用户名: 密码: 验证码:
介孔结构/石墨烯复合锂离子电池负极材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池具有能量密度高,循环寿命长,无记忆效应等优点,是目前应用最为广泛的二次电池。为了适应动力电池发展的需求,需要开发性能更加优异的钾离子电池。介孔结构或纳米结构有利于电极表面与电解液的接触,在表面电流密度不变的前提下,能成倍的提高电池的输出功率;介孔结构或纳米结构还可以缩短锂离子从电极表面进入电极内部所需要的扩散距离,使锂离子更容易嵌入/脱出电极;此外,介孔结构的孔道能容纳电极材料在充放电时的体积膨胀,吸收应力。石墨烯作为一种纳米结构碳材料,具有非常高的比表而积,优异的电导率,以及超强的柔韧性和强度,是作为电极材料载体的极佳选择。将锂电活性材料附载于石墨烯上,能有效提高电极材料的电导率,使电池的倍率性能明显提升,同时能提高材料的结构稳定性,使电极材料在多次充放电后不会发生碎裂粉化,增加了电池的循环寿命。
     本论文工作以钛酸锂、二氧化钛、氧化铁等负极材料作为主要研究对象,通过将这些材料制备成介孔结构或纳米结构,并附载于热剥离石墨烯三维网络中,从而显著提高了它们的倍率性能与循环寿命。进一步研究以这些材料作为负极的全电池,获得了优良性能。具体研究内容如下:
     1.钛酸锂纳米粒子/热剥离石墨烯复合结构(LTO/TEG)的制备与性能。通过对氧化石墨进行热处理得到热剥离石墨烯(TEG),再进一步退火还原提高其电导率。我们以TEG作为载体,用高温固相反应的方法,在TEG内部纳米孔道内原位生长钛酸锂(LTO)纳米颗粒,最后得到了LTO/TEG结构。与纯LTO样品相比,LTO/TEG材料具有优异的倍率性能和循环寿命,50C的电流倍率下,能保持初始72%的容量,10C下进行5000循环的充放电,容量只衰减6%。这主要归因于TEG二维连通的网络,极大的提高了电极材料的电导率,同时也有效的增加了材料的结构稳定性。以LTO/TEG作为负极,碳包覆磷酸铁锂纳米颗粒(LFP/C)作为正极的全电池,也表现出很好的倍率性能和循环寿命。
     2.介孔二氧化钛/无定形碳/热剥离石墨烯三元复合结构(介孔Ti02/无定形碳/TEG)的制备与性能。我们用挥发诱导自组装的方法,以P123三嵌段共聚物作为软模板,在TEG的纳米空间内原位生成了介孔TiO2,之后在Ar气保护下进行退火,使三嵌段共聚物碳化,直接在介孔内壁原位生成无定形碳层。所得到的三元复合结构中,介孔TiO2与两个不同尺度的碳网络交织相连,TEG作为三维连通的微米级的碳网络,贯穿于整个活性颗粒,而无定形碳作为介孔内部纳米级的网络,紧贴于介孔Ti02内壁。这样的多级碳网络不但能有效的支撑介孔形貌的Ti02,使其不会在充放电中碎裂坍塌,而且能将电子从集流体直接传导到介孔内部,使Ti02的结构稳定性和导电性都有了明显的提升,以此为负极材料的半电池和全电池都表现出很好的倍率性能和循环寿命。
     3.系统研究孔结构参数对介孔二氧化钛(Ti02)微球锂电性能的影响。我们使用溶胶凝胶法,以F108三嵌段共聚物作为模板,制备了介孔TiO2微球,在不同温度下热处理,得到了一系列不同比表面积与孔径分布的介孔TiO2样品,并以此为负极材料,研究了介孔材料的孔结构参数,对其锂电性能的影响。结果表明,退火温度越高,介孔TiO2微球的比表面积越小,平均孔径越大。高比表面积有利于电解液和电极表面充分接触,易于二者交换锂离子,而大孔径有利于电解液的浸润与传输。因此存在一个最佳的制备条件,使电池的性能达到极值。我们最后得出,400℃退火的样品具有最佳的倍率性能。
     4.用介孔Fe203/石墨烯(MIO/TEG)作为负极材料,LFP/C以及商用LiFePO4LiCoO2、LiMn2O4作为止极分别制备全电池。对全电池正负极容量的匹配,以及对不同容量比、不同的首次不可逆容量和不同曲线形状下的电压的匹配,进行了系统的讨论和分析。我们发现,MIO/TEG作为负极的全电池中,LFP/C作为正极的电池具有很好的循环性能。此外,我们研究了电压过充后负极表面析锂的情况,发现析锉后对电池循环性能有较大的影响。
Lithium-ion batteries have the advantages of large energy density, long cycle life, no memory effect, and so on, which are the most widely used secondary batteries at present. In order to meet the needs of the development of power batteries, lithium-ion batteries with more excellent performance are required. Mesoporou-or nano-structured materials are beneficial to the contact between electrode and electrolyte. As the surface current density remains unchanged, the output power of the battery will exponentially increase. Mesoporous or nano-structure shorten the diffusion distance of lithium-ion from electrode surface to the interior of the electrode, and the lithium-ion can sequently insert into or extract form electrode much more easily. Furthermore, pore volume in mesoporous materials are able to relax the swell of the electrode during charging/discharging. Graphene is a kind of nanostructured carbon with the advantages of large specific surface area, excellent electrical conductivity, super strong flexibility and mechanical strength, which is an excellent matrix for electrode materials. The loading of active electrode materials on graphene surface would effectively improve the conductivity of electrode materials, significantly enhance the rate capability, and improve the stability of electrode structure. In this thesis, lithium titanate, titanium dioxide, and iron oxide were used as anode materials. To improve rate capability and cycle life, mesoporous or nanostructured anode materials were deposited in the three-dimensional network of thermally exfoliated graphene. Both half cells and full cells prepared with those materials as anodes demonstrate excellent properties of lithium-ion battery. The specific research works are as follows:
     1. The synthesis and performance of lithium titanate nanoparticales/thermally exfoliated graphene composite structure (LTO/TEG):Thermally exfoliated graphene (TEG) was prepared by thermally exfoliating of graphite oxide, and LTO nanoparticles were in situ deposited inside the nanopore of TEG networks by solid-state reaction. Compared with pure LTO, LTO/TEG has higher rate capability and cycle performance. At50C rate current, LTO/TEG battery retains72%of initial capacity. At10C rate current, the battery capacity only faded6%after5000cycles. During the electrochemical reaction, the three-dimensional continuous networks of TEG significantly enhance the electrical conductivity of electrode and effectively increase the structural stability of the materials. The full cell with LTO/TEG as anode material and lithium iron phosphate nanoparctiles/carbon (LFP/C) as cathode material also showed good rate capability and cycle life.
     2. The synthesis and performance of mesoporous titanium dioxide/amorphous carbon/thermally exfoliated graphene (mesoporous TiO2/amorphous carbon/TEG) ternary composite:Triblock copolymer P123was used as the soft template. TiO2and P123micelles were in situ self-assembly within the nanospace of TEG by evaporation-induced self-assembly (EISA). After the heat treatment in Ar, P123carbonized into amorphous carbon and in situ formed on the mesopore wall. In this ternary composite, mesoporous TiO2interweaved with two carbon networks at different scales, where TEG serves as a three-dimensional continuous conductive network for mesoporous TiO2. The continuous composite structure is able to ensure that all mesoporous TiO2particles have electrical contact with the current collector during the electrochemical reaction. Furthermore, the structure prevents the TiO2particles from detaching from the graphene during the long cycling, which makes the long-term cycling performance of the sample. In addition, the carbon coating derived from PI23not only enhances the conductivity of TiO2but also stabilizes its structure. So the stabiliy of the structure and the electrical conductivity of the materials are significantly enhanced. The half cell and the full cell using the composite as anode presented good rate capability and cycle life.
     3. The effect of pore structure parameters on the lithium battery performance of mesoporous TiO2microspheres:Mesoporous TiO2microspheres were synthesized using triblock copolymer F108as the soft template via sol-gel method. The synthesized samples were sinteringed at various temperatures to adjust different BET surface areas and pore sizes. The effect of pore structure parameters on the lithium battery performance was systematically investigated. The experimental results show that, as increasing the annealing temperature, the BET surface area of mesoporous TiO2microspheres decreases, and the pore size increases. Large specific surface area is beneficial to the contact between electrode and electrolyte and large pores size is in favour of the electrolyte transport. There is a optimum structure parameters for the battery performance.
     4. Investigations on full cells using mesoporous Fe2O3/graphene (MIO/TEG) as anode materials and LFP/C, commercial LiFePO4, LiCoO2, LiMn2O4as cathode materials:We systematically discussed and analyzed the capacity match and voltage match at different capacities, irreversible capacities and curve shapes. The results showed that full cell with LFP/C as cathode materials had good cycle performance. In addition, the condition of lithium precipitated on the anode surface after battery overcharged was analyzed. The precipitation of lithium would affect the cycle performance of batteries.
引文
[1]World energy outlook. Paris:International energy Agence,1994.
    [2]黄彦瑜.物理学史和物理学家,2007,36(8):643-651
    [3]陈军,陶占良,苟兴龙.化学电源——原理、技术与应用.北京:化学上业出版社,2006
    [4]吴宇平等.锂离子电池.北京:化学工业出版社,2004
    [5]N. Watanabe, M. Fukuba, U. S. Patent 3536532,1970
    [6]K. Braeuer, K. R. Moyes, U. S. Patent 3514337,1970
    [7]Mead et al. U. S. Patent 3937635,1976
    [8]M. S. Whittingham, Chem. Rev.,2004,104:4271
    [9]C. C. Liang, M. E. Bolster, R. M. Murphy, U. S. Patent 4310609,1982
    [10]M. S. Whittingham, U. S. Patent 4009052,1977
    [11]M. S. Whittingham, Science,1975,192:1226
    [12]M. S. Whittingham, Electrochem. Soc. Abstr.,1975,1:40
    [13]M. Broussely, P. Biensan, B. Simon, Electrochimica Acta,1999,45:3
    [14]W. A. Adams, G. J. Donaidson, J. A. R. Stiles, Power Sources,1984,10
    [15]J. M. Taraseon, M. Armand, Nature,2001,414:359-367
    [16]M. B. Armand, PhD thesis, Grenoble,1978
    [17]M. B. Armand, Materials for Advanced Battery. New York:Plenum,1980.145
    [18]K. Mizushima, P. C. Jones, P. J. Wiseman, et al. Mater. Res. Bull.,1980,17:785
    [19]汪继强.电源技术,1996,20(4):147-151
    [20]任学佑.电池,1997,27(4):188-191
    [21]黄振谦,张昭.电池,1995,25(3):143-145
    [22]J. R. Dahn, U. V. Sacken, M. W. Juzkow, Journal of Electrochemical Society, 1991,138(8):2207-2211
    [23]D. Guyomard, J. M. Taraseon, Solid State Ionics,1994,69:222-237
    [24]K. A. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc., 1997,144:1188
    [25]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术.北京:化学工业出版社,2007
    [26]尹浩.TiO2纳米结构的生长及其在能源环境方面的应用探索.2012
    [27]S. Guillaume, B. Emmanuel, L. Dominique, J. Mater. Chem.,2005,15 (12): 1263-1269
    [28]L. Kavan, J. Rathousky, M. Gratzel, et al. J. Phys. Chem. B,2000,104 (50): 12012-20151
    [29]P. Kubiak, A. Garcia, M. Womes, et al. J. Power Sources,2003,119-121(51): 626-630
    [30]T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc,1995.142(5): 1431-1435.
    [31]E. Ferg, R. J. Gummow, A. DeKock, J. Electrochem. Soc,1994,141(11): L147-L150.
    [32]G. Wang, J. Xu, Solid State Ionics,2008,179:946-950
    [33]高玲,仇卫华,赵海雷.电池,2004,34(5):351-352
    [34]H. Ge, N. Li, Electrochemistry Communication,2008,10:719-722
    [35]P. P. Prosini, R. Mancini, L. Petrucci, et al. Solid State Ionics,2001,144: 185-192.
    [36]J. Wolfenstine, J. L. Allen, Journal of Power Sources,2008,180:582-585
    [37]Ch. Jiang, Y. Zhou, H. Zhou, et al. Journal of Power Sources,2007,166:514-518
    [38]Y. Hao, Q. Lai, Journal of Alloys and Compounds,2007,439:330-336
    [39]Ch. Shen, X. Zhang, Y. Zhou, H. Li, Materials Chemistry and Physics,2002,78: 437-441
    [40]J. Gao, C. Jiang, J. Ying, C. Wan, Journal of Power Sources,2006,155:364-367
    [41]Y. F. Tang, L. Yang, Z. Qiu, J. S. Huang, Electrochemistry Communications, 2008,10:1513-1516
    [42]R. Poizot, S. Lamelle, S. Grugeon, L. Dupont, J-M. Tarascon, Nature,2000,407: 496-499
    [43]J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, X. W. Lou, J. Am. Chem. Soc,2010, 132:13162
    [44]Q. Fan, M.S. Whittingham, Electrochem. Solid-State Lett.,2007,10:A48
    [45]J. Gao, M.A. Lowe, H.D. Abama, Chem. Mater.,2011,23:3223-3227
    [46]J. Chen, L. N. Xu, W. Y. Li, X. L. Gou, Adv. Mater.,2005,17:582-586
    [47]H. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang, Y. Cui, H. Dai, J. Am. Chem. Soc.,2010,132:13978-13980.
    [48]谢毅,钱逸泰.中国科学院院刊,2001,76,26
    [49]F. Jiao, A. Harrison, A. H. Hill, P. G. Bruce, Adv. Mater.,2007,19:4063-4066
    [50]P. Ball, L. Garwin, Nature,1992,355:761-766
    [51]Z. C. Bai, B. Sun, N. Fan, Z. C. Ju, M. H. Li, L. Q. Xu, Y. T. Qian, Chem. Eur. J., 2012,18(17):5319-5324
    [52]H. Tabagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Appl. Phys. Lett., 1990,56:2379-2380
    [53]Q. Li, G. Zeng, S. Xi, Chinese Chemical Bulletin,1985,6:129-134
    [54]胡德昌,胡滨.新型材料特性及应用.广东科技出版社,1997.
    [55]J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y. Qian, J. Phys. Chem. B,2005,109: 9463-9467
    [56]Y. G. Wang, L. Cheng, F. Li, H. M. Xiong, Y. Y. Xia, Chem. Mater.2007,19, 2095-2101.
    [57]T. Masui, H. Hirai, R. Hamada, N. Imanaka, G Adachi, T. Sakata, H. Mori, J. Mater. Chem.,2003,13:622-627
    [58]Sumio lijima, Physica B,2002,323:1-5
    [59]D. Q. Bi, F. Wu, W. J. Yue, Y. Guo, W. Shen, R. X. Peng, H. A. Wu, X. K. Wang, M. T. Wang, J. Phys. C. C.,2010,141:13846-13852
    [60]C. Macilwain, Nature 2001,405:730-732
    [61]Q. Yang, K. B. Tang, C. R. Wang, Y. T. Qian, S. Y. Zhang, J. Phys. Chem. B, 2002,106:9227-9230
    [62]J. Wu, F. Duan, Y. Zheng, Y. Xie, J. Phys. Chem. C,2007,111:12866-12871
    [63]C. S. Ju, M. G. Lee, S. S. Honn, Hwahak Konahak,1997,35:655-659
    [64]C. M. Krowne, J. nanomater,1998,102:1571-1577
    [65]L. Li, J. F. Song, P. R. Yu, Chinese J. chem.,2008,26:220-224
    [66]D. L. Feldheim, C. D. Keating, Chem. Soc. Rev.1998,27:1-13
    [67]T. Takagahara, Phys. Rev. B,1993,47:4569-4584
    [68]J. Y. Shen, Z. Y. Li, Q. J. Yan, Y. Chen. J. Phys. Chem.,1993,97:8504-8511
    [69]J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck, G.C. Walker, J. Am. Chem. Soc,2002,124:9034-9035
    [70]M. Fievet, J. P. Lagier, MRS. Bull.1989,14:29-40
    [71]G. Schmid, M. Harms, J. Am. Chem. Soc.,1993,115:2046-2048
    [72]B. Parkinson, Science,1995,270:1157-1158
    [73]G. W. Chow, L. K. Kurihara, K. M. Kemner, P. E. Schoen, W. T. Elam, A. Ervin, J. Mater. Res.,1995,10:1546-1554
    [74]W. Chang, G. Skandan, Nano. Mater.,1994,4:507-520
    [75]K. R. Venkatachari, D. Huang, S. P. Ostrander, et al. J. Mater. Res.1995,10: 748-755
    [76]N. Malikova, I. P. Santos, Langmuir,2002,18:3694-3697
    [77]Q. M. Zhang, Y. N. Huang, H. M. Shen, F. Yan, Y. W. Du, Y. N. Wang, Appl. Phys. Lett.,1995,67:3417-3419
    [78]F. Jiao, P. G. Bruce, Adv. Mater.,2007,19:657-660
    [79]B. Rang, G. Ceder, Nature,2009,458:190
    [80]K. X. Wang, M. D. Wei, M. A. Morris, H. S. Zhou, J. D. Holmes, Adv. Mater., 2007,19:3016
    [81]H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater.,2003,15: 2107
    [82]H. Q. Li, R. L. Liu, D. Y. Zhao, Y. Y. Xia, Carbon,2007,45:2628
    [83]N. Pereira, L. C. Klein, G G Amatucci, J. Electrochem. Soc,2002,149:A262
    [84]B. A. Boukamp, G. C. Lesh, R. A. Huggins, J. Electrochem. Soc,1981,128:725
    [85]C. K. Chan, H. L. Peng, G. Liu, K. McDwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nafiotechnol,2008,3:31
    [86]Z. C. Liu, L. H. Weng, Y.M. Zhou, D. Y. Zhao, J. Mater. Chem.,2003,13(2): 308-311
    [87]Y. J. Han, J. M. Kim, Chem. Mater.,2000,12(8):2068-2069
    [88]Z. Peng, Z. Shi, M. Lin, Chem. Comm.,2000,12:2125-1226
    [89]F. Chen, Z. Shi, M. Lin, Chem. Comm,2000,11:2095-2096
    [90]A. Yu, R. Freeh, J. Power. Sources,2002,104(1):97-100
    [91]E. Kim, D. Son, T. C. Kim, et al. Angew Chem. Int. Ed.,2004,43:5987-5990
    [92]H. Zhou, S. Zhu, M. Hibino, et al. Adv. Mater.,2003,15(24):2107-2110
    [93]S. Zhu, H. Zhou, T. Miyoshi, et al. Adv. Mater.,2004,16(22):2012-2017
    [94]P. Liu, S. H. Lee, C. E. Tracy, et al. Adv. Mater.,2002,14(1):27-30
    [95]W. Hogarth, J. Costa, J. Drennan, et al. J. Mater. Chem.,2005,15:754-758
    [96]I. M. Hung, H. P. Wang, W. H. Lai, et al. Electrochin. Acta,2004,50:745-748
    [97]T. Miyasaka, Y. Kijitori, J. Electrochem. Soc,2004,151(11):A1767-A1773
    [98]S. Ito, Y. Makari, T. Kitamura, et al. J. Mater. Chem.,2004,14:385-390
    [99]J. Lee, S. Yoon, T. Hyeon, et al. Chem. Comm.1999:2177-2178
    [100]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Science,2004,306(5696): 666-669
    [101]A. K. Geim, K. S. Novoselov, Nature Materials,2007,6(3):183-191
    [102]廉培超.石墨烯基复合材料的合成、表征及其电化学性能研究,2011
    [103]C. G. Lee, X. D. Wei, J. W. Kysar, et al. Science,2008,321(5887):385-388
    [104]J. H. Chen, C. Jang, S. D. Xiao, et al. Nature Nanotechnology,2008,3(4): 206-209
    [105]N. Li, G. Liu, C. Zhen, F. Li, L. L. Zhang, H. M. Cheng, Adv. Funct. Mater., 2011,21:1717-1722
    [106]S. B. Yang, X. L. Feng, K. Mullen, Adv. Mater.,2011,23:3575-3579
    [1]K. Amine, I. Belharouak, Z. Chen, et al. Adv. Mater.,2010,22:3052-3057
    [2]E. Kang, Y. S. Jung, G. H. Kim, et al. Adv. Funct. Mater.,2011,21:4349-4357
    [3]J. M. Feckl, K. Fominykh, M. Dolinger, et al. Angew. Chem. Int. Ed.,2012,51: 7459-7463
    [4]Y. G. Wang, H. M. Liu, K. X. Wang, et al. J. Mater. Chem.,2009,19:6789-6795
    [5]Z. J. Jiang, K. Y. Liu, Y. Y. Chen, et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao),2011,27(2):239-244
    [6]T. F. Yi, Y. Xie, Y. R. Zhu, et al. J. Power Sources,2013,222:448-454
    [7]T. F. Yi, H. P. Liu, Y. R. Zhu, et al. J. Power Sources,2012,215:258-265
    [8]H. Wang, L. F. Cui, Y. Yang, et al. J. Am. Chem. Soc,2010,132:13978-13980
    [9]S. Yang, X. Feng, S. Ivanovici, et al. Angew. Chem. Int. Ed.,2010,49:8408-8411
    [10]Y. L. Cui, K. Xu, Z. Yuan, et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2013,29(1):50-56
    [11]Y. L. Niu, X. Jin, J. Zheng, et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(9):1878-1884
    [12]L. Jin, D. Sun, J. R. Zhang, Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao),2012, 28(6):1084-1090
    [13]H. K. Kim, S. M. Bak, K. B. Kim, Electrochem. Commun.,2010,12:1768-1771
    [14]L. Shen, C. Yuan, H. Luo, et al. Nanoscale,2011,3:572-574
    [15]Z. Jian, L. Zhao, R. Wang, et al. Chen. RSC Adv.,2012,2:1751-1754
    [16]S. Y. Han, I. Y. Kim, K. Y. Jo, et al. J. Phys. Chem. C,2012,116:7269-7279
    [17]Y. Tang, F. Huang, W. Zhao, et al. J. Mater. Chem.,2012,22:11257
    [18]Y. Shi, L. Wen, F. Li, et al. J. Power Sources,2011,196:8610-8617
    [19]H. Xiang, B. Tian, P. Liao, et al. J. Alloys Compd.,2011,509:7205-7209
    [20]N. Zhu, W. Liu, M. Xue, et al. Electrochim. Acta,2010,55:5813-7209
    [21]Q. L. Du, M. B. Zheng, L. F. Zhang, et al. Electrochim. Acta,2010,55: 3897-3903
    [24]T. F. Yi, L. J. Jiang, J. Shu, et al. J. Phys. Chem. Solids,2010,71:1236-1242
    [25]G. N. Zhu, Y. G. Wang, Y. Y. Xia, Energy Environ. Sci.,2012,5:6652-6667
    [26]Y. Shi, L. Wen, F. Li, H. M. Cheng, J. Power Sources,2011,196:8610-8617
    [27]H. K. Kim, S. M. Bak, K. B. Kim, Electrochem. Commun.,2010,12:1768-1771
    [28]Q. Cao, H. P. Zhang, G. J. Wang, et al. Electrochem. Comm.,2007,9:1228-1232
    [29]Z. L. Jian, L. Zhao, R. Wang, Y. S. Hu, H. Li, W. Chen, L. Q. Chen, RSC Advances,2012,2:1751-1754
    [30]Y. F. Tang, F. Q. Huang, W. Zhao, Z. Q. Liu, D. Y. Wan, J. Mater. Chem.,2012, 22:11257-11260
    [31]Y. G. Wang, Y. R. Wang, E. Hosono, K. X. Wang, H. S. Zhou, Angew. Chem. Int. Ed.,2008,47:7461-7465
    [32]B.W.Kang, G. Ceder, Nature 2009,458:190-193
    [1]H. Zhou, D. Li, M. Hibino, I. Honma, Angew. Chem. Int. Ed.,2005,44:797
    [2]I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami, N. Nakashima, Adv. Mater.,2006,18:69
    [3]P. G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed.,2008,47:2930
    [4]Y. Ren, A. R. Armstrong, F. Jiao, P. G. Bruce, J. Am. Chem. Soc.,2010,132:996
    [5]Y. Wang, H. Li, P. He, E. Hosono, H. Zhou, Nanoscale.,2010,2:1294
    [6]G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, H. Ahn, Adv. Mater., 2010,22:4944
    [7]H. Liu, Z. Bi, X.-G Sun, R. R. Unocic, M. P. Paranthaman, S. Dai, G. M. Brown, Adv. Mater.,2011,23:3450
    [8]B. Guo, X. Wang, P. F. Fulvio, M. Chi, S. M. Mahurin, X.-G. Sun, S. Dai, Adv. Mater.,2011,23:4661
    [9]D. Deng, M. G Kim, J. Y. Lee, J. Cho, Energy Environ. Sci.,2009,2:818
    [10]K. Wang, M. Wei, M. A. Morris, H. Zhou, J. D. Holmes, Adv. Mater.,2007,19: 3016
    [11]J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, X. W. Lou, J. Am. Chem. Soc,2010,132:6124
    [12]J. Li, W. Wan, H. Zhou, J. Li, D. Xu, Chem. Commun.,2011,47:3439
    [13]J. Li, W. Wan, F. Zhu, Q. Li, H. Zhou, J. Li, D. Xu, Chem. Commum,2012,48: 389.
    [14]S. Yang, X. Feng, K. Mullen, Adv. Mater.,2011,23:3575
    [15]N. Li, G. Liu, C. Zhen, F. Li, L. L. Zhang, H. M. Cheng, Adv. Funct. Mater.,2011, 21:1717-1722
    [16]C. J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater.,1999,11:579
    [17]B. Platschek, A. Keilbach, T. Bein, Adv. Mater.,2011,23:2395
    [18]M. B. Zheng, G. B. Ji, Y. W. Wang, J. Cao, S. Q. Feng, L. Liao, Q. Du, L. Zhang, Z. Ling, J. Liu, J. M. Cao, J. Tao, Chem. Commum.,2009,33:5033
    [19]B. Mandlmeier, J. M. Szeifert, D. Fattakhova-Rohlfing, H. Amenitsch, T. Bein, J. Am. Chem. Soc.,2011,133:17274
    [20]Y. Deng, C. Liu, T. Yu, F. Liu, F. Zhang, Y. Wan, L. Zhang, C. Wang, B. Tu, P. A. Webley, H. Wang, D. Zhao, Chem. Mater.,2007,19:3271
    [21]J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, ACS Nano, 2011,5:590
    [22]B. Z. Tian, H. F. Yang, X. Y. Liu, S. H. Xie, C. Z. Yu, J. Fan, B. Tu, D. Y. Zhao, Chem. Commum.,2002,1824-1825
    [23]S. Ding, J. S. Chen, D. Luan, F. Y. C. Boey, S. Madhavi, X. W. (D.) Lou, Chem. Commum.,2011,47:5780.
    [24]J. S. Chen, Z. Wang, X. C. Dong, P. Chen, X. W Lou, Nanoscale,2011,3:2158
    [1]T. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao, J. Phys. Chem. B,2005,109: 4947-4952
    [2]D. S. Kim, S. Y. Kwak, Appl. Catal. A,2007,323:110-118
    [3]K. Cassiers, T. Linssen, M. Mathieu, Y. Q. Bai, H. Y. Zhu, P. Cool, E. F. Vansant, J. Phys. Chem. B,2004,108:3713-3721
    [4]Y. Sakatani, D. Grosso, L. Nicole, C. Boissiere, G. J. de A. A. Soler-Illia, C. Sanchez, J. Mater. Chem.,2006,16:77-82
    [5]J. Y. Luo, Y. G. Wang, H. M. Xiong, Y. Y. Xia, Chem. Mater.,2007,19: 4791-4795.
    [6]F. Jiao, J. L. Bao, A. H. Hill, P. G Bruce, Angew. Chem. Int. Ed.,2008,47: 9711-9716.
    [7]J. Fan, T. Wang, C. Z. Yu, B. Tu, Z. Y. Jiang, D. Y. Zhao, Adv. Mater.,2004,16: 1432-1436.
    [8]F. Jiao, P. G. Bruce, Adv. Mater.,2007,19:657-660
    [9]H. Kim, J. Cho, J. Mater. Chem.,2008,18:771-775
    [10]H. S. Zhou, D. L. Li, M. Hibino, I. Honma, Angew. Chem. Int. Ed.,2005,44: 797-802
    [11]H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater.,2003,15: 2107-2111
    [12]F. Jiao, K. M/Shaju, P. G.Bruce, Angew. Chem. Int. Ed.,2005,44:6550-6553
    [13]S. Y. Lim, C. S. Yoon, J. P. Cho, Chem. Mater.2008,20:4560-4564
    [14]X. L. Ji, K. T. Lee, L. F. Nazar, Nat. Mater.,2009,8:500-506
    [15]Y. Ren, A. R. Armstrong, F. Jiao, P. G. Bruce J. Am. Chem. Soc.,2010,132: 996-1004
    [16]S. Y. Ryu, D. S. Kim, J. D. Jeon, S. Y. Kwak, J. Phys. Chem. C,2010,114: 17440-17445
    [17]G. Sudant, E. Baudrin, D. Larcher, et al. J. Mater. Chem.,2005,15(12): 1263-1269.
    [18]F. Fabregat-Santiago, H. Randriamahazaka, A. Zaban, et al. Phys. Chem. Chem. Phys.,2006,8(15):1827-1833
    [19]P. Kubiak, M. Pfanzelt, J. Geserick, U. Hormann, N. Husing, U. Kaiser, M. ohlfahrt-Mehrens, J. Power Sources,2009,194:1099
    [20]张玉玺,张晓丽,郑洪河.电池,2009,39(2):106-109
    [21]J. G.. Yu, J. C. Yu, W. K. Ho, Z. T. Jiang, New J. Chem.,2002,26:607-613
    [1]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature.,2000,407: 496
    [2]P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat, Mater.,2006,5: 567
    [3]K. T. Nam, D.-W. Kim, P. J. Yoo, C.-Y. Chiang, N. Meethong, P. T. Hammond, Y.-M. Chiang, A. M. Belcher, Science.,2006,312:885
    [4]M. Armand, J.-M. Tarascon, Nature.,2008,451:652
    [5]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Adv. Mater.,2008,20:258
    [6]J. Cabana, L. Monconduit, D. Larcher, M. R. Palacin, Adv. Mater.,2010,22:E170
    [7]B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou, J. Am. Chem. Soc,.2011, 133:17146
    [8]Z. Wang, D. Luan, S. Madhavi, C. M. Lia, X. W. Lou, Chem. Commun.47,8061 (2011).
    [9]B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ann, G. Wang, J. Phys. Chem. C., 2010,114:18753
    [10]C. Ban, Z. Wu, D. T. Gillaspie, L. Chen, Y. Yan, J. L. Blackburn, A. C. Dillon, Adv. Mater.,2010,22:E145
    [11]W. M. Zhang, X. L. Wu, J. S. Hu, Y. G. Guo, L. J. Wan, Adv. Funct. Mater., 2008,18:3941
    [12]T. Muraliganth, A. V. Murugan, A. Manthiram, Chem. Commun.,2009,47: 7360
    [13]E. Kang, Y. S. Jung, A. S. Cavanagh, G.-H. Kim, S. M. George, A. C. Dillon, J. K. Kim, J. Lee, Adv. Funct. Mater.,2011,21:2430
    [14]J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chem. Mater., 2010,22:212
    [15]W. J. Yu, P. X. Hou, L. L. Zhang, F. Li, C. Liu, H. M. Cheng, Chem. Commun., 2010,46:8576
    [16]Y. Zhao, J. Li, Y. Ding, L. Guan, Chem. Commun.,2011,47:7416
    [17]Z. Yang, J. Shen, L. A. Archer, J. Mater. Chem.,2011,21:11092
    [18]H. Wang, L.-F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang, Y. Cui, H. Dai, J. Am. Chem. Soc.,2010,132:13978
    [19]H. Wang, Y. Yang, Y. Liang, L.-F. Cui, H. S. Casalongue, Y. Li, G. Hong, Y. Cui, H. Dai, Angew. Chem. Int. Ed.,2011,50:7364
    [20]S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Mullen, Angew. Chem. Int. Ed.,2010,49:4795
    [21]S. Yang, X. Feng, S. Ivanovici, K. Mullen, Angew. Chem. Int. Ed.,2010,49: 8408
    [22]S. Yang, X. Feng, K. Mullen, Adv. Mater.2011,23:3575
    [23]M. B. Zheng, G. B. Ji, Y. W. Wang, J. Cao, S. Q. Feng, L. Liao, Q. L. Du, L. F. Zhang, Z. X. Ling, J. S. Liu, T. Yu, J. M. Cao, J. Tao, Chem. Commun.,2009,33: 5033
    [24]H. Wang, H. S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc.,2010,132: 7472
    [25]Q. L. Du, M. B. Zheng, L. F. Zhang, Y. W. Wang, J. H. Chen, L. P. Xue, W. J. Dai, G. B. Ji, J. M. Cao, Electrochim. Acta.,2010,55:3897
    [26]M. B. Zheng, J. Cao, S. T. Liao, J. S. Liu, H. Q. Chen, Y. Zhao, W. J. Dai, G. B. Ji, J. M. Cao, J. Tao, J. Phys. Chem. C.,2009,113:3887
    [27]M. Muruganandham, R. Amutha, B. Ahmmad, E. Repo, M. Sillanpaa, J. Phys. Chem. C.,2010,114:22493
    [28]L. Machala, R. Zboril, A. Gedanken, J. Phys. Chem. B.,2007,111:4003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700