用户名: 密码: 验证码:
慢病毒介导的miRNA-302c对腹膜间皮细胞EMT的干预作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     慢性肾脏病(Chronic Kidney Disease, CKD)是全球关注的公共卫生问题之一,国内外发病率逐年上升。约5%的CKD患者最终将发展成终末期肾功能衰竭,需终身接受肾脏替代治疗。其中,腹膜透析(peritoneal dialysis, PD)是符合我国国情的主要肾脏替代治疗方法,但长期PD可引起腹膜纤维化,导致超滤衰竭(ultrafiltration failure, UFF),进而影响PD的长期应用,是患者退出PD的主要原因。转化生长因子β(transforming growth factor-P, TGF-P)是腹膜纤维化发病机制中的关键因素,近年来多项研究发现腹膜间皮细胞上皮-间充质转分化(epithelial mesenchymal transition, EMT)在TGF-β诱导的腹膜纤维化中起重要作用,是腹膜纤维化启动和可逆的关键环节。结缔组织生长因子(connective tissue growth factor, CTGF)具有促进细胞增殖、迁移和分化等作用,研究证实CTGF通过介导TGF-β1,或直接作用其下游信号分子,与许多组织器官纤维化的发生发展密切相关。已有研究发现,CTGF不仅在PD腹膜纤维化中起到关键作用,并且在纤维化的始动过程EMT的发生中也起到重要促进作用。
     microRNAs(miRNA)属于功能性非编码RNA,通过降解目标mRNA或抑制其翻译调节基因转录后水平的表达,参与调控生长发育,细胞分化、增殖、凋亡,肿瘤等疾病的发生发展,是目前生命科学领域的研究热点。有研究证实miRNA是TGF-P1诱导EMT的重要调节因子,如miRNA-200家族和miRNA-205。但是,miRNA在腹膜纤维化领域的研究尚未见文献报道。近期,我们采用高通道miRNA芯片技术对PD病人腹透流出液腹膜间皮细胞miRNA的表达进行了图谱分析,发现miRNA的异常表达与PD患者腹膜EMT及纤维化密切相关。
     随着基因治疗技术及基因载体系统的发展,对于PD患者腹膜纤维化的分子机制和干预治疗研究取得了进一步的发展,大量在PD的动物模模型中进行的基因治疗研究证实了基因治疗方法在腹膜纤维化机制研究和治疗中的可行性。慢病毒载体(lentiviral vector, LV)作为目前被广泛应用的基因载体,具有转染效率高,插入外源基因容量大,能感染分裂期和非分裂期细胞,并且不会引起明显免疫和炎症反应等优势,将其应用于腹膜纤维化的研究十分有意义。
     基于以上分析,我们认为某些miRNA可参与调节腹膜间皮细胞EMT,以慢病毒载体为基因转染工具,从miRNA着手研究其在PD过程中EMT及纤维化的作用及分子机制具有重要的理论和现实意义。
     第一章腹腔注射慢病毒转染小鼠腹膜间皮细胞效应的研究
     目的通过小鼠腹腔注射不同滴度的携带绿色荧光蛋白(green fluorescence protein, GFP)基因的慢病毒,观察其转染小鼠腹膜间皮细胞的效应,探讨腹腔注射慢病毒转染小鼠腹膜间皮细胞最佳效应滴度。
     方法12周龄ICR雄性小鼠,体重28-30克。随机分为对照组(n=5)、LV-GFP1组(n=5)、LV-GFP2组(n=5)、LV-GFP3组(n=5)。分别一次腹腔注射1.5m10.9%生理盐水或者不同滴度的慢病毒。于第28天处死小鼠,壁层腹膜用于HE和Masson染色观察腹膜形态变化、冰冻切片观察GFP表达,脏层腹膜用于提取组织mRNA和蛋白,采用Real Time PCR和Western blot方法检测GFP mRNA和蛋白表达。
     结果
     1.倒置荧光显微镜观察小鼠腹膜组织冰冻切片,与对照组相比,腹腔注射慢病毒小鼠腹膜组织有GFP表达;
     2.小鼠腹膜组织石蜡切片HE、Masson染色观察,与对照组相比,腹腔注射慢病毒小鼠腹膜组织形态学无明显改变;
     3. Real Time PCR和western blot的方法检测,腹腔注射慢病毒小鼠腹膜组织有GFP mRNA和蛋白表达;
     4.使用2×1O8GTU LV-GFP组的转染效率高于1×108GTU LV-GFP组,而与3×108GTU LV-GFP组转染效率差异不大。
     结论
     腹腔注射慢病毒能安全有效转染小鼠腹膜组织,2×108GTU为最佳效应滴度。
     第二章miRNA-302c在腹膜透析小鼠腹膜间皮细胞EMT中的作用与机制
     目的利用慢病毒载体将miRNA-302c导入PD小鼠腹膜组织,研究miRNA-302c在PD小鼠腹膜间皮细胞EMT中的作用与机制。
     方法12周龄ICR雄性小鼠,体重28-30克。随机分为空白对照组(n=5):腹腔注射1.5ml0.9%生理盐水,每天一次x28天;PDF组(n=5):腹腔注射1.5ml含4.25%葡萄糖的标准腹透液,每天一次x28天; LV-mmu-miRNA-302c+PDF组(n=5):腹腔注射1.5ml含2×108GTU的LV-mmu-miRNA-302c,第三天开始腹腔注射1.5ml含4.25%葡萄糖的标准腹膜透析液,每天一次x28天;LV-pGIPZ+PDF组:腹腔注射1.5ml含2×108GTU的LV-pGIPZ,第三天开始腹腔注射1.5ml含4.25%葡萄糖的标准腹膜透析液,每天一次×28天。于第28天处死小鼠,壁层腹膜用于制作石蜡切片HE和Masson染色观察腹膜形态变化、冰冻切片观察GFP表达,脏层腹膜用于提取组织蛋白和mRNA,并采用Westem-blot、Real Time-PCR等方法检测miRNA-302c、 E-cadherin、α-SMA\collagenⅠ、CTGF的表达。
     结果
     1.小鼠膜组织石蜡切片HE、Masson染色观察,与空白对照组相比,PDF组小鼠腹膜组织可见EMT的形态变化,而LV-mmu-miR-302c+PDF组腹膜组织形态学变化介于空白对照组和PDF组之间,EMT改变较PDF组减轻;
     2. TaqMan探针实时荧光定量Real Time PCR检测发现,与空白对照组相比,腹腔注射4.25%PDF的各组小鼠脏层腹膜组织miRNA-302c表达均有下调,LV-mmu-miR-302c+PDF组较PDF组miRNA-302c表达增高;
     3. Real Time PCR、western blot证实每天腹腔注射4.25%PDF1.5ml,连续28天,可引起小鼠腹膜组织EMT, E-cadherin表达减少,a-SMA及collagen I表达增高。而LV-mmu-miR-302c转染上调miRNA-302c可抑制腹透小鼠腹膜组织a-SMA、collagen I表达增加,E-cadherin表达降低;与空白对照组相比,各组腹透小鼠腹膜组织CTGF表达均有上调,LV-mmu-miR-302c+PDF组较PDF组CTGF表达降低。
     结论
     高糖腹透液可引起小鼠腹膜间皮细胞EOT; LV-mmu-miR-302c可有效转染小佩腹膜上调miRNA-302c的表达,抑制CTGF表达,减轻腹透小鼠腹膜间皮细胞EMT。
     第三章miRNA-302c调控TGF-β1诱导的腹膜间皮细胞EMT形成的机理
     目的通过观察慢病毒介导的miRNA-302c对TGF-β1诱导人腹膜间皮细胞(human peritoneal mesothelial cells, HPMCs) EMT过程中CTGF表达的影响,探讨miRNA-302c调控TGF-β1诱导的HPMCsEMT形成的机制。
     方法.常规培养正常HPMCs,随机分为:空白对照组:不加任何干预;TGF-β1组:用5ng/mlTGF-β1刺激48小时;LV-hsa-miR-302c+TGF-β1组:转染载有miRNA-302c的慢病毒]LV-hsa-miR-302c后,用5ng/mlTGF-β1刺激48小时;LV-pGIPZ+TGF-β1组:转染载有对照质粒pGIPZ的慢病毒LV-pGIPZ后,用5ng/mlTGF-β1刺激48小时。采用荧光显微镜观察GFP荧光蛋白表达以判断病毒转染效率。采用Westem-blot、Real Time-PCR等方法分别检测miRNA-302c、 E-cadherin、a-SMA、collagen I、CTGF等在HPMCs中的表达变化及其相互关系。
     结果
     1. TaqMan探针实时荧光定量Real Time PCR检测发现,与空白对照组相比,TGF-β1刺激的各组腹膜间皮细胞miRNA-302c表达均有下调,LV-hsa-miR-3O2c+TGF-β1组miRNA-302c表达较TGF-β1组增高;
     2. HPMCs经5ng/ml TGF-β1刺激48小时后,细胞出现成纤维样细胞形态改变,而LV-hsa-rniR-302c+TGF-β1组细胞形态变化介于空白对照组和TGF-β1组之间,细胞EMT形态改变较TGF-β1组减轻;
     3. Regtl Time PCR、western blot证实5ng/ml TGF-β1刺激48h可引起HPMCsEMT, E-cadherin表达减少,a-SMA及collagen I表达增高;而LV-bsa-miR-302c转染上调miR-302c可抑制TGF-β1诱导的α-SMA、collagen I表达增加,E-cadherin表达降低;与空白对照组相比,TGF-β1刺激的各组腹膜间皮细胞CTGF表达均有上调,LV-hsa-miR-302c+TGF-β1组CTGF表达较TGF-β1组降低。
     结论
     TGF-β1可诱导HPMCs EMT; LV-hsa-miR-302c转染上调HPMCs miRNA-302c表达,抑制CTGF表达,减轻TGF-β1诱导的HPMCsEMT。
Background Chronic kidney disease (CKD) is a public health problem all over the world, the morbidity is about11%, and the incidence increased year by year.5%of the CKD patients will eventually develop into the end-stage renal failure, and should have life-long renal replacement therapy. Peritoneal dialysis (PD) is an important modality of renal replacement therapy according with China catual condition. But long-term PD can lead to peritoneal fibrosis and ultrafiltration failure which ultimately limits the long term clinical application of PD and makes patients drop out of PD. Transforming growth factor-β (TGF-β) is a key factor in the mechanism of peritoneal fibrosis, recently some studies have found that epithelial mesenchymal transition (EMT) plays a important role in TGF-βinduced peritoneal fibrosis, it is the initiate and reversible process of fibrosis. Connective tissue growth factor (CTGF) can accelerate cell proliferation, migration and differentiation. Some studies have showed that CTGF acts both as an effector in the downstream cascade of fibrosis induced by TGF-β and as a pro-fibrotic factor, it is closely related to the occurrence and development of many organs fibrosis. It also has been proved that CTGF not only play a important role in PD related peritoneal fibrosis, but also facilitate EMT in the process of fibrosis.
     MicroRNAs are non-coding RNAs that post-transcriptionally regulate gene expression by inducing target mRNA degradation or inhibiting its translation. They participate in regulating growth and development, cell differentiation, proliferation, apoptosis and theevelopment of tumour, nowadays become the hot topic in the field of life sciences. Some studies have proved that microRNAs can participate in regulating the development of EMT, and they are important regulators3n the process of TGF-β induced EMT such as microRNA-200family and microRNA-205.
     With the development of gene therapy technology and gene delivery system, amounts of significant results have been achieved in rnderstanding the mechanism of PD related peritoneal fibrosis. Promising results from numerous studies in animal models of peritoneal dialysis have demonstrated that gene delivery method is an innovative and feasible strategy for mechanistic investigation and potential treatment of peritoneal fibrosis. Lentiviral vector (LV) has been widely used as an effective genomic vector, it has a relatively large capacity (close to10kb) and high transfection efficiency that can mediate stable gene transfer in dividing and non-dividing cells without potent immunogenic or inflammatory response. It is very meaningful to apply it in peritoneal fibrosis research.
     As mentioned above, we suppose that novel microRNA may participate in regulating EMT and peritoneal fibrosis in PD patients. Using the tool of lentiviral vectors, it has important theoretical and practical significance to research the role of microRNA in EMT and peritoneal fibrosis in the process of PD.
     Chapter I Effect of lentivirus infecting peritoneum in mice through intraperitoneal injection
     ObjectiveTo investigate the effect of lentivirus infecting peritoneum in mcting lentivirus carring GFP (LV-GFP) with different titer.and determine the best effective titer.
     Methods Male ICR mice were randomly divided into control group (n=5), LV-GFP1group (n=5), LV-GFP2group (n=5), LV-GFP3group (n=5). The mice reoeived an infusion of1.5ml0.9%N.S. or LV-GFP with different titer. The mice were sacrificed at day28. Parietal peritoneum (?) collected for-HE and Masson staining or frozen section to゜serve was morphology of peritoneum and the fluorescence of GFP. Visceral p(?)toneum were harvested to extract tissue protein and mRNA for examining the GFP expression by Real Time PCR and western blot.
     Results
     1. Observing through fluorescence microscope, the frozen sections of control group have no fluorescence of GFP, the frozen sections of LV-GFP1group, LV-GFP2group and LV-GFP3group have fluorescence of GFP.
     2. The paraffin sections of mice peritoneal with HE、Masson staining showed that compared with the control group, LV-GFP1group, LV-GFP2group and LV-GFP3group have no apparent morphology changes.
     3. Real Time PCR and western blot showed that the control group has no GFP expression, LV-GFP1group, LV-GFP2group and LV-GFP3group have GFP expression.
     4. The expression of GFP in LV-GFP2group and LV-GFP3-group is stronger than LV-GFP1group, the expression of GFP between LV-GFP2group and LV-GFP3group is similar.
     Conclusion The lentivirus can successfully infect the peritoneum-of mouse by intraperitoneal injection, and2×108GTU is the best effcetive tiler.
     Chapter Ⅱ The effect of miRNA-302c in EMT of peritoneum in mice on peritoneal dialysis and the mechanism
     Objective To investigate the effect of miRNA-302c in EMT of peritoneum in mice on peritoneal dialysis and the mechanism by intraperitoneal injecting LV-mmu-miR-302c to infect mice peritoneum.
     Methods Male ICR mice were randomly divided into control group (n=5), PDF group (n=5), LV-mmu-miR-302c+PDF group (n=5), LV-pGIPZ+PDF group (n=5). The mice received an infusion of1.5ml0.9%N.S. or1.5ml4.25%PDF in the presence or in the absence of LV-mmu-miR-302c for28days. The mice were sacrificed at day28. Parietal peritoneum was collected for HE and Masson staining or frozen section to observe the morphology of peritoneum and the fluorescence of GFP. Visceral peritoneum were harvested to extract tissue protein and mRNA for examining the expression of miRNA-302c、E-cadherin、 α-SMA、collagen Ⅰ、CTGF by Real Time PCR and western blot.
     Results
     1. By TaqMan quantitative fluorescence probe Real Time PCR, we found that compared with control group, the expression of miRNA-302c was downregulated with the intraperitoneal injection of4.25%PDF, but (?) expression of miRNA-302c was rised in the presence of LV-mmu-miR-302c.
     2. The structure of mice peritoneum has changed with the intraperitoneal injection of4.25%PDF, which manifesting the loss of mesothelial cell monolayer, the thickness and fibrosis of submesothelial zone, but the presence of LV-mmu-miR-302c can ameliorate the structural change.
     3. Real Time PCR and western blot showed that intraperitoneal injection of4.25%PDF for28days can cause mice peritoneum EMT and fibrosis with a decrease in the expression of E-cadherin and increase in the expression of a-SMA and collagen I, but the presence of LV-mmu-miR-302c can ameliorate the change. Meanwhile, compared with the control group, the expression of CTGF was rising with the intraperitoneal injection of4.25%PDF, but the presence of LV-mmu-miR-302c can ameliorate the increase of CTGF.
     Conclusion Treat the mice with intraperitoneal injection of4.25%PDF for28days can cause mice peritoneum EMT; intraperitoneal injection of LV-mmu-miR-302c can successfully upregulated the expression of miR-302c;:miR-302c can ameliorate the EMT and fibrosis of peritoneum in mice on peritoneal dialysis through suppresssing the expression of CTGF.
     ChaptcrⅢ miRNA-302c modulate TGF-β1induce human peritoneal mesothelial cells EMT and the mechanism
     ObjectiveTo investigate the mechanism of miRNA-302c modulating TGF-β1-induced human peritoneal mesothelial cells EMT by infecting human peritoneal mesothelial cells with LV-hsa-miR-302c.
     Methods We treated the human peritoneal mesothelial cells with5ng/ml TGF-β1for48hours in the presence or absence of LV-hsa-miR-302c. To estimate the transfection efficiency of LV-hsa-miR-302c by observing the fluorescence of GFP through fluorescence microscope. To detect the expression of miRNA-302c、 E-cadherin、α-SMA、collagen I、CTGF by Real Time PCR and western blot.
     Results
     1. By TaqMan quantitative fluorescence probe Real Time PCR, we found that compared with control group, the expression of miRNA-302c was downregulated with the stimulation of TGF-β1, but the expression of miRNA-302c was rised in the presenc of LV-hsa-miR-302c.
     2. The morphology of human mesothelial cells has changed from epithelial phenotype to mesenchymal phenotype with the stimulation of but the presence of LV-hsa-miR-302c can ameliorate the morphology change.
     3. Real Time RCR and western blot showed that treating the human peritoneal mesotholial cells with5ng/ml TGF-β1for48hours can cause EMT and fibrosis with a decrease in e expression of E-cadherin and increase in the expression of α-SMA and collagen I, but the presence of LV-hsa-miR-302c can ameliorate the change. Mesanwhile, compared with the control group, the expression of CTGF was rising with the stimulation of TGF-β1, but the presence of LV-hsa-miR-302c can ameliorate the increase of CTGF.
     Conclusion Treat the human peritoneal mesothelial cells with5ng/ml TGF-β1for48hours can cause HPMCs EMT and fibrosis; the infection of LV-hsa-miR-302c can upregulate the expression of miR-302c; miR-302c can ameliorate the TGF-β1-induced human peritoneal mesothelial cells EMT and fibrosis through suppressing the expression of CTGF.
引文
[1]Coresh J, Astor BC, Greene T, et al. Prevalence of chronic kidney disease and decreased kidney function in the adult US population:Third National Health and Nutrition Examination Survey. American Journal of Kidney Diseases [J],2003,41(1):1-12.
    [2]Williams JD, Craig KJ, Topley N, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. Journal of the American Society of Nephrology [J],2002,13(2):470-479.
    [3]Liu F, Xiao L, Peng Y, et al. Inhibition effect of small interfering RNA of connective tissue growth factor on the expression of vascular endothelial growth factor and connective tissue growth factor in cultured human peritoneal mesothelial cells. Chin Med J (Engl) [J],2007,120(3):231-236.
    [4]Strippoli R, Benedicto I, Foronda M, et al. p38 maintains E-cadherin expression by modulating TAK1-NF-kappa B during epithelial-to-mesenchymal transition. J Cell Sci [J],2010,123(Pt 24): 4321-4331.
    [5]Strippoli R, Benedicto I, Perez Lozano ML, et al. Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snaill pathway. Dis Model Mech [J],2008,1(4-5): 264-274.
    [6]Xiao L, Sun L, Liu FY, et al. Connective tissue growth factor knockdown attenuated matrix protein production and vascular endothelial growth factor expression induced by transforming growth factor-betal in cultured human peritoneal mesothelial cells. Ther Apher Dial [J],2010,14(1):27-34.
    [7]Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science [J],1996, 272(5259):263-267.
    [8]Bonci D, Cittadini A, Latronico M, et al.'Advanced'generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene therapy [J],2003,10(8):630-636.
    [9]Fleury S, Simeoni E, Zuppinger C, et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation [J], 2003,107(18):2375-2382.
    [10]Greenberg KP, Lee ES, Schaffer DV, et al. Gene delivery to the retina using lentiviral vectors. Adv Exp Med Biol [J],2006,572:255-266.
    [11]Kafri T, B16mer U, Peterson DA, et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature genetics [J],1997,17(3):314-317.
    [12]van Hooijdonk L, Ichwan M, Dijkmans T, et al. Lentivirus-mediated transgene delivery to the hippocampus reveals sub-field specific differences in expression. BMC neuroscience [J],2009,10(2):1-19.
    [13]Watson DJ, Karolewski BA, Wolfe JH. Stable gene delivery to CNS cells using lentiviral vectors.Methods Mol Biol[J],2004,246:413-428.
    [14]Levine BL, Humeau LM, Boyer J, et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proceedings of the National Academy of Sciences [J],2006,103(46):17372-17377.
    [15]Bank A, Dorazio R, Leboulch P. A phase Ⅰ/Ⅱ clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci [J],2005,1054:308-316.
    [16]Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science [J],2009,326(5954):818-823.
    [17]Lysaght MJ. Maintenance dialysis population dynamics:current trends and long-term implications. Journal of the American Society of Nephrology [J], 2002,13(suppl 1):S37-S40.
    [18]Coune PG, Schneider BL, Aebischer P. Parkinson's Disease:Gene Therapies. Cold Spring Harbor Perspectives in Medicine [J],2012,2(4):a009431.
    [19]Iwasaki Y, Negishi T, Inoue M, et al. Sendai virus vector-mediated brain-derived neurotrophic factor expression ameliorates memory deficits and synaptic degeneration in a transgenic mouse model of Alzheimer's disease. Journal of Neuroscience Research [J],2012,90(5):981-989.
    [20]Sundararaman S, Miller T, Pastore J, et al. Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene therapy [J],2011,18(9):867-873.
    [21]Symes JF, Losordo DW, Vale PR, et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. The Annals of thoracic surgery [J],1999,68(3):830-836.
    [22]Niwano K, Arai M, Koitabashi N, et al. Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Molecular Therapy [J],2008,16(6): 1026-1032.
    [23]Zheng W, Kang Y, Li L, et al. Levels of effectiveness of gene therapies targeting survivin and its splice variants in human breast cancer cells. Drug discoveries & therapeutics [J],2011,5(6):293-298.
    [24]Armstrong L, Davydova J, Brown E, et al. Delivery of interferon alpha using a novel Cox2-controlled adenovirus for pancreatic cancer therapy. Surgery [J],2012.
    [25]Margetts PJ, Kolb M, Galt T, et al. Gene transfer of transforming growth factor-betal to the rat peritoneum:effects on membrane function. J Am Soc Nephrol [J],2001,12(10):2029-2039.
    [26]Margetts PJ, Gyorffy S, Kolb M, et al. Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. J Am Soc Nephrol [J],2002,13(3):721-728.
    [27]Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Peritoneal dialysis international [J],2000,20(Suppl 4):S22-S42.
    [28]Rippe B, Rosengren BI, Venturoli D. The peritoneal microcirculation in peritoneal dialysis. Microcirculation [J],2001,8(5):303-320.
    [29]Mittelmaier S, Niwa T, Pischetsrieder M. Chemical and Physiological Relevance of Glucose Degradation Products in Peritoneal Dialysis. Journal of Renal Nutrition [J],2012,22(1):181-185.
    [30]Devuyst O, Topley N, Williams JD. Morphological and functional changes in the dialysed peritoneal cavity:impact of more biocompatible solutions. Nephrology Dialysis Transplantation [J],2002,17(suppl 3):12-15.
    [31]Plum J, Hermann S, Fussholler A, et al. Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. Kidney international [J],2001,59:S42-S47.
    [32]Liu F, Ling G, Liu H, et al. Inhibiting effect of short hairpin RNA on expression of transforming growth factor-betal in human peritoneal mesothelial cells induced by peritoneal dialysis solution. Chin Med J (Engl) [J],2005,118(18):1552-1556.
    [33]Kiribayashi K, Masaki T, Naito T, et al. Angiotensin II induces fibronectin expression in human peritoneal mesothelial cells via ERK1/2 and p38 MAPK. Kidney international [J],2005,67(3):1126-1135.
    [34]Noh H, Ha H, Yu M, et al. Angiotensin II mediates high glucose-induced TGF-betal and fibronectin upregulation in HPMC through reactive oxygen species. Peritoneal dialysis international [J],2005,25(1):38-47.
    [35]Yung S, Liu ZH, Lai KN, et al. Emodin ameliorates glucose-induced morphologic abnormalities and synthesis of transforming growth factor betal and fibronectin by human peritoneal mesothelial cells. Peritoneal dialysis international [J],2001,21(Suppl 3):S41-S47.
    [36]Chan TM, Leung JKH, Tsang RCW, et al. Emodin ameliorates glucose-induced matrix synthesis in humnan peritoneal mesothelial cells. Kidney international [J],2003,64(2):519-533.
    [37]Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Developmental cell [J],2003,5(2):351-358.
    [38]Hayes B, Fagerlie SR, Ramakrishnan A, et al. Derivation, characterization, and in vitro differentiation of canine embryonic stem cells. Stem Cells [J], 2008,26(2):465-473.
    [39]Card DAG, Hebbar PB, Li L, et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Molecular and cellular biology [J], 2008,28(20):6426-6438.
    [40]Scheel A, Beyer U, Agami R, et al. Immunofluorescence-based screening identifies germ cell associated microRNA 302 as an antagonist to p63 expression. Cell Cycle [J],2009,8(9):1426-1432.
    [41]Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med [J],1994,331(19):1286-1292.
    [42]Desmouliere A, Geinoz A, Gabbiani F, et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of cell biology [J],1993,122(1):103-111.
    [43]Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology [J],2004,15(1):1-12.
    [44]Oldfield MD, Bach LA, Forbes JM, et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). Journal of Clinical Investigation [J],2001,108(12):1853-1863.
    [45]Wang T, Chen YG, Ye RG, et al. Effect of glucose on TGF-beta 1 expression in peritoneal mesothelial cells. Adv Perit Dial [J],1995,11:7-10.
    [46]Aroeira LS, Aguilera A, Sanchez-Tomero JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients:pathologic significance and potential therapeutic interventions. Journal of the American Society of Nephrology [J],2007, 18(7):2004-2013.
    [47]Chaimovitz C. Peritoneal dialysis. Kidney international [J],1994,45(4): 1226-1240.
    [48]Betjes MGH, Tuk CW, Struijk DQ et al. Interleukin-8 Production by Human Peritoneal Mesothelial Cells in Response to Tumor Necrosis Factor-a, Interleukln-1, and Medium Conditioned by Macrophages Cocultured with Staphylococcus epidermidis. Journal of Infectious Diseases [J],1993,168(5): 1202-1210.
    [49]Lee HB, Ha H. Mechanisms of epithelial-mesenchymal transition of peritoneal mesothelial cells during peritoneal dialysis. Journal of Korean medical science [J],2007,22(6):943-945.
    [50]方炜,钱家麒,余志远.腹膜透析对人腹膜形态结构的影响.中华肾脏病杂志[J],2002,18(6):425-429.
    [51]刘伏友,彭佑铭,邹莎琳等.16年腹膜透析的基础和临床研究回顾.中南大学学报(医学版)[J],2009,34(3):269-276.
    [52]叶云,彭佑铭,杨宇等.前列腺素E1对乳酸盐腹膜透析液体外致人腹膜问皮细胞损伤的保护作用.实用预防医学[J],2006,13(3):547-549.
    [53]Kang DH, Hong YS, Lim HJ, et al. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-betal of human peritoneal mesothelial cells:effect of cytokine costimulation. Peritoneal dialysis international [J],1999,19(3):221-230.
    [54]Naiki Y, Maeda Y, Matsuo K, et al. Involvement of TGF-beta signal for peritoneal sclerosing in continuous ambulatory peritoneal dialysis. Journal of nephrology [J],2003,16(1):95-102.
    [55]Vargha R, Endemann M, Kratochwill K, et al. Ex vivo reversal of in vivo transdifferentiation in mesothelial cells grown from peritoneal dialysate effluents. Nephrology Dialysis Transplantation [J],2006,21(10):2943-2947.
    [56]Yanez-Mo M, Lara-Pezzi E, Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. New England Journal of Medicine [J],2003,348(5):403-413.
    [57]Qi W, Chen X, Polhill TS, et al. TGF-β1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. American Journal of Physiology-Renal Physiology [J],2006,290(3):F703-F709.
    [58]Riser BL, Cortes P, Denichilo M, et al. Urinary CCN2 (CTGF) as a possible predictor of diabetic nephropathy:preliminary report. Kidney international [J],2003,64(2):451-458.
    al. Connective tissue growth factor and its regulation in the peritoneal cavity of peritoneal dialysis patients. Kidney Int [J],2003,64(1):331-338.
    [60]Faull RJ. Bad and good growth factors in the peritoneal cavity (Review Article). Nephrology [J],2005,10(3):234-239.
    [61]Sakamoto N, Sugimura K, Kawashima H, et al. Influence of glucose and inflammatory cytokines on TGF-betal and CTGF mRNA expressions in human peritoneal mesothelial cells. International journal of molecular medicine [J],2005,15(6):907-911.
    [62]Chendrimada TP, Finn KJ, Ji X, et al. MicroRNA silencing through RISC recruitment of eIF6. Nature [J],2007,447(7146):823-828.
    [63]Chitwood DH, Timmermans MCP. Target mimics modulate miRNAs. Nature genetics [J],2007,39(8):935-936.
    [64]John M, Constien R, Akinc A, et al. Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature [J],2007, 449(7163):745-747.
    [65]Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature [J],2005,438(7068):685-689.
    [66]Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America [J], 2004,101(26):9740-9744.
    [67]Yang H, Schmuke JJ, Flagg LM, et al. A novel real-time polymerase chain reaction method for high throughput quantification of small regulatory RNAs. Plant biotechnology journal [J],2009,7(7):621-630.
    [68]Wang J, Xu R, Lin F, et al. MicroRNA:novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology [J],2009,113(2): 81-88.
    [69]Cheng CW, Wang HW, Chang CW, et al. MieroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Research and Treatment [J],2012:1-13.
    [70]Drury R, Verghese ET, Hughes TA. The roles of microRNAs in sarcomas. The Journal of Pathology [J],2012.
    [71]Zhang J, Han C, Wu T. Micro RNA-26a Promotes Cholangiocarcinoma Growth by Activating β-catenin. Gastroenterology [J],2012.
    [72]Sacco J, Adeli K. MicroRNAs:emerging roles in lipid and lipoprotein metabolism. Current Opinion in Lipidology [J],2012.
    [73]D'Alessandra Y, Pompilio G, Capogrossi MC. MicroRNAs and myocardial infarction. Current Opinion in Cardiology [J],2012,27(3):228-235.
    [74]Boesch-Saadatmandi C, Wagner AE, Wolffram S, et al. Effect of quercetin on inflammatory gene expression in mice liver in vivo-role of redox factor 1, miRNA-122 and miRNA-125b. Pharmacological Research [J],2012,65(5): 523-530.
    [75]Boldin MP, Baltimore D. MicroRNAs, new effectors and regulators of NF-κB. Immunological Reviews [J],2012,246(1):205-220.
    [76]Paraskevi A, Theodoropoulos G, Papaconstantinou I, et al. Circulating MicroRNA in inflammatory bowel disease. Journal of Crohn's and Colitis [J],-2012.
    [77]Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA biology [J], 2008,5(3):115-119.
    [78]Guttilla IK, Adams BD, White BA. ERa, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab [J],2012,23(2):73-82.
    [79]Smith A, Iwanaga R, Drasin D, et al. The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast uicer. Oncogene [J], 2012.
    [80]Sreekumar R, Sayan BS, Mirnezami AH, et al. M croRNA control of invasion and metastasis pathways. Frontiers in Genetic[J],2011,2(58).
    [81]Zavadil J, Narasimhan M, Blumenberg M, et al. ansforming growth factor-beta and microRNA:mRNA regulatory networks (?)pithelial plasticity. Cells Tissues Organs [J],2007,185(1-3):157-161.
    [82]Zhang J, Zhang H, Liu J, et al. miR-30 inhu ts TGF-β1-induced epithelial-to-mesenchymal transition in hepatocyte y targeting Snail 1. Biochemical and Biophysical Research Communicatio s[J],2011,417(3): 1100-1105.
    [83]Gregory PA, Bert AG,Paterson EL, et al. The miR-20(?)family and miR-205 regulate epithelial to mesenchymal transition by targe(?)ng ZEB1 and SIP1. Nature cell biology [J],2008,10(5):593-601.
    [84]Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 (?) miR-30 regulate connective tissue growth factor:implications for a ro of of microRNAs in myocardial matrix remodeling. Circulation research [J],2009,104(2): 170-178.
    [85]Turcatel G, Rubin N, El-Hashash A, et al. MIR-99a an MIR-99b Modulate TGF-p Induced Epithelial to Mesenchymal Plasticity in Normal Murine Mammary Gland Cells. PloS one [J],2012,7(1):e31032
    {86] Honda N, Jinnin M, Kajihara I. et al. TGF-β-Mediate Downregulation of MicroRNA-196a Contributes to the Constitutive (?) pregulated Type I Collagen Expression in Scleroderma Dermal Fibrobl (?). The Journal of Immunology [J],2012,188(7):3323-3331.
    [87]Margetts PJ, Bonniaud P, Liu L, et al. Transient overe session of TGF-β1 induces epithelial mesenchymal transition in the rodent oeritoneum. Journal of the American Society of Nephrology [J],2005,16(2):125-436.
    [88]Selgas R, Bajo A, Jimenez-Heffernan JA, et al. Epithe.ial-to:mesenchymal transition of the mesothelial cell—its role in the respon (?)of the peritoneum to dialysis. Nephrology Dialysis Transplantation [J],2006,21(suppl 2): ii2-ii7:
    [89]Offher FA, Feichtinger H, Stadlmann S, et al.T(?)nsforming growth factor-beta synthesis by human peritoneal mesothelia cells. Induction by interleukin-1. The American journal of pathology [J],1996,148(5): 1679-1688.
    [90]Wang T, Ghen YG, Ye RG, et al. Enhanced expression of TGF-beta 1 by peritoneal macrophages in CAPD patients. Adv Perit Dial [J],1995,11: 11-14.
    [91]Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J [J],2000,19(8):1745-1754.
    [92]Barbera MJ, Puig I, Dominguez D, et al. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene [J], 2004,23(44):7345-7354.
    [93]Huber MA, Azoitei N, Baumann B, et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. Journal of Clinical Investigation [J],2004,114(4):569-581.
    [94]Border WA, Noble NA. TGF-beta in kidney fibrosis:a target for gene therapy. Kidney international [J],1997,51(5):1388-1396.
    [95]Franklin T. Therapeutic approaches to organ fibrosis. The international journal of biochemistry & cell biology [J],1997,29(1):79-89.
    [96]Lawrence DA. Transforming growth factor-beta:an overview. Kidney Int Suppl[J],1995,49:S19-S23.
    [97]Moussad EEDA, Brigstock DR. Connective tissue growth factor:what's in a name? Molecular genetics and metabolism [J],2000,71(1-2):276-292.
    [98]Bradham DM, Igarashi A, Potter RL, et al. Connective tissue growth factor:a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. The Journal of cell biology [J],1991,114(6):1285-1294.
    [99]Ito Y, Aten J, Bende RJ, et al, Expression of connective tissue growth factor in human renal fibrosis. Kidney international [J],1998,53(4):853-861.
    [100]Oemar BS, Werner A, Gamier JM, et al. Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation [J],1997, 95(4):831-839.
    [101]Dammeier J, Brauchle M, Falk W, et al. Connective tissue growth factor:a novel regulator of mucosal repair and fibrosis in inflammatory bowel disease? The international journal of biochemistry & cell biology [J],1998,30(8): 909-922.
    [102]Igarashi A, Nashiro K, Kikuchi K, et al. Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. Journal of investigative dermatology [J],1996,106(4): 729-733.
    [103]Liu BC, Li MX, Zhang JD, et al. Inhibition of integrin-linked kinase via a siRNA expression plasmid attenuates connective tissue growth factor-induced human proximal tubular epithelial cells to mesenchymal transition. American journal of nephrology [J],2008,28(1):143-151.
    [104]Burns WC, Twigg SM, Forbes JM, et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition:implications for diabetic renal disease. Journal of the American Society of Nephrology [J],2006,17(9):2484-2494.
    [105]Shi Y, Tu Z, Wang W, et al. Homologous peptide of connective tissue growth factor ameliorates epithelial to mesenchymal transition of tubular epithelial cells. Cytokine [J],2006,36(1-2):35-44.
    [106]Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell [J], 2009,136(2):215-233.
    [107]Bartels CL, Tsongalis GJ. MicroRNAs:novel biomarkers for human cancer. Clinical chemistry [J],2009,55(4):623-631.
    [108]Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Molecular and cellular biology [J],2008, 28(22):6773-6784.
    [109]Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO reports [J],2008,9(6):582-589.
    [110]Gotzmann J, Fischer A, Zojer M, et al. A crucial function of PDGF in TGF-β-mediated cancer progression of hepatocytes. Oncogene [J],2006, 25(22):3170-3185.
    [111]Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proceedings of the National Academy of Sciences [J], 2007,104(45):17719-17724.
    [1]Williams JD, Craig KJ, Topley N, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. Journal of the American Society of Nephrology [J],2002,13(2):470-479.
    [2]Nagy J, Shockley T, Masse E, et al. Mesothelial cell-mediated gene therapy: feasibility of an ex vivo strategy. Gene therapy [J],1995,2(6):393-401.
    [3]Jackman RW, Stapleton TD, Masse EM, et al. Enhancement of the functional repertoire of the rat parietal peritoneal mesothelium in vivo:directed expression of the anticoagulant and antiinflammatory molecule thrombomodulin. Human gene therapy [J],1998,9(7):1069-1081.
    [4]Nagy J, Shockley T, Masse E, et al. Systemic delivery of a recombinant protein by genetically modified mesothelial cells reseeded on the parietal peritoneal surface. Gene therapy [J],1995,2(6):402-410.
    [5]Hoff CM,Cusick JL, Masse EM, et al. Modulation of transgene expression in mesothelial cells by activation of an inducible promoter. Nephrology Dialysis Transplantation [J],1998,13(6):1420-1429.
    [6]Matsuoka T, Maeda Y, Matsuo K, et al. Hepatocyte growth factor prevents peritoneal fibrosis in an animal model of encapsulating peritoneal sclerosis. Journal of nephrology [J],2008,21(1):64-73.
    [7]Nishino T, Miyazaki M, Abe K, et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats. Kidney international [J],2003,64(3):887-896.
    [8]Liu F, Ling G, Liu H, et al. Inhibiting effect of short hairpin RNA on expression of transforming growth factor-betal in human peritoneal mesothelial cells induced by peritoneal dialysis solution. Chin Med J (Engl) [J],2005,118(18):1552-1556.
    [9]Liu F, Liu H, Peng Y, et al. Inhibition of TGF-betal expression in human peritoneal mesothelial cells by pcDU6 vector-mediated TGF-betal shRNA. Nephrology (Carlton) [J],2006,11(1):23-28.
    [10]Liu F, Liu H, Peng Y, et al. Inhibition of transforming growth factor beta (TGFbetal) expression and extracellular matrix secretion in human peritoneal mesothelial cells by pcDU6 vector-mediated TGFbetal shRNA and by pcDNA3.1(-)-mediated antisense TGFbetal RNA. Adv Perit Dial [J], 2005,21:41-52.
    [11]Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nature medicine [J],2003,9(3):347-351.
    [12]Guo H, Leung J, Chan L, et al. Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat. Gene therapy [J],2007, 14(24):1712-1720.
    [13]Louis M, Dutoit S, Denoux Y, et al. Intraperitoneal linear polyethylenimine (L-PEI)-mediated gene delivery to ovarian carcinoma nodes in mice. Cancer gene therapy [J],2005,13(4):367-374.
    [14]Guo H, Leung JCK, Lam MF, et al. Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with peritoneal dialysis. Journal of the American Society of Nephrology [J],2007,18(10):2689-2703.
    [15]Nie J, Dou X, Hao W, et al. Smad7 gene transfer inhibits peritoneal fibrosis. Kidney international [J],2007,72(11):1336-1344.
    [16]Sun Y, Zhu F, Yu X, et al. Treatment of established peritoneal fibrosis by gene transfer of Smad7 in a rat model of peritoneal dialysis. American journal of nephrology [J],2009,30(1):84-94.
    [17]Osada S, Ebihara I, Setoguchi Y, et al. Gene therapy for renal anemia in mice with polycystic kidney using an adenovirus vector encoding the human erythropoietin gene. Kidney international [J],1999,55(4):1234-1240.
    [18]Margetts PJ, Kolb M, Galt T, et al. Gene transfer of transforming growth factor-betal to the rat peritoneum:effects on membrane function. J Am Soc Nephrol [J],2001,12(10):2029-2039.
    [19]Margetts PJ, Bonniaud P, Liu L, et al. Transient overexpression of TGF-β1 induces epithelial mesenchymal transition in the rodent peritoneum. Journal of the American Society of Nephrology [J],2005,16(2):425-436.
    [20]Cina D, Patel P, Bethune JC, et al. Peritoneal morphological and functional changes associated with platelet-derived growth factor B. Nephrology Dialysis Transplantation [J],2009,24(2):448-457.
    [21]Margetts PJ, Gyorffy S, Kolb M, et al. Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. Journal of the American Society of Nephrology [J],2002,13(3):721-728.
    [22]Yu MA, Shin KS, Kim JH, et al. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. Journal of the American Society of Nephrology [J],2009, 20(3):567-581.
    [23]Hoff CM, Margetts PJ. Adenovirus-based transient expression systems for peritoneal membrane research. Peritoneal dialysis international [J],2006, 26(5):547-558.
    [24]Mitani K, Graham FL, Caskey CT, et al. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proceedings of the National Academy of Sciences [J],1995,92(9):3854-3858.
    [25]Maione D, Wiznerowicz M, Delmastro P, et al. Prolonged expression and effective readministration of erythropoietin delivered with a fully deleted adenoviral vector. Human gene therapy [J],2000,11(6):859-868.
    [26]Morral N, O'Neal W, Rice K, et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proceedings of the National Academy of Sciences[J],1999,96(22):12816-12821.
    [27]Liu L, Shi CX, Ghayur A, et al. Prolonged peritoneal gene expression using a helper-dependent adenovirus. Peritoneal dialysis international [J],2009, 29(5):508-516.
    [28]Strippoli R, Benedicto I, Foronda M, et al. p38 maintains E-cadherin expression by modulating TAK1-NF-kappa B during epithelial-to-mesenchymal transition. J Cell Sci [J],2010,123(Pt 24): 4321-4331.
    [29]Strippoli R, Benedicto I, Perez Lozano ML, et al. Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snaill pathway. Dis Model Mech [J],2008,1(4-5): 264-274.
    [30]Liu F, Xiao L, Peng Y, et al. Inhibition effect of small interfering RNA of connective tissue growth factor on the expression of vascular endothelial growth factor and connective tissue growth factor in cultured human peritoneal mesothelial cells. Chin Med J (Engl) [J],2007,120(3):231-236.
    [31]Xiao L, Sun L, Liu FY, et al. Connective tissue growth factor knockdown attenuated matrix protein production and vascular endothelial growth factor expression induced by transforming growth factor-betal in cultured human peritoneal mesothelial cells. Therapeutic Apheresis and Dialysis [J],2010, 14(1):27-34.
    [32]Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science [J],1996, 272(5259):263-267.
    [33]Bonci D, Cittadini A, Latronico M, et al.'Advanced'generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene therapy [J],2003,10(8):630-636.
    [34]Fleury S, Simeoni E, Zuppinger C, et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation [J], 2003,107(18):2375-2382.
    [35]Greenberg KP, Lee ES, Schaffer DV, et al. Gene delivery to the retina using lentiviral vectors. Adv Exp Med Biol [J],2006,572:255-266.
    [36]Kafri T, Blomer U, Peterson DA, et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature genetics [J],1997,17(3):314-317.
    [37]van Hooijdonk L, Ichwan M, Dijkmans T, et al. Lentivirus-mediated transgene delivery to the hippocampus reveals sub-field specific differences in expression. BMC neuroscience [J],2009,10(2):1-19.
    [38]Watson DJ, Karolewski BA, Wolfe JH. Stable gene delivery to CNS cells using lentiviral vectors. Methods Mol Biol [J],2004,246:413-428.
    [39]Levine BL, Humeau LM, Boyer J, et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proceedings of the National Academy of Sciences [J],2006,103(46):17372-17377.
    [40]Bank A, Dorazio R, Leboulch P. A phase Ⅰ/Ⅱ clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci [J],2005,1054:308-316.
    [41]Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Sciente[J],2009,326(5954):818-823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700