formation process and size control, J. ColloidInterface Sci.,2003,259(13411):43-52.
    [45] T Sugimoto, X P Zhou, A Muramatsu, Synthesis of uniform anatase TiO2nanoparticles by gel-sol method4. Shape control, J. Colloid Interface Sci.,2003,259(13421):53-61.
    [46] H Z Zhang, J F Banfield, Thermodynamic analysis of phase stability ofnanocrystalline titania, Journal of Materials Chemistry,1998,8(15279):2073-2076.
    [47] R L Penn, J F Banfield, Morphology development and crystal growt.h innanocrystalline aggregates under hydrothermal conditions: Insights from titania,Geochimica Et Cosmochimica Acta,1999,63(126010):1549-1557.
    [48] H Z Zhang, J F Banfield, Understanding polymorphic phase transformationbehavior during growt.h of nanocrystalline aggregates: Insights from TiO2, Journal ofPhysical Chemistry B,2000,104(152815):3481-3487.
    [49] H Z Zhang, M Finnegan, J F Banfield, Preparing single-phase nanocrystallineanatase from amorphous titania with particle sizes tailored by temperature, NanoLetters,2001,1(15292):81-85.
    [50] M R Ranade, A Navrotsky, H Z Zhang, et al, Energetics of nanocrystalline TiO2,Proceedings of the National Academy of Sciences of the United States of America,2002,99(12816476-6481.
    [51] H Z Zhang, J F Banfield, Kinetics of crystallization and crystal growt.h ofnanocrystalline anatase in nanometer-sized amorphous titania, Chem Mater,2002,14(152610):4145-4154.
    [52] H Z Zhang, J F Banfield, Size dependence of the kinetic rate constant for phasetransformation in TiO2nanoparticles, Chem Mater,2005,17(152513):3421-3425.
    [53] T J Trentler, T E Denler, J F Bertone, et al, Synthesis of TiO2nanocrystals bynonhydrolytic solution-based reactions, Journal of the American Chemical Society,1999,121(13737):1613-1614.
    [54] S Y Chae, M K Park, S K Lee, et al, Preparation of size-controlled TiO2nanoparticles and derivation of optically transparent photocatalytic films, Chem Mater,2003,15(89117):3326-3331.
    [55] M Andersson, L Osterlund, S Ljungstrom, et al, Preparation of nanosize anataseand rutile TiO2by hydrothermal treatment of microemulsions and their activity forphotocatalytic wet oxidation of phenol, Journal of Physical Chemistry B,2002,106(82041):10674-10679.
    [56] Q H Zhang, L Gao, Preparation of oxide nanocrystals with tunable morphologiesby the moderate hydrothermal method: Insights from rutile TiO2, Langmuir,2003,19(15303):967-971.
    [57] Q Huang, L Gao, A simple route for the synthesis of rutile TiO2nanorods,Chemistry Letters,2003,32(10367):638-639.
    [58] S W Yang, L Gao, Lowt.emperature synthesis of crystalline TiO2nanorods: Massproduction assisted by surfactant, Chemistry Letters,2005,34(14917):964-965.
    [59] S W Yang, L Gao, A facile and one-pot synthesis of high aspect ratio anatasenanorods based on aqueous solution, Chemistry Letters,2005,34(14927):972-973.
    [60] S W Yang, L Gao, Fabrication and characterization of nanostructurally flowerlikeaggregates of TiO2via a surfactant-free solution route: Effect of various reactionmedia, Chemistry Letters,2005,34(14937):1044-1045.
    [61] A R Armstrong, G Armstrong, J Canales, et al, Lithium-ion intercalation intoTiO2-B nanowires, Advanced Materials,2005,17(8287):862-865.
    [62] A R Armstrong, G Armstrong, J Canales, et al, TiO2-B nanowires, Angew ChemInt Edit,2004,43(82917):2286-2288.
    [63] R Yoshida, Y Suzuki, S Yoshikawa, Syntheses of TiO2(B) nanowires and TiO2anatase nanowires by hydrothermal and post-heat treatments, Journal of Solid StateChemistry,2005,178(15047):2179-2185.
    [64] J N Nian, H S Teng, Hydrothermal synthesis of single-crystalline anatase TiO2nanorods with nanotubes as the precursor, Journal of Physical Chemistry B,2006,110(12249):4193-4198.
    [65] Y X Zhang, G H Li, Y X Jin, et al, Hydrothermal synthesis andphotoluminescence of TiO2nanowires, Chemical Physics Letters,2002,365(15363-4):300-304.
    [66] T Kasuga, M Hiramatsu, A Hoson, et al, Formation of titanium oxide nanotube,Langmuir,1998,14(106412):3160-3163.
    [67] T Kasuga, M Hiramatsu, A Hoson, et al, Titania nanotubes prepared by chemicalprocessing, Advanced Materials,1999,11(4715):1307-1311.
    [68] D V Bavykin, V N Parmon, A A Lapkin, et al, The effect of hydrothermalconditions on the mesoporous structure of TiO2nanotubes, Journal of MaterialsChemistry,2004,14(85222):3370-3377.
    [69] D V Bavykin, S N Gordeev, A V Moskalenko, et al, Apparent two-dimensionalbehavior of TiO2nanotubes revealed by light absorption and luminescence, Journal ofPhysical Chemistry B,2005,109(85418):8565-8569.
    [70] D V Bavykin, A A Lapkin, P K Plucinski, et al, TiO2nanotube-supportedruthenium(III) hydrated oxide: A highly active catalyst for selective oxidation ofalcohols by oxygen, Journal of Catalysis,2005,235(8511):10-17.
    [71] D V Bavykin, A A Lapkin, P K Plucinski, et al, Reversible storage of molecularhydrogen by sorption into multilayered TiO2nanotubes, Journal of PhysicalChemistry B,2005,109(85341):19422-19427.
    [72] D V Bavykin, E V Milsom, F Marken, et al, A novel cation-binding TiO2nanotube substrate for electro-catalysis and bioelectro-catalysis, ElectrochemistryCommunications,2005,7(85010):1050-1058.
    [73] D V Bavykin, J M Friedrich, F C Walsh, Protonated titanates and TiO2nanostructured materials: Synthesis, properties, and applications, Advanced Materials,2006,18(84921):2807-2824.
    [74] D V Bavykin, A N Kulak, F C Walsh, Metastable Nature of Titanate Nanotubesin an Alkaline Environment, Crystal Growt.h&Design,2010,10(2210):4421-4427.
    [75] S H Chien, Y C Liou, M C Kuo, Preparation and characterization of nanosizedPt/Au particles on TiO2-nanotubes, Synthetic Metals,2005,152(9061-3):333-336.
    [76] G H Du, Q Chen, R C Che, et al, Preparation and structure analysis of titaniumoxide nanotubes, Appl Phys Lett,2001,79(95022):3702-3704.
    [77] G Gundiah, S Mukhopadhyay, U G Tumkurkar, et al, Hydrogel route tonanotubes of metal oxides and sulfates, Journal of Materials Chemistry,2003,13(10089):2118-2122.
    [78] A Kukovecz, M Hodos, Z Konya, et al, Complex-assisted one-step synthesis ofion-exchangeable titanate nanotubes decorated with CdS nanoparticles, ChemicalPhysics Letters,2005,411(11004-6):445-449.
    [79] Y Lan, X P Gao, H Y Zhu, et al, Titanate nanotubes and nanorods prepared fromrutile powder, Advanced Functional Materials,2005,15(11058):1310-1318.
    [80] S H Lim, J Z Luo, Z Y Zhong, et al, Room-temperature hydrogen uptake by TiO2nanotubes, Inorganic Chemistry,2005,44(113712):4124-4126.
    [81] R Z Ma, K Fukuda, T Sasaki, et al, Structural features of titanatenanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electrondiffraction characterizations, Journal of Physical Chemistry B,2005,109(115813):6210-6214.
    [82] L Qian, Z L Du, S Y Yang, et al, Raman study of titania nanotube by softchemical process, Journal of Molecular Structure,2005,749(12731-3):103-107.
    [83] D S Seo, J K Lee, H Kim, Preparation of nanotube-shaped TiO2powder, Journalof Crystal Growt.h,2001,229(13251):428-432.
    [84] Z R R Tian, J A Voigt, J Liu, et al, Large oriented arrays and continuous films ofTiO2-based nanotubes, Journal of the American Chemical Society,2003,125(136941):12384-12385.
    [85] J M Wu, S Hayakawa, K Tsuru, et al, Nanocrystalline titania made frominteractions of Ti with hydrogen peroxide solutions containing tantalum chloride,Crystal Growt.h&Design,2002,2(14512):147-149.
    [86] J M Wu, S Hayakawa, K Tsuru, et al, Soft solution approach to preparecrystalline titania films, Scripta Materialia,2002,46(145610):705-709.
    [87] J M Wu, S Hayakawa, K Tsuru, et al, Porous titania films prepared frominteractions of titanium with hydrogen peroxide solution, Scripta Materialia,2002,46(14571):101-106.
    [88] Y Lin, G S Wu, X Y Yuan, et al, Fabrication and optical properties of TiO2nanowire arrays made by sol-gel electrophoresis deposition into anodic aluminamembranes, Journal of Physics-Condensed Matter,2003,15(113917):2917-2922.
    [89] J M Wu, Lowt.emperature preparation of titania nanorods through directoxidation of titanium with hydrogen peroxide, Journal of Crystal Growt.h,2004,269(792-4):347-355.
    [90] J M Wu, H C Shih, W T Wu, Electron field emission from single crystalline TiO2nanowires prepared by thermal evaporation, Chemical Physics Letters,2005,413(14504-6):490-494.
    [91] J M Wu, H C Shih, W T Wu, et al, Thermal evaporation growt.h and theluminescence property of TiO2nanowires, Journal of Crystal Growt.h,2005,281(14522-4):384-390.
    [92] J M Wu, T W Zhang, Y W Zeng, et al, Large-scale preparation of ordered titaniananorods with enhanced photocatalytic activity, Langmuir,2005,21(145515):6995-7002.
    [93] X S Peng, A C Chen, Aligned TiO2nanorod arrays synthesized by oxidizingtitanium with acetone, Journal of Materials Chemistry,2004,14(125916):2542-2548.
    [94] L Miao, S Tanemura, S Toh, et al, Fabrication, characterization and Raman studyof anatase TiO2nanorods by a heating-sol-gel template process, Journal of CrystalGrowt.h,2004,264(11851-3):246-252.
    [95] Y S Chen, J C Crittenden, S Hackney, et al, Preparation of a novel TiO2-basedp-n junction nanotube photocatalyst, Environmental Science&Technology,2005,39(9055):1201-1208.
    [96] S Lee, C Jeon, Y Park, Fabrication of TiO2tubules by template synthesis andhydrolysis with water vapor, Chem Mater,2004,16(110822):4292-4295.
    [97] S M Liu, L M Gan, L H Liu, et al, Synthesis of single-crystalline TiO2nanotubes,Chem Mater,2002,14(11493):1391-1397.
    [98] M S Sander, M J Cote, W Gu, et al, Template-assisted fabrication of dense,aligned arrays of titania nanotubes with well-controlled dimensions on substrates,Advanced Materials,2004,16(130122):2052-2057.
    [99] D Gong, C A Grimes, O K Varghese, et al, Titanium oxide nanotube arraysprepared by anodic oxidation, Journal of Materials Research,2001,16(27212):3331-3334.
    [100] G K Mor, O K Varghese, M Paulose, et al, A self-cleaning, room-temperaturetitania-nanotube hydrogen gas sensor, Sens Lett,2003,1(11981):42-46.
    [101] G K Mor, O K Varghese, M Paulose, et al, Fabrication of tapered,conical-shaped titania nanotubes, Journal of Materials Research,2003,18(119311):2588-2593.
    [102] O K Varghese, G K Mor, C A Grimes, et al, A titania nanotube-arrayroom-temperature sensor for selective detection of hydrogen at low concentrations, JNanosci Nanotechno,2004,4(13937):733-737.
    [103] M Paulose, H E Prakasam, O K Varghese, et al, TiO2nanotube arrays of1000mu m length by anodization of titanium foil: Phenol red diffusion, J Phys Chem C,2007,111(165141):14992-14997.
    [104] C M Ruan, M Paulose, O K Varghese, et al, Fabrication of highly ordered TiO2nanotube arrays using an organic electrolyte, Journal of Physical Chemistry B,2005,109(19133):15754-15759.
    [105] K Shankar, G K Mor, A Fitzgerald, et al, Cation effect on the electrochemicalformation of very high aspect ratio TiO2nanotube arrays in formamide-Watermixtures, J. Phys. Chem. C,2007,111(381):21-26.
    [106] H Habazaki, K Fushimi, K Shimizu, et al, Fast migration of fluoride ions ingrowing anodic titanium oxide, Electrochemistry Communications,2007,9(2945):1222-1227.
    [107] S P Albu, A Ghicov, S Aldabergenova, et al, Formation of Double-Walled TiO2Nanotubes and Robust Anatase Membranes, Advanced Materials,2008,20(29721):4135-4139.
    [108] A Valota, D J LeClere, T Hashimoto, et al, The efficiency of nanotube formationon titanium anodized under voltage and current control in fluoride/glycerol electrolyte,Nanotechnology,2008,19(29335).
    [109] Z Su, W Zhou, Formation, microstructures and crystallization of anodictitanium oxide tubular arrays, Journal of Materials Chemistry,2009,19(29616):2301-2309.
    [110] A Valota, D J LeClere, P Skeldon, et al, Influence of water content onnanotubular anodic titania formed in fluoride/glycerol electrolytes, ElectrochimicaActa,2009,54(29218):4321-4327.
    [111] S Berger, S P Albu, F Schmidt-Stein, et al, The origin for tubular growt.h ofTiO(2) nanotubes: A fluoride rich layer between tube-walls, Surface Science,2011,605(62319-20): L57-L60.
    [112] J H Park, T-W Lee, M G Kang, Growt.h, detachment and transfer ofhighly-ordered TiO(2) nanotube arrays: use in dye-sensitized solar cells, ChemicalCommunications,2008,79025):2867-2869.
    [113] Q Chen, D Xu, Large-Scale, Noncurling, and Free-Standing Crystallized TiO2Nanotube Arrays for Dye-Sensitized Solar Cells, J Phys Chem C,2009,113(79115):6310-6314.
    [114] D Wang, Y Liu, B Yu, et al, TiO2Nanotubes with Tunable Morphology,Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance, ChemMater,2009,21(7927):1198-1206.
    [115] B-X Lei, J-Y Liao, R Zhang, et al, Ordered Crystalline TiO2Nanotube Arrayson Transparent FTO Glass for Efficient Dye-Sensitized Solar Cells, J Phys Chem C,2010,114(79335):15228-15233.
    [116] S I Cha, K T Kim, S N Arshad, et al, Extraordinary strengthening effect ofcarbon nanotubes in metal-matrix nanocomposites processed by molecular-levelmixing, Advanced Materials,2005,17(76911):1377-1381.
    [117] Y Bao, W Wang, B He, et al, EIS analysis of hydrophobic and hydrophilicTiO2film, Electrochimica Acta,2008,54(7702):611-615.
    [118] H Friedrich, P M Frederik, G de With, et al, Imaging of Self-AssembledStructures: Interpretation of TEM and Cryo-TEM Images, Angew Chem Int Edit,2010,49(69043):7850-7858.
    [119] J Kuntsche, J C Horst, H Bunjes, Cryogenic transmission electron microscopy(cryo-TEM) for studying the morphology of colloidal drug delivery systems,International Journal of Pharmaceutics,2011,417(6921-2):120-137.
    [120] Y Y Won, A K Brannan, H T Davis, et al, Cryogenic transmission electronmicroscopy (cryo-TEM) of micelles and vesicles formed in water by polyethyleneoxide)-based block copolymers, Journal of Physical Chemistry B,2002,106(68813):3354-3364.
    [121] E Cano, D Lafuente, D M Bastidas, Use of EIS for the evaluation of theprotective properties of coatings for metallic cultural heritage: a review, Journal ofSolid State Electrochemistry,2010,14(6453):381-391.
    [122] M J Vitarelli, Jr., S Prakash, D S Talaga, Determining Nanocapillary Geometryfrom Electrochemical Impedance Spectroscopy Using a Variable Topology NetworkCircuit Model, Analytical Chemistry,2011,83(7492):533-541.
    [123] O A Loaiza, P J Lamas-Ardisana, E Jubete, et al, Nanostructured DisposableImpedimetric Sensors as Tools for Specific Biomolecular Interactions: SensitiveRecognition of Concanavalin A, Analytical Chemistry,2011,83(7508):2987-2995.
    [124] J A Penafiel Castro, R Quintero-Torres, N R de Tacconi, et al, Anodic Growt.hof Titania Nanotube Array on Titanium Substrate: A Study by ElectrochemicalImpedance Spectroscopy, J Electrochem Soc,2011,158(6502): D84-D90.
    [125] E Olsen, G Hagen, S E Lindquist, Dissolution of platinum in methoxypropionitrile containing LiI/I-2, Solar Energy Materials and Solar Cells,2000,63(4873):267-273.
    [126] E Ramasamy, W J Lee, D Y Lee, et al, Nanocarbon counterelectrode for dyesensitized solar cells, Applied Physics Letters,2007,90(53917).
    [127] M Wang, A M Anghel, B Marsan, et al, CoS Supersedes Pt as EfficientElectrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells, Journal of theAmerican Chemical Society,2009,131(65544):15976-15978.
    [128] S A Haque, S Handa, K Peter, et al, Supermolecular control of charge transfer indye-sensitized nanocrystalline TiO2films: Towards a quantitative structure-functionrelationship, Angew Chem Int Edit,2005,44(101635):5740-5744.
    [129] C Klein, M K Nazeeruddin, P Liska, et al, Engineering of a novel rutheniumsensitizer and its application in dye-sensitized solar cells for conversion of sunlightinto electricity, Inorganic Chemistry,2005,44(3152):178-180.
    [130] K-S Chen, W-H Liu, Y-H Wang, et al, New family of ruthenium-dye-sensitizednanocrystalline TiO2solar cells with a high solar-energy-conversion efficiency,Advanced Functional Materials,2007,17(8515):2964-2974.
    [131] J Faiz, A I Philippopoulos, A G Kontos, et al, Functional supramolecularruthenium cyclodextrin dyes for nanocrystalline solar cells, Advanced FunctionalMaterials,2007,17(1281):54-58.
    [132] C S Karthikeyan, H Wietasch, M Thelakkat, Highly efficient solid-statedye-sensitized TiO2solar cells using donor-antenna dyes capable of multistepcharge-transfer cascades, Advanced Materials,2007,19(2888):1091-1095.
    [133] C-Y Chen, S-J Wu, C-G Wu, et al, A ruthenium complex with superhighlight-harvesting capacity for dye-sensitized solar cells, AngewandteChemie-International Edition,2006,45(8235):5822-5825.
    [134] J-H Yum, D P Hagberg, S-J Moon, et al, A Light-Resistant Organic Sensitizerfor Solar-Cell Applications, Angewandte Chemie-International Edition,2009,48(7279):1576-1580.
    [135] Z Jin, H Masuda, N Yamanaka, et al, A Highly Efficient Dye-sensitized SolarCell Based on a Triarylamine-functionalized Ruthenium Dye, Chemistry Letters,2009,38(2621):44-45.
    [136] G Sauve, M E Cass, G Coia, et al, Dye sensitization of nanocrystalline titaniumdioxide with osmium and ruthenium polypyridyl complexes, Journal of PhysicalChemistry B,2000,104(55729):6821-6836.
    [137] G Sauve, M E Cass, S J Doig, et al, High quantum yield sensitization ofnanocrystalline titanium dioxide photoelectrodes with cis-dicyanobis(4,4'-dicarboxy-2,2'-bipyridine)osmium(II) ortris(4,4'-dicarboxy-2,2'-bipyridine)osmium(II) complexes, Journal of Physical Chemistry B,2000,104(131115):3488-3491.
    [138] G M Hasselmann, G J Meyer, Diffusion-limited interfacial electron transferwith large apparent driving forces, Journal of Physical Chemistry B,1999,103(21536):7671-7675.
    [139] G M Hasselmann, G J Meyer, Sensitization of nanocrystalline TiO2by Re(I)polypyridyl compounds, Zeitschrift Fur Physikalische Chemie-International Journalof Research in Physical Chemistry&Chemical Physics,1999,212(21639-44.
    [140] S Ferrere, New photosensitizers based upon Fe(L)(2)(CN)(2) and Fe(L)(3)(L=substituted2,2'-bipyridine): Yields for then photosensitization of TiO2and effects onthe band selectivity, Chem Mater,2000,12(9634):1083-1089.
    [141] S Ferrere, B A Gregg, Photosensitization of TiO2by Fe-II(2,2'-bipyridine-4,4'-dicarboxylic acid)(2)(CN)(2):Band selective electron injection from ultra-short-livedexcited states, Journal of the American Chemical Society,1998,120(9644):843-844.
    [142] S Ferrere, B A Gregg, New perylenes for dye sensitization of TiO2, New Journalof Chemistry,2002,26(1339):1155-1160.
    [143] E A M Geary, K L McCall, A Turner, et al, Spectroscopic, electrochemical andcomputational study of Pt-diimine-dithiolene complexes: rationalising the propertiesof solar cell dyes, Dalton Transactions,2008,15828):3701-3708.
    [144] T Bessho, E C Constable, M Graetzel, et al, An element of surprise-efficientcopper-functionalized dye-sensitized solar cells, Chemical Communications,2008,4232):3717-3719.
    [145] E J W Crossland, M Nedelcu, C Ducati, et al, Block Copolymer Morphologiesin Dye-Sensitized Solar Cells: Probing the Photovoltaic Structure-Function Relation,Nano Letters,2009,9(148):2813-2819.
    [146] Y J Kim, M H Lee, H J Kim, et al, Formation of Highly EfficientDye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO(2)Spheres, Advanced Materials,2009,21(71736):3668-3673.
    [147] H-J Koo, Y J Kim, Y H Lee, et al, Nano-embossed hollow spherical TiO(2) asbifunctional material for high-efficiency dye-sensitized solar cells, AdvancedMaterials,2008,20(16181):195-199.
    [148] D Kim, P Roy, K Lee, et al, Dye-sensitized solar cells using anodic TiO(2)mesosponge: Improved efficiency by TiCl(4) treatment, ElectrochemistryCommunications,2010,12(7374):574-578.
    [149] P Roy, D Kim, I Paramasivam, et al, Improved efficiency of TiO2nanotubes indye sensitized solar cells by decoration with TiO2nanoparticles, ElectrochemistryCommunications,2009,11(1285):1001-1004.
    [150] E Palomares, J N Clifford, S A Haque, et al, Control of charge recombinationdynamics in dye sensitized solar cells by the use of conformally deposited metal oxideblocking layers, Journal of the American Chemical Society,2003,125(12472):475-482.
    [151] Y Diamant, S Chappel, S G Chen, et al, Core-shell nanoporous electrode for dyesensitized solar cells: the effect of shell characteristics on the electronic properties ofthe electrode, Coord. Chem. Rev.,2004,248(93813-14):1271-1276.
    [152] Y Diamant, S G Chen, O Melamed, et al, Core-shell nanoporous electrode fordye sensitized solar cells: the effect of the SrTiO3shell on the electronic properties ofthe TiO2core, Journal of Physical Chemistry B,2003,107(15709):1977-1981.
    [153] S G Chen, S Chappel, Y Diamant, et al, Preparation of Nb2O5coated TiO2nanoporous electrodes and their application in dye-sensitized solar cells, Chem Mater,2001,13(89812):4629-4634.
    [154] S Ito, P Chen, P Comte, et al, Fabrication of screen-printing pastes from TiO2powders for dye-sensitised solar cells, Progress in Photovoltaics: Research andApplications,2007,15(16997):603-612.
    [155] C H Lee, S W Rhee, H W Choi, Preparation of TiO2nanotube/nanoparticlecomposite particles and their applications in dye-sensitized solar cells, Nanoscale ResLett,2012,7(170348.
    [156] L Chen, Y Zhou, W Tu, et al, Enhanced photovoltaic performance of adye-sensitized solar cell using graphene-TiO2photoanode prepared by a novel in situsimultaneous reduction-hydrolysis technique, Nanoscale,2013,5(17068):3481-3485.
    [157] T Chen, W Hu, J Song, et al, Interface Functionalization of Photoelectrodeswith Graphene for High Performance Dye-Sensitized Solar Cells, AdvancedFunctional Materials,2012,22(170124):5245-5250.
    [158] M Law, L E Greene, J C Johnson, et al, Nanowire dye-sensitized solar cells,Nature Materials,2005,4(96):455-459.
    [159] Y Alivov, Z Y Fan, Efficiency of dye sensitized solar cells based on TiO2nanotubes filled with nanoparticles, Appl Phys Lett,2009,95(15486).
    [160] K Zhu, T B Vinzant, N R Neale, et al, Removing structural disorder fromoriented TiO2nanotube arrays: Reducing the dimensionality of transport andrecombination in dye-sensitized solar cells, Nano Letters,2007,7(4212):3739-3746.
    [161] D Wang, L Liu, Continuous Fabrication of Free-Standing TiO(2) NanotubeArray Membranes with Controllable Morphology for Depositing InterdigitatedHeterojunctions, Chem Mater,2010,22(68424):6656-6664.
    [162] H Yin, Y Wada, T Kitamura, et al, Hydrothermal synthesis of nanosized anataseand rutile TiO2using amorphous phase TiO2, Journal of Materials Chemistry,2001,11(7416):1694-1703.
    [163] N Ostrowsky, Diffusion of Brownian particles trapped between two walls:Theory and dynamic-light-scattering measurements, Physical Review B,1996,-53(18-18).
    [164] S Ito, T N Murakami, P Comte, et al, Fabrication of thin film dye sensitizedsolar cells with solar to electric power conversion efficiency over10%, Thin SolidFilms,2008,516(170814):4613-4619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700