用户名: 密码: 验证码:
PET人工韧带重建前交叉韧带临床、力学及相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前交叉韧带(anterior cruciate ligament, ACL)损伤导致膝关节不稳定,严重影响膝关节功能,主要采用ACL重建手术治疗,是运动医学领域研究的热点。ACL重建移植物包括自体移植物、异体移植物和人工韧带。早期的人工韧带失败率太高而被临床淘汰。由于自体和异体移植物重建ACL都存在各自的弊端,近年来人工韧带重新受到关注。临床上应用经过改良设计的聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)人工韧带重建ACL逐渐增多,但术后超过两年的疗效和安全性研究尚不多。ACL重建术后动态膝关节旋转稳定性评价是衡量ACL重建术疗效的重要内容,通常采用三维步态分析技术或X光立体摄影技术来评价。前者比较成熟,后者设备昂贵,国内极少单位使用。目前临床应用PET人工韧带还存在一定缺陷:人工韧带两端骨隧道部分依靠挤压螺钉维持韧带固定,韧带骨道部分受螺钉挤压导致腱骨愈合受到影响;材料的生物相容性欠佳,成纤维细胞在人工韧带关节内游离纤维部分的表面粘附很少,分布不均匀,细胞增殖能力差,细胞外胶原纤维在人工韧带内分布不均匀,是导致人工韧带失败的主要原因之一。当前的基础研究开始注重改进PET人工韧带材料的生物相容性,但还没有能满足临床实践需要的有效方法。本研究是我们863和973纳米化人工韧带研究课题的一部分内容,拟观察PET人工韧带材料表面经纳米技术修饰后,PET材料的生物相容性能否提高,从而有助于提高人工韧带的远期疗效呢?
     为了解目前PET人工韧带移植后的真实情况,本研究对国内多家骨科运动医学临床中心实施的LARS人工韧带重建ACL术后患者进行3-5年临床随访,评价其临床疗效,分析其失败原因,有针对性地开展相关研究;同时,采用三维步态分析技术,定量评价LARS人工韧带重建ACL术后患者的动态膝关节旋转稳定性,并与自体胭绳肌腱移植重建ACL术后患者比较,探讨人工韧带重建的可靠性;同时对PET人工韧带材料进行纳米化处理,观察人骨髓基质干细胞在经过透明质酸、壳聚糖纳米自组装涂层、以及纳米羟基磷灰石涂层表面处理的PET人工韧带材料上的粘附、增殖和分化能力。为进一步深入研究打下基础,提供参考。本研究包括以下三个部分:
     第一部分LARS人工韧带重建前交叉韧带多中心临床研究
     目的多中心临床研究评价LARS (Ligament Advanced Reinforcement System, LARS)人工韧带重建前交叉韧带(anterior cruciate ligament, ACL)术后3-5年的临床疗效。
     方法对国内四家大学附属医院的骨科运动医学临床中心,从2004年8月到2006年7月间,使用LARS人工韧带重建ACL的159个病例进行回顾性临床研究,所选手术患者均保留ACL残端,施行人工韧带ACL重建术。从ACL损伤到接受重建手术的时间平均为5个月。术后平均随访50个月(36-62个月)。疗效评价包括:采用Lachman试验、轴移试验、KT-1000关节动度计评价膝关节稳定性;采用Lysholm评分、Tegner评分、IKDC评分,进行膝关节功能主客观评分;采用MRI和X线片影像学评价膝关节滑膜炎和骨隧道扩大发生;通过评价患者术后恢复运动的时间,了解患者对疗效的主观满意度;对其中68例患者进行Biodex等速肌力测定,以评价股四头肌力和胭绳肌力恢复情况。
     结果最终随访时,KT-1000关节动度计测试的结果是侧-侧比较,胫骨前移差值为1.5±1.6mm,膝关节稳定性较术前明显改善(p<.0001)。Lysholm评分由术前65.1±12.3分提高到最后随访时的94.5±7.0分(p<.0001); Tegner运动评分,由术前的3.1±1.6提高到随访时的6.1±1.5(p<.0001),恢复到不受限制运动的时间为术后5.2±1.1月;IKDC评分,正常或几乎正常(A或B)的比例为94%。有80例患者发生不同程度骨隧道扩大,骨道扩大发生率为51%。主观满意度:81%患者非常满意(127/156),12%患者满意(18/156),不满意者为4%(7/156),非常不满意为3%(4/156)。68例患者股四头肌峰力矩患侧占健侧下肢的百分比为93.6±10.7,等速胭绳肌峰力矩患侧占健侧下肢的百分比为95.8±12.0。与LARS人工韧带重建术直接相关的失败病例11例,失败率为7%,其中3例为固定螺钉松动,4例因为定位错误导致关节松动,3例为LARS人工韧带关节内断裂,伴1例膝关节滑膜炎,1例韧带残端处理不当。
     结论对于保留有ACL残端的急性和慢性ACL损伤病例应用LARS人工韧带重建ACL,术后随访50个月的主观和客观临床疗效尚好,骨道扩大发生率为51%。术后4年的失败率为7%,包括了螺钉松动、韧带断裂等。LARS人工韧带两端与骨隧道之间愈合不够牢固。临床相关提示,必须探索促进骨组织PET人工韧带两端愈合的有效方法。
     第二部分LARS人工韧带重建前交叉韧带术后膝关节稳定性的三维步态分析
     目的评价并比较LARS人工韧带和自体腘绳肌腱移植重建ACL术后,患者在步行状态下的动态膝关节旋转稳定性和步态结果。
     方法LARS人工韧带和自体腘绳肌腱(HT)移植重建ACL术后1年以上已经恢复运动的患者各8例,正常对照8名。在步态分析实验室,应用装置8台高速红外摄像机的Vicon三维步态分析系统和测力台,采集实验对象步行时的运动学和动力学数据。分别采集每位实验对象在正常速度步行时3次符合要求的测试数据,取平均值,作为每位实验对象的结果。应用Visual 3D软件对采集的运动学和动力学数据进行分析。步态分析指标:运动学,包括时间-距离参数:步速、步长,患侧下肢的站立期时间占步态周期时间的百分比;患侧膝关节屈伸和旋转角度;步态动力学指标:患侧下肢矢状面垂直地面反作用力,并与正常对照组比较。
     结果步速、步长、步频,站立期时间占步态周期的百分比,LARS组、HT组与对照组比较,差异无统计学意义(p>0.05)。站立期的矢状面膝关节角度:足跟着地时的屈膝角度,LARS组、HT组和对照组分别为3.0±1.4度、2.8±1.6度和2.74±2.1度;站立期最大屈膝角度和最小屈膝角度,LARS组、HT组、对照组分别为:33.2±9.6度和7.0±3.1度,33.5±10.8度和7.7±3.8度,32.8±5.7度和7.2±3.4度;三组间比较,差异无统计学意义(p>0.05)。膝关节最大内旋角度,LARS组、HT组和对照组分别为6.2±1.6度、5.8±1.3度和5.2±1.8,三组间差异无统计学意义(p>0.05)。膝关节最大外旋角度,LARS组、HT组和对照组分别为7.8+1.1度、8.2±1.4度和5.6±1.9度,HT组和LARS组均显著大于对照组(p<0.001);HT组和LARS组比较,组间差异无统计学意义(p>0.05)。动力学,三组的矢状面垂直地面反作用力均呈正常的M形曲线;地面反作用力第1峰值,LARS组、HT组和对照组分别为120.8±15.3、119.7±12.8和121.1±19.0;地面反作用力谷值,LARS组、HT组和对照组分别为73.0±12.9、72.6±13.7和68.9±13.0;地面反作用力第2峰值,站立中期力的变化,地面反作用力达到第1峰值的时间,LARS组、HT组和对照组间的差异均无统计学意义(p>0.05)。
     结论LARS人工韧带重建和自体HT移植单束重建ACL术后1年步行时的时间-距离参数和矢状面垂直地面反作用力恢复至正常水平。步行时的矢状面膝关节活动度恢复正常,但2组患者的水平面膝关节旋转稳定性未恢复到正常水平。
     第三部分PET韧带材料纳米化对骨髓基质干细胞黏附、增殖以及分化影响的实验研究
     目的观察人骨髓基质干细胞(human Bone Marrow Mesenchymal Stem Cells, hBMSCs)在经过表面纳米化处理的PET材料表面的黏附、增殖及成骨分化的能力。
     方法观察hBMSCs在以下3组PET膜片上的粘附、增殖和分化:PET膜片表面经壳聚糖、透明质酸纳米自组装涂层处理(LBL组);PET膜片表面经壳聚糖、透明质酸纳米自组装涂层处理后,表面再加纳米羟基磷灰石涂层(HA组),PET膜片未经表面处理(PET组)。扫描电镜(SEM)观察hBMSCs在材料上培养24小时和7天时的细胞形态。检测hBMSCs培养7天后的增殖和碱性磷酸酶(ALP)活性。Real Time PCR检测培养3天时hBMSCs的整合素β1 mRNA表达。
     结果电镜下hBMSCs在纳米羟基磷灰石和透明质酸、壳聚糖涂层的PET表面能更好地伸展和黏附,形态明显优于普通PET组。培养7天的细胞增殖、ALP活性定量,HA组和LBL组均显著高于PET组(p<0.001)。HA组细胞增殖,显著高于LBL组(p=0.01)。HA组的ALP活性,显著高于LBL组(p<.001)。hBMSC培养3天的整合素β1 mRNA表达,HA组和LBL组显著高于PET组(p<.001);HA组显著高于LBL组(p=.003)。
     结论PET表面经壳聚糖、透明质酸纳米自组装涂层和纳米羟基磷灰石涂层处理后,能明显促进人hBMSCs在PET膜表面的粘附、增殖和分化。纳米羟基磷灰石涂层的作用最明显。
Anterior cruciate ligament (ACL) injury results in instability of the knee and damage of its function. ACL reconstruction is the main treatment option for ACL injury, and it is always the research focus in sports medicine area. ACL reconstruction grafts include auto graft, allograft and artificial ligament. The previous artificial ligaments have been abandoned because of the high failure rate. As both of autograft and allograft have some drawbacks that could not be overcome, artificial ligament has been recently reconsidered for ACL reconstruction choice. The modified polyethylene terephthalate (PET) artificial ligament has been used for ACL reconstruction clinically, but its clinical outcome and safety over two years after surgery are still unknown and less reported. Currently, basic research of artificial ligament focus on how to improve the biocompatibility of PET material, but the advancement is too minimal to meet the need of clinical practice. Some drawbacks of the modified PET artificial ligament used in clinic have been found with the poor biocompatibility of PET material. The healing between the both ends of the PET artificial ligament with the bone tunnel is not firm, and the fixation of the artificial ligament is dependent on the interference screw. Also, the tissue growth into the free bibers of intra-articular part of the artificial ligament is poor, so the long-term clinical outcome could not be guaranted. If the nano technology surface modification improve the biocompatibility of the PET artificial ligament material, and make for the raise of the long-term outcome of artificial ligament?
     In order to understand the current situation and true fact after ACL reconstruction using PET artificial ligament and to solve the questions above-mentioned, a multicenter study was underwent to evaluate the clinical outcome of ACL reconstruction using the Ligament Advanced Reinforcement System (LARS) artificial ligament with 3-to 5-year follow up. The rotational stability of the knee and function of the lower limb during walking were quantitatively evaluated by use of three-dimensional gait analysis technology on patients who underwent ACL reconstruction using LARS artificial ligament and hamstring autograft. Human bone mesenchymal stem cells (hBMSCs) were cultured on PET artificial ligament materials which have been coated with chitosan and hyaluronic acid or nanohydroxyapatite by use of layer-by-layer nano self-assemble, and the adhesion, proliferation and differentiation of the hBMSCs were observed. This study included three parts as follows.
     PartⅠAnterior Cruciate Ligament Reconstruction with LARS Artificial Ligment:A Multi-center Study
     Purpose Multicenter study to evaluate the clinical outcome of anterior cruciate ligament (ACL) reconstruction by use of the Ligament Advanced Reinforcement System (LARS) artificial ligament with 3-to 5-year follow up.
     Methods From August 2004 to July 2006,159 patients with ACL rupture underwent arthroscopic ACL reconstruction with LARS artificial ligament at 4 orthopaedic sports medicine centers. They were retrospectively followed up for 50 months (36 to 62 months). Outcome assessment included physical examination, KT-1000 arthrometer testing, magnetic resonance imaging, radiography, Lysholm score, Tegner score, International Knee Documentation Committee score, and subjective satisfaction rate. Quadriceps and hamstring isokinetic strength was evaluated in 68 patients.
     Results The side-to-side difference in anterior translation (injured side-uninjured side) measured by KT-1000 arthrometer was 1.5±1.6 mm postoperatively, and knee stability was significantly improved compared with preoperative data (P<.0001). The Lysholm score improved from 65.1±12.3 points preoperatively to 94.5±7.0 points postoperatively (P<.0001). The Tegner score improved from 3.1±1.6 preoperatively to 6.1±1.5 postoperatively (P<.0001). According to the International Knee Documentation Committee score,94%patients were graded A or B at the last follow up. The rate of bone tunnel enlargement was 51%(80/156). Ninety-three percent of patients were very satisfied or satisfied with their outcome. Quadriceps and hamstring isokinetic peak torque of the injured limb expressed as a percentage of the contralateral limb was 93.6±10.7 and 95.8±12.0, respectively. Total 11 cases underwent the failure with the rate of 7%, including 3 cases with interference screw loose,4 cases with knee laxity due to surgical technical mal-position of bone tunnel,3 cases with artificial ligament rupture and one case accompanied synovitis.
     Conclusions ACL reconstruction with LARS artificial ligament used in patients with the ACL stump preserved in the acute and chronic phases has a very good outcome at mean of 50 months'follow up. The overall failure rate for ACL reconstruction with LARS artificial ligament was 7%, and one case with knee synovitis.
     PartⅡThree-Dimensional Gait Analysis for Knee Stability After ACL Reconstruction with LARS Artificial Ligament
     Purpose To evaluate the dynamic rotation stability of the knee and lower limb function in patients who had undergone anterior cruciate ligament reconstruction by use of LARS artificial ligament and hamstring autograft using single bundle technique.
     Methods Three groups were compared:eight LARS artificial ligament reconstruction patients, eight hamstring autograft anterior cruciate ligament reconstruction patients, and 8 matched control.All patients received the operation before 12 months when the gait analysis was performed and they all returned to the sports activity before injury. A 3-dimension motion analysis and force plate system was used to determine sagittal plane kinematics and kinetics of the lower limb during walking. Each subject underwent 3 trials and the mean were as their results. Visual 3D software was used to resolve the data. Variable analysis included step length, step speed, and stance of gait cycle percent, the angle of knee flexion, extension, and rotation. The sagittal vertical ground reaction force was also analyzed.
     Results There was no statistically significant difference between the three groups with respect to the step length, step speed, and stance of gait cycle percent (p>0.05).The knee flexion and extension at heel contact in LARS group, HT group and control were 3.0±1.4,2.8±1.6 and 2.7±2.1, respectively. The maximal and minimal knee flexion and extension during stance in LARS group, HT group and control were 33.2±9.6 and 7.0±3.1,33.5±10.8 and 7.7±3.8,32.8±5.7 and 7.2±3.4, respectively; and there was no significant difference between the three groups (p>0.05).The maximal knee internal rotation in LARS group, HT group and control were 6.2±1.6,5.8±1.3, and 5.2±1.8, respectively, and there was no significant difference between groups (p>0.05). The maximal knee external rotation in LARS group, HT group and control were 7.8±1.1,8.2±1.4, and 5.6±1.9, respectively. The values of LARS group and the HT group were more larger than the control, and indicating a significant difference (p<0.001); there was no significant difference between the HT group and the LARS group (p>0.05).The sagittal vertical ground reaction force:the first peak force of LARS group, HT group and control were 120.8±15.3、119.7±12.8 and 121.1±19.0, respectively; the valley force of LARS group, HT group and control were 73.0±12.9、72.6±13.7 and 68.9±13.0, respectively; there was no significant difference between the three groups (p>0.05). As for the second peak force, the force change in the midfoot, and the first peak time, there was no significant difference between the three groups (p>0.05).
     Conclusions The time-spatial data, sagittal knee angle, and sagittal vertical ground reaction force return to normal level during walking at 1 year after anterior cruciate ligament reconstruction by use of LARS artificial ligament or hamstring autograft using single bundle technique, but the knee rotation does not resume to normal level.
     Part III Effect of Nanoscale Coating for PET Materials on Adhesion, Proliferation and Differentiation of Mesenchymal Stem Cells
     Purpose To observe the effect of chitosan, hyaluronic acid and hydroxyapatite nanoscale coating for polyethylene terephthalate (PET) material on adhesion, proliferation and differentiation of human Bone Marrow mesenchymal stem cells (hBMSCs).
     Methods The hBMSCs were cultured on the PET coating of nanoscale chitosan, hyaluronic acid and hydroxyapatite, and the adhesion, proliferation and differentiation of hBMSCs were observed. The PET film were divided into three groups based on the surface modification using layer-by-layer of chitosan and hyaluronic acid (LBL group), LBL plus nano hydroxyapatite coating (HA group), or without treatment (PET group). The morphology of hBMSC were observed by scanning electron microscope (SEM) at 24 hours and 7 days after seeding. The proliferation and the alkali phosphatase (ALP) activity of hBMSCs were detected when cultured for 7 days. Real Time PCR was used to measure the mRNA expression of integrinβ1 at 3 days culture.
     Results The hBMSCs showed better spreading in the HA group and LBL group than the PET group. The proliferation and ALP activity of hBMSCs of the HA group and LBL group were significantly higher than the PET group (<.001). The proliferation of the HA group was significantly higher than the LBL group (p=0.01), and the ALP activity of the HA group was also higeher than the LBL group (p<.001).As for the mRNA expression of integrinβ1 at 3 days after seeding, the HA group and LBL group were significantly higher than the PET group (<.001), and the HA group showed significantly higher than the LBL group (p=.003).
     Conclusions The chitosan, hyaluronic acid and hydroxyapatite nanoscale coating for PET material significantly improve the adhesion, proliferation and differentiation of hBMSCs. The effect of nano hydroxyapatite is more notable.
引文
1. Vasara AI, Jurvelin JS, Peterson L, et al.Arthroscopic cartilage indentation and cartilage lesions of anterior cruciate ligament-deficient knees.Am J Sports Med, 2005,33(3):408-14.
    2. Lohmander LS, Ostenberg A, Englund M, et al.High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury.Arthritis Rheum, 2004,50(10):3145-52.
    3. Nebelung W, Wuschech H.Thirty-five years of follow-up of anterior cruciate ligament-deficient knees in high-level athletes.Arthroscopy,2005,21(6):696-702.
    4. Lohmander LS, Englund PM, Dahl LL, et al.. The long-term consequence of anterior cruciate ligament and meniscus injuries:osteoarthritis.Am J Sports Med, 2007,35(10):1756-69.
    5.敖英芳,田得祥,崔国庆,等.运动员前交叉韧带损伤的流行病学研究.体育科学,2000,20(4):47-48.
    6. Spindler KP,Wright RW.Anterior Cruciate Ligament Tear. New Engl J Med 2008,359:2135-2142.
    7. Cooper JA, Sahota JS, Gorum WJ, et al.Biomimetic tissue-engineered anterior cruciate ligament replacement.Proc Natl Acad Sci USA.2007 27,104(9):3049-54.
    8. Murray MM.Current status and potential of primary ACL repair.Clin Sports Med. 2009,28(1):51-61.
    9. Busam ML, Provencher MT, Bach BR.Complications of anterior cruciate ligament reconstruction with bone-patellar tendon-bone constructs:care and prevention. Am J Sports Med,2008,36:379-394.
    10. Adachi N, Ochi M, Uchio Y, et al. Harvesting hamstring tendons for ACL reconstruction influences postoperative hamstring muscle performance. Arch Orthop Trauma Surg,2003,123(9):460.
    11. Armour T, Forwell L, Litchfield R,et al. Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction.Am J Sports Med,2004,32(7):1639.
    12. Torry M, Decker M, Jockel J,et al. Comparison of tibial rotation strength in patients' status after anterior cruciate ligament reconstruction with hamstring versus patellar tendon autografts.Clin J Sport Med,2004,14(6):325.
    13. Phillips BB. Arthroscopy of the Lower Extremity. In:Canale ST, Beaty JH, eds. Campbell's Operative Orthopaedics. Philadelphia:Mosby,2008,2811-2922.
    14. Bernardino S.ACL prosthesis:any promise for the future?Knee Surg Sports Traumatol Arthrosc,2009. DOI10.1007/s00167-009-0982-y.
    15. Legnani C, Ventura A, Terzaghi C,et al.Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature.Int Orthop,2010,34(4):465-71.
    16. Jenkins DHR, McKibbin B. The role of flexible carbon fibre implants as tendon and ligament substitutes in clinical practice:a preliminary report. J Bone Joint Surg Br,1980;62:497-499.
    17. Ahlfeld SK, Larson RL, Collins HR. Anterior cruciate reconstruction in the chronically unstable knee using an expanded polytetrafluoroethylene (PTFE) prosthetic ligament. Am J Sports Med,1987;15:326-330.
    18. Klein W, Jensen KU. Synovitis and artificial ligaments. Arthroscopy, 1992;8:116-124.
    19. Paulos LE, Rosenberg TD, Grewe SR. The Gore-Tex anterior cruciate ligament prosthesis:a long-term follow-up. Am J Sports Med,1992;20:246-252.
    20. Rushton N, Dandy DJ, Naylor CP. The clinical, arthroscopic and histological findings after replacement of the anterior cruciate ligament with carbon fibre. J Bone Joint Surg Br,1983,65:308-309.
    21. Guidoin M, Marois Y, Bejui J,et al. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials,2000,21:2461-2474.
    22. Fukubayashi T, Ikeda K.Follow-up study of Gore-Tex artificial ligament--special emphasis on tunnel osteolysis.J Long Term Eff Med Implants,2000,10(4):267-77.
    23. Muren O, Dahlstedt L, Brosjo E,et al.Gross osteolytic tibia tunnel widening with the use of Gore-Tex anterior cruciate ligament prosthesis:a radiological, arthrometric and clinical evaluation of 17 patients 13-15 years after surgery.Acta Orthop,2005,76(2):270-4.
    24. Nau T, Lavoie P, Duval N.A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br, 2002,84:356-360.
    25. Petrou G, Chardouvelis C, Kouzoupis A,et al.Reconstruction of the anterior cruciate ligament using the polyester ABC ligament scaffold:a minimum follow-up of four years.J Bone Joint Surg Br,2006,88(7):893-9.
    26. Jones AP, Sidhom S, Sefton G. Long-term clinical review (10-20 years) after reconstruction of the anterior cruciate ligament using the Leeds-Keio synthetic ligament. J Long Term Eff Med Implants,2007,17:59-69.
    27. Jadeja H, Yeoh D, Lal M, et al.Patterns of failure with time of an artificial scaffold class ligament used for reconstruction of the human anterior cruciate ligament.Knee,2007,14(6):439-42.
    28. Zaffagnini S, Muccioli GM, Chatrath V, et al. Histological and ultrastructural evaluation of Leeds-Keio ligament 20 years after implant:a case report. Knee Surg Sports Traumatol Arthrosc,2008,16:1026-1029.
    29. Rowland JR, Tsukazaki S, Kikuchi T,et al.Radiofrequency-generated glow discharge treatment:potential benefits for polyester ligaments.J Orthop Sci, 2003,8(2):198-206.
    30. Messenger MP, Raif el M, Seedhom BB,et al.The potential use of enamel matrix derivative for in situ anterior cruciate ligament tissue engineering:a translational in vitro investigation.Tissue Eng,2007,13(8):2041-51.
    31. Messenger MP, Raif el M, Seedhom BB,et al.Enamel matrix derivative enhances tissue formation around scaffolds used for tissue engineering of ligaments. J Tissue Eng Regen Med,2010,4(2):96-104.
    32. Ciobanu M, Siove A, Gueguen V,et al.Radical graft polymerization of styrene sulfonate on poly(ethylene terephthalate) films for ACL applications:"grafting from" and chemical characterization.Biomacromolecules,2006,7(3):755-60.
    33. Shao HJ, Chen CS, Lee IC,et al.Designing a three-dimensional expanded polytetrafluoroethylene-poly(lactic-co-glycolic acid) scaffold for tissue engineering. Artif Organs,2009,33(4):309-17.
    34. Dericks G. Ligament advanced reinforcement system anterior cruciate ligament reconstruction. Op Tech Sports Med,1995,3:187-205.
    35. Talbot M, Berry G, Fernandes J,et al. Knee dislocations. Can J Surg, 2004,47:20-24.
    36. Hagemeister N, Duval N, Yahia L,et al. Comparison of two methods for reconstruction of the posterior cruciate ligament using a computer based method: quantitative evaluation of laxity, three-dimensional kinematics and ligament deformation measurement in cadaver knees. Knee,2002,9:291-299.
    37.东庆泽.人工十字韧带在预扭角度下之生物力学特性.台南:成功大学,2006.
    38.陈世益,洪国威,戈允申,等.LARS人工韧带与自体胭绳肌腱重建前交叉韧带早期临床疗效比较。中国运动医学杂志,2007,26(5):530-533.
    39. Ristanis S, Stergiou N, Siarava E,et al.Effect of femoral tunnel placement for reconstruction of the anterior cruciate ligament on tibial rotation.J Bone Joint Surg Am,2009,91 (9):2151-8.
    40. Moraiti CO, Stergiou N, Ristanis S,et al.The effect of anterior cruciate ligament reconstruction on stride-to-stride variability.Arthroscopy,2009,25(7):742-9.
    41. Ristanis S, Stergiou N, Patras K,et al.Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction.Arthroscopy, 2005,21(11):1323-9.
    42. Gao B, Zheng NN.Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and-reconstructed knees during walking.Clin Biomech, 2010,25(3):222-9.
    43. Scanlan SF, Chaudhari AM, Dyrby CO,et al.Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees.J Biomech,2010, doi:10.1016/j.jbiomech.2010.02.010
    44. Georgoulis AD, Ristanis S, Chouliaras V,et al.Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res, 2007,454:89-94.
    45. Butler RJ, Minick KI, Ferber R,et al.Gait mechanics after ACL reconstruction: implications for the early onset of knee osteoarthritis.Br J Sports Med, 2009,43(5):366-70.
    46. Stergiou N, Ristanis S, Moraiti C,et al.Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees:a theoretical proposition for the development of osteoarthritis.Sports Med,2007,37(7):601-13.
    47. Panni A,Denti M,Franzese S,et al.The bone-ligament junction:A comparison between biological and artificial ACL reconstruction Knee surgery sports traumatology arthroscopy,1993,1 (1):9-12.
    48.布吕莱,拉布罗,米戈内,等.仿生人工韧带及其制备方法.中国专利20040004135.X.
    49. Andreas Weiler, Sven Scheffler,Maria Apreleva. Healing of Ligament and Tendon to Bone. In:Walsh WR, eds. Repair and Regeneration of Ligaments, Tendons, and Joint Capsule. Totowa:Humana,2006,201-232.
    50. Chen CH, Chen WJ, Shih CH,et al.Arthroscopic anterior cruciate ligament reconstruction with periosteum-enveloping hamstring tendon graft.Knee Surg Sports Traumatol Arthrosc,2004,12(5):398-405.
    51. Robinson J, Huber C, Jaraj P,et al.Reduced bone tunnel enlargement post hamstring ACL reconstruction with poly-L-lactic acid/hydroxyapatite bioabsorbable screws.Knee,2006,13(2):127-31.
    52. Zhang LJ, Webster TJ.Nanotechnology and nanomaterials:Promises for improved tissue regeneration.Nano Today,2009,4(1):66-80.
    53. Madurantakam PA, Cost CP, Simpson DQet al.Science of nanofibrous scaffold fabrication:strategies for next generation tissue-engineering scaffolds.Nanomedicine,2009,4(2):193-206.
    54. Jager M, Zilkens C, Zanger K,et al.Significance of nano-and microtopography for cell-surface interactions in orthopaedic implants.J Biomed Biotechnol, 2007,2007(8):69036.
    55. Puckett S, Pareta R, Webster TJ.Nano rough micron patterned titanium for directing osteoblast morphology and adhesion.Int J Nanomedicine, 2008,3(2):229-41.
    56. Smith LJ, Swaim JS, Yao C,et al.Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications.Int J Nanomedicine,2007,2(3):493-9.
    57. Palmquist A, Lindberg F, Emanuelsson L,et al.Biomechanical, histological, and ultrastructural analyses of laser micro-and nano-structured titanium alloy implants: a study in rabbit.J Biomed Mater Res A,2010,15;92(4):1476-86.
    58. Yang X, Chen X, Wang H.Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds.Biomacromolecules,2009,12;10(10):2772-8.
    59. Stok KS, Lisignoli G, Cristino S,et al.Mechano-functional assessment of human mesenchymal stem cells grown in three-dimensional hyaluronan-based scaffolds for cartilage tissue engineering.Biomed Mater Res A,2010,93(1):37-45.
    60. Cristino S, Grassi F, Toneguzzi S, et al.Analysis of mesenchymal stem dimensional HYAFF 11 (R)-based cells grown on a prototype ligament scaffold.J Biomed Mater Res A,73(3):275-83.
    61. Sheng Meng, Zongjun Liu, Li Shen,et al.The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system, Biomaterials,2009,30 (12):2276-2283.
    62. Boudou T, Crouzier T, Ren K,et al.Multiple functionalities of polyelectrolyte multilayer films:new biomedical applications.Adv Mater,2010,22(4):441-67.
    63. Delong L, Sheng M, Wei Z,et al.Immobilization of biomacromolecules on poly-L-lactide surface via a layer-by-layer method for the improving of its cytocompatibility to bone marrow stromal cells.Chinese Science Bulletin,2005,50 (24):2809-2816.
    64. Chen F, Lam WM, Lin CJ,et al.Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface:in vitro evaluation using mesenchymal stem cells.J Biomed Mater Res B Appl Biomater, 2007,82(1):183-91.
    65. Meirelles L, Arvidsson A, Andersson M,et al.Nano hydroxyapatite structures influence early bone formation J Biomed Mater Res A,2008,87(2):299-307.
    66. Meirelles L, Albrektsson T, Kjellin P,et al.Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model.J Biomed Mater Res A, 2008,87(3):624-31.
    1.1.Jenkins DHR, McKibbin B. The role of flexible carbon fibre implants as tendon and ligament substitutes in clinical practice:a preliminary report. J Bone Joint Surg Br,1980;62:497-499.
    2. Ahlfeld SK, Larson RL, Collins HR. Anterior cruciate reconstruction in the chronically unstable knee using an expanded polytetrafluoroethylene (PTFE) prosthetic ligament. Am J Sports Med,1987;15:326-330.
    3. Klein W, Jensen KU. Synovitis and artificial ligaments. Arthroscopy, 1992;8:116-124.
    4. Paulos LE, Rosenberg TD, Grewe SR. The Gore-Tex anterior cruciate ligament prosthesis:a long-term follow-up. Am J Sports Med,1992;20:246-252.
    5. Lebel B, Hulet C, Galaud B, Burdin G, Locker B, Vielpeau C. Arthroscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone autograft:a minimum 10-year follow-up. Am J Sports Med 2008;36:1275-1282.
    6. Liden M, Sernert N, Rostgard-Christensen L, Kartus C, Ejerhed L. Osteoarthritic changes after anterior cruciate ligament reconstruction using bone-patellar tendon-bone or hamstring tendon autografts:a retrospective,7-year radiographic and clinical follow-up study. Arthroscopy 2008;24:899-908.
    7. Nakata K, Shino K, Horibe S, et al. Arthroscopic anterior cruciate ligament reconstruction using fresh-frozen bone plug-free allogeneic tendons:10-year follow-up. Arthroscopy 2008;24:285-291.
    8. Busam ML, Provencher MT, Bach BR. Complications of anterior cruciate ligament reconstruction with bone-patellar tendon-bone constructs:care and prevention. Am J Sports Med 2008;36:379-394.
    9. Adachi N, Ochi M, Uchio Y, et al. Harvesting hamstring tendons for ACL reconstruction influences postoperative hamstring muscle performance. Arch Orthop Trauma Surg,2003,123(9):460.
    10. Tashiro T, Kurosawa H, Kawakami A, et al. Influence of medial hamstring tendon harvest on knee flexor strength after anterior cruciate ligament reconstruction. Am J Sports Med,2003,31(4):522.
    11. Segawa H, Omori G, Koga Y, et al. Rotational muscle strength of the limb after anterior cruciate ligament reconstruction using semitendinosus and gracilis tendon. Arthroscopy,2002,18(2):177.
    12. Torry M, Decker M, Jockel J,et al. Comparison of tibial rotation strength in patients' status after anterior cruciate ligament reconstruction with hamstring versus patellar tendon autografts.Clin J Sport Med,2004,14(6):325.
    13. Elmlinger BS, Nyland JA, Tillett ED. Knee flexor function 2 years after anterior cruciate ligament reconstruction with semitendinosus-gracilis autografts. Arthroscopy 2006;22:650-655.
    14. Armour T, Forwell L, Litchfield R, Kirkley A, Amendola N, Fowler PJ. Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med 2004;32:1639-1643.
    15. Petrigliano FA, McAllister DR, Wu BM.Tissue engineering for anterior cruciate ligament reconstruction:a review of current strategies. Arthroscopy,2006,22(4):441-51.
    16. Cooper JA, Sahota JS, Gorum WJ, et al.Biomimetic tissue-engineered anterior cruciate ligament replacement.Proc Natl Acad Sci USA.2007 27,104(9):3049-54.
    17. Spalazzi JP, Doty SB, Moffat KL, et al.Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering.Tissue Eng,2006,12(12):3497-508.
    18. Spalazzi JP, Dagher E, Doty SB,et al.In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration.J Biomed Mater Res A,2008,86(1):1-12.
    19. Laurencin CT, Freeman JW.Ligament tissue engineering:an evolutionary materials science approach.Biomaterials,2005,26(36):7530-6.
    20. Heckmann L, Schlenker HJ, Fiedler J,Human mesenchymal progenitor cell responses to a novel textured poly(L-lactide) scaffold for ligament tissue engineering.J Biomed Mater Res B Appl Biomater,2007,81(1):82-90.
    21. Van Eijk F, Saris DB, Riesle J,Tissue engineering of ligaments:a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source.Tissue Eng,2004,10(5-6):893-903.
    22. Ge Z, Goh JC, Lee EH.The effects of bone marrow-derived mesenchymal stem cells and fascia wrap application to anterior cruciate ligament tissue engineering.Cell Transplant,2005,14(10):763-73.
    23. Hagemeister N, Duval N, Yahia L,et al. Comparison of two methods for reconstruction of the posterior cruciate ligament using a computer based method: quantitative evaluation of laxity, three-dimensional kinematics and ligament deformation measurement in cadaver knees. Knee,2002,9:291-299.
    24. Rowland JR, Tsukazaki S, Kikuchi T,et al.Radiofrequency-generated glow discharge treatment:potential benefits for polyester ligaments.J Orthop Sci, 2003,8(2):198-206.
    25. Messenger MP, Raif el M, Seedhom BB,et al.The potential use of enamel matrix derivative for in situ anterior cruciate ligament tissue engineering:a translational in vitro investigation.Tissue Eng,2007,13(8):2041-51.
    26. Messenger MP, Raif el M, Seedhom BB,et al.Enamel matrix derivative enhances tissue formation around scaffolds used for tissue engineering of ligaments.J Tissue Eng Regen Med,2010,4(2):96-104.
    27. Ciobanu M, Siove A, Gueguen V,et al.Radical graft polymerization of styrene sulfonate on poly(ethylene terephthalate) films for ACL applications:"grafting from" and chemical characterization.Biomacromolecules,2006,7(3):755-60.
    28. Zhou J, Ciobanu M, Pavon-Djavid G, et al.Morphology and adhesion of human fibroblast cells cultured on bioactive polymer grafted ligament prosthesis.Conf Proc IEEE Eng Med Biol Soc,2007,2007:5115-8.
    29. Dericks G. Ligament advanced reinforcement system anterior cruciate ligament reconstruction. Op Tech Sports Med,1995,3:187-205.
    30.东庆泽.人工十字韧带在预扭角度下之生物力学特性.台南:成功大学,2006.
    31. Trieb K, Blahovec H, Brand G, Sabeti M, Dominkus M, Kotz R. In vivo and invitro cellular ingrowth into a new generation of artificial ligaments. Eur Surg Res 2004;36:148-151.
    32.于绍斌,董启榕,王亚斌,等.聚对苯二甲酸乙二醇酯材料LARS韧带重建兔前交叉韧带后早期组织学及超微结构变化.中国组织工程研究与临床康复,2008,12(36):7061-7066.
    33. Nau T, Lavoie P, Duval N.A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 2002;84:356-360.
    34. Lavoie P, Fletcher J, Duval N. Patient satisfaction needs as related to knee stability and objective findings after ACL reconstruction using the LARS artificial ligament. Knee 2000;7:157-163.
    35. Talbot M, Berry G, Fernandes J, Ranger P. Knee dislocations. Can J Surg 2004;47:20-24.
    36.陈世益,洪国威,戈允申,等.LARS人工韧带与自体胭绳肌腱重建前交叉韧带早期临床疗效比较。中国运动医学杂志,2007,26(5):530-533.
    37. Smith DB, Carter TR, Johnson DH.High failure rate for electrothermal shrinkage of the lax anterior cruciate ligament:a multicenter follow-up past 2 years.Arthroscopy,2008,24(6):637-41.
    38. Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 1985; 198:43-49.
    39. Hefti F, Muller W, Jakob RP, Staubli HU. Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1993;1:226-234.
    40. Guidoin M, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 2000; 21:2461-2474.
    41. Rushton N, Dandy DJ, Naylor CP. The clinical, arthroscopic and histological findings after replacement of the anterior cruciate ligament with carbon fibre. J Bone Joint Surg Br 1983;65:308-309.
    42. Legnani C, Ventura A, Terzaghi C,et al.Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature.Int Orthop,2010,34(4):465-71.
    43. Bernardino S.ACL prosthesis:any promise for the future?Knee Surg Sports Traumatol Arthrosc,2009. DOI10.1007/s00167-009-0982-y.
    44. Phillips BB. Arthroscopy of the Lower Extremity. In:Canale ST, Beaty JH, eds. Campbell's Operative Orthopaedics. Philadelphia:Mosby,2008,2811-2922.
    45. Panni A,Denti M,Franzese S,et al.The bone-ligament junction:A comparison between biological and artificial ACL reconstruction. Knee Surg Sports Traumatol Arthrosc,1993,1(1):9-12.
    46. Kock H, Stuemer.Biocompatibility and ingrowth of trevira prostheses following replacement of the cruciate ligament.Med Bio Eng Comput,1992,30(4):CE13-16.
    47. Amis AA, Kempson SA.Bone adaptation to a polyester fiber anterior cruciate ligament replacement.J Long Term Eff Med Implants.1999;9(1-2):153-68.
    48. Wilson TC, Kantaras A, Atay A, et al.Tunnel enlargement after anterior cruciate ligament surgery.Am J Sports Med.2004;32(2):543-9.
    49. Lind M, Feller J, Webster KE.Tibial bone tunnel widening is reduced by polylactate/hydroxyapatite interference screws compared to metal screws after ACL reconstruction with hamstring grafts.Knee.2009; 16(6):447-51.
    50. Zaffagnini S, Muccioli GM, Chatrath V, et al. Histological and ultrastructural evaluation of Leeds-Keio ligament 20 years after implant:a case report. Knee Surg Sports Traumatol Arthrosc 2008; 16:1026-1029.
    51. Jones AP, Sidhom S, Sefton G. Long-term clinical review (10-20 years) after reconstruction of the anterior cruciate ligament using the Leeds-Keio synthetic ligament. J Long Term Eff Med Implants 2007;17:59-69.
    52.布吕莱,拉布罗,米戈内,等.仿生人工韧带及其制备方法.中国专利20040004135.X.
    53. Ristanis S, Stergiou N, Siarava E,et al.Effect of femoral tunnel placement for reconstruction of the anterior cruciate ligament on tibial rotation. J Bone Joint Surg Am,2009,91(9):2151-8.
    54. Moraiti CO, Stergiou N, Ristanis S,et al.The effect of anterior cruciate ligament reconstruction on stride-to-stride variability.Arthroscopy,2009,25(7):742-9.
    55.王卫平,崔大平,赵德伟,等.自体髌腱与腘绳肌腱重建前交叉韧带后的步态分析.中华医学杂志,2010,90(1):10-14.
    56. Georgoulis AD, Ristanis S, Chouliaras V,et al.Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res, 2007,454:89-94.
    57. Butler RJ, Minick KI, Ferber R,et al.Gait mechanics after ACL reconstruction: implications for the early onset of knee osteoarthritis.Br J Sports Med, 2009,43(5):366-70.
    58. Stergiou N, Ristanis S, Moraiti C,et al.Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees:a theoretical proposition for the development of osteoarthritis.Sports Med,2007,37(7):601-13.
    59. Gadikota HR, Wu JL, Seon JK,et al.Single-tunnel double-bundle anterior cruciate ligament reconstruction with anatomical placement of hamstring tendon graft:can it restore normal knee joint kinematics?Am J Sports Med,2010,38(4):713-20.
    60. Gadikota HR, Seon JK, Kozanek M, et al.Biomechanical comparison of single-tunnel-double-bundle and single-bundle anterior cruciate ligament reconstructions.Am J Sports Med,2009,37(5):962-9.
    1. Lohmander LS, Englund PM, Dahl LL,et al. The long-term consequence of anterior cruciate ligament and meniscus injuries:osteoarthritis. Am J Sports Med. 2007;35(10):1756-69.
    2. Andriacchi TP, Briant PL, Bevill SL,et al.Rotational changes at the knee after ACL injury cause cartilage thinning.Clin Orthop Relat Res,2006,442:39-44.
    3. Roos H, Adalberth T, Dahlberg L, et al. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus:the influence of time and age. Osteoarthritis Cartilage,1995;3(4):261-267.
    4. Ristanis S, Stergiou N, Siarava E,et al.Effect of femoral tunnel placement for reconstruction of the anterior cruciate ligament on tibial rotation. J Bone Joint Surg Am,2009,91(9):2151-8.
    5. Ristanis S, Stergiou N, Patras K,et al.Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction.Arthroscopy, 2005,21(11):1323-9.
    6. Georgoulis AD, Ristanis S, Chouliaras V,et al.Tibial rotation is not restored after ACL reconstruction with a hamstring graft.Clin Orthop Relat Res, 2007,454:89-94.
    7. Keays SL, Bullock-Saxton JE, Keays AC, et al. A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction:patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med,2007,35(5):729-39.
    8. Moraiti CO, Stergiou N, Ristanis S,et al.The effect of anterior cruciate ligament reconstruction on stride-to-stride variability.Arthroscopy,2009,25(7):742-9.
    9. Gao B, Zheng NN.Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and-reconstructed knees during walking.Clin Biomech, 2010,25(3):222-9.
    10. Scanlan SF, Chaudhari AM, Dyrby CO,et al.Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees.J Biomech,2010, doi:10.1016/j.jbiomech.2010.02.010
    11.王卫平,崔大平,赵德伟,等.自体髌腱与胭绳肌腱重建前交叉韧带后的步态分析.中华医学杂志,2010,90(1):10-14.
    12. Butler RJ, Minick KI, Ferber R,et al.Gait mechanics after ACL reconstruction: implications for the early onset of knee osteoarthritis.Br J Sports Med, 2009,43(5):366-70.
    13. Georgoulis AD, Papadonikolakis A,Papageorgiou CD,et al. Three-Dimensional Tibiofemoral Kinematics of the Anterior Cruciate Ligament-Deficient and Reconstructed Knee during Walking. Am J Sports Med,2003,31(1):729-39.
    14. Kurz MJ, Stergiou N, Buzzi UH, et al.The effect of anterior cruciate ligament reconstruction on lower extremity relative phase dynamics during walking and running.Knee Surg Sports Traumatol Arthrosc.2005 Mar;13(2):107-15.
    15. Pospischill M, Kranzl A, Attwenger B, et al.Minimally invasive compared with traditional transgluteal approach for total hip arthroplasty:a comparative gait analysis.J Bone Joint Surg Am,2010,92(2):328-37.
    16. Wang H, Dugan E, Frame J, Rolston L.Gait analysis after bi-compartmental knee replacement.Clin Biomech,2009,24(9):751-4.
    17. Lamontagne M, Beaulieu ML, Varin D,et al.Gait and motion analysis of the lower extremity after total hip arthroplasty:what the orthopedic surgeon should know.Orthop Clin North Am,2009,40(3):397-405.
    18. Liebensteiner MC, Herten A, Gstoettner M,et al.Correlation between objective gait parameters and subjective score measurements before and after total knee arthroplasty.Knee,2008,15(6):461-6.
    19. Button K, van Deursen R, Price P.Classification of functional recovery of anterior cruciate ligament copers, non-copers, and adapters.Br J Sports Med,2006,40(10):853-9.
    20. Waite JC, Beard DJ, Dodd CA, Murray DW, Gill HS.In vivo kinematics of the ACL-deficient limb during running and cutting.Knee Surg Sports Traumatol Arthrosc.,2005,13(5):377-84.
    21. Wexler G, Hurwitz DE, Bush-Joseph CA, et al.Functional gait adaptations in patients with anterior cruciate ligament deficiency over time.Clin Orthop Relat Res,1998,(348):166-75.
    22. Stergiou N, Moraiti C, Giakas G, Ristanis S, Georgoulis AD.The effect of the walking speed on the stability of the anterior cruciate ligament deficient knee.Clin Biomech,2004,19(9):957-63.
    23. Berchuck M, Andriacchi TP, Bach BR,et al. Gait adaptations by patients who have a deficient anterior cruciate ligament. Bone Joint Surg Am.1990;72(6):871-877.
    24. Devita P, Hortobagyi T, Barrier J,et al. Gait adaptations before and after anterior cruciate ligament reconstruction surgery. Med Sci Sports Exerc.1997;29(7):853-9.
    25. Tibone J,Antich T,Fanton G,et al.Functional analysis of anterior cruciate ligament instability.Am J Sports Med,14(4):276-284.
    26. Tang SF, Chen CP, Chen MJ,et al. Changes in sagittal ground reaction forces after intra-articular hyaluronate injections for knee osteoarthritis. Arch Phys Med Rehabil 2004;85:951-5.
    27. Knoll Z, Kocsis L, Kiss RM.Gait patterns before and after anterior cruciate ligament reconstruction.Knee Surg Sports Traumatol Arthrosc.2004,12(1):7-14
    28. Minning SJ, Myer GD, Mangine RE,et al.Serial assessments to determine normalization of gait following anterior cruciate ligament reconstruction. Scand J Med Sci Sports,2009,19(4):569-75.
    29. Stergiou N, Ristanis S, Moraiti C,et al.Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees:a theoretical proposition for the development of osteoarthritis.Sports Med,2007,37(7):601-13.
    30. Webster KE, Wittwer JE, O'Brien J,et al. Gait patterns after anterior cruciate ligament reconstruction are related to graft type. Am J Sports Med. 2005;33(2):247-54.
    31. Tadokoro K, Matsui N, Yagi M,et al. Evaluation of hamstring strength and tendon regrowth after harvesting for anterior cruciate ligament reconstruction. Am J Sports Med.2004;32(7):1644-50.
    32. Carofino B, Fulkerson J. Medial hamstring tendon regeneration following harvest for anterior cruciate ligament reconstruction:fact, myth, and clinical implication. Arthroscopy.2005;21(10):1257-65.
    33. Elmlinger BS, Nyland JA, Tillett ED. Knee flexor function 2 years after anterior cruciate ligament reconstruction with semitendinosus-gracilis autografts. Arthroscopy 2006;22:650-655.
    34. Armour T, Forwell L, Litchfield R, et al. Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med 2004;32:1639-1643.
    35. Pinczewski L, Russell V, Salmon L. Osteoarthritis after ACL reconstruction:a comparison of patellar tendon and hamstring tendon graft for ACL reconstruction over 7 years. J Sci Med Sport.2003;6:97.
    36. Gadikota HR, Wu JL, Seon JK,et al.Single-tunnel double-bundle anterior cruciate ligament reconstruction with anatomical placement of hamstring tendon graft:can it restore normal knee joint kinematics?Am J Sports Med,2010,38(4):713-20.
    37. Gadikota HR, Seon JK, Kozanek M, et al.Biomechanical comparison of single-tunnel-double-bundle and single-bundle anterior cruciate ligament reconstructions.Am J Sports Med,2009,37(5):962-9.
    38. Kim SJ, Chang JH, Kim TW.Anterior cruciate ligament reconstruction with use of a single or double-bundle technique in patients with generalized ligamentous laxity.J Bone Joint Surg Am.2009;91(2):257-62.
    1. Guidoin M, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 2000; 21:2461-2474.
    2. Panni A,Denti M,Franzese S,et al.The bone-ligament junction:A comparison between biological and artificial ACL reconstruction. Knee surgery sports traumatology arthroscopy,1993,1(1):9-12.
    3. Kock H, Stuemer.Biocompatibility and ingrowth of trevira prostheses following replacement of the cruciate ligament.Med Bio Eng Comput,1992,30(4):CE13-16.
    4.布吕莱,拉布罗,米戈内,等.仿生人工韧带及其制备方法.中国专利20040004135.X.
    5. Amis AA, Kempson SA.Bone adaptation to a polyester fiber anterior cruciate ligament replacement.J Long Term Eff Med Implants.1999;9(1-2):153-68.
    6. Kobayashi M, Watanabe N, Oshima Y,et al.The fate of host and graft cells in early healing of bone tunnel after tendon graft.Am J Sports Med.2005 Dec;33(12):1892-7.
    7. Lim JK, Hui J, Li L, et al.Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction.Arthroscopy.2004;20(9):899-910.
    8. Madurantakam PA, Cost CP, Simpson DG,et al.Science of nanofibrous scaffold fabrication:strategies for next generation tissue-engineering scaffolds.Nanomedicine,2009,4(2):193-206.
    9. Jager M, Zilkens C, Zanger K,et al.Significance of nano-and microtopography for cell-surface interactions in orthopaedic implants.J Biomed Biotechnol, 2007,2007(8):69036.
    10. Puckett S, Pareta R, Webster TJ.Nano rough micron patterned titanium for directing osteoblast morphology and adhesion.Int J Nanomedicine, 2008,3(2):229-41.
    11. Smith LJ, Swaim JS, Yao C,et al.Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications.Int J Nanomedicine,2007,2(3):493-9.
    12. Palmquist A, Lindberg F, Emanuelsson L,et al.Biomechanical, histological, and ultrastructural analyses of laser micro-and nano-structured titanium alloy implants: a study in rabbit.J Biomed Mater Res A,2010,15;92(4):1476-86.
    13. Yang X, Chen X, Wang H.Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds.Biomacromolecules,2009,12;10(10):2772-8.
    14. Stok KS, Lisignoli G, Cristino S,et al.Mechano-functional assessment of human mesenchymal stem cells grown in three-dimensional hyaluronan-based scaffolds for cartilage tissue engineering.Biomed Mater Res A,2010,93(1):37-45.
    15. Chen F, Lam WM, Lin CJ,et al.Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface:in vitro evaluation using mesenchymal stem cells.J Biomed Mater Res B Appl Biomater, 2007,82(1):183-91.
    16. Meirelles L, Arvidsson A, Andersson M,et al.Nano hydroxyapatite structures influence early bone formation.J Biomed Mater Res A,2008,87(2):299-307.
    17. Meirelles L, Albrektsson T, Kjellin P,et al.Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model.J Biomed Mater Res A, 2008,87(3):624-31.
    18. Sheng Meng, Zongjun Liu, Li Shen,et al.The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system, Biomaterials,2009,30 (12):2276-2283.
    19. Boudou T, Crouzier T, Ren K,et al.Multiple functionalities of polyelectrolyte multilayer films:new biomedical applications.Adv Mater,2010,22(4):441-67.
    20. Delong L, Sheng M, Wei Z,et al.Immobilization of biomacromolecules on poly-L-lactide surface via a layer-by-layer method for the improving of its cytocompatibility to bone marrow stromal cells.Chinese Science Bulletin,2005,50 (24):2809-2816.
    21. Mayer G, Blanchemaina N, Dupas-Bruzekb C, et al.Physico-chemical and biological evaluation of excimer laser irradiated polyethylene terephthalate (pet) surfaces. Biomaterials 2006,27:553-566.
    22. Blanchemain N, Chai F,Haulon S,et al. Biological behaviour of an endothelial cell line (HPMEC) on vascular prostheses grafted with hydroxypropylgamma-cyclodextrine (HPc-CD) and hydroxypropylbeta-cyclodextrine (HPb-CD).J Mater Sci:Mater Med,2008,19:2515-2523.
    23. Bondar B,Fuchs S, Motta A, et al. Functionality of endothelial cells on silk fibroin nets:Comparative study of micro-and nanometric fibre size. Biomaterials,2008,29:561-572.
    24. Atthoff B, Hilborn J.Protein adsorption onto polyester surfaces:is there a need for surface activation?J Biomed Mater Res B Appl Biomater.2007;80(1):121-30.
    25. Gronthos S, Simmons PJ, Graves SE,et al. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix.Bone,2001,28(2):174-181.
    26. Perinpanayagam H, Zaharias R, Stanford C.Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts. Journal of Orthopaedic Research,2001,19(6):993-1000.
    27. Geissler U, Hempel U,Wolf C, et al. Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts. Journal of Biomedical Materials Research,2000, 51(4):752-760.
    28. Solchaga LA, Dennis JE, Goldberg VM,,et al.. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 1999;17:205-213.
    29. Radice M, Brun P, Cortivo R,,et al.. Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. J Biomed Mater Res 2000;50:101-109.
    30. Barbucci R, Torricelli P, Milena F,et al. Proliferative and re-defferentiative effects of photo-immobilized micro-patterned hyaluronan surfaces on chondrocyte cells.Biomaterials,2005,26:7596-7605.
    31. Stok KS, Lisignoli G, Cristino S,et al.Mechano-functional assessment of human mesenchymal stem cells grown in three-dimensional hyaluronan-based scaffolds for cartilage tissue engineering.Biomed Mater Res A,2010,93(1):37-45.
    32. Cristino S, Grassi F, Toneguzzi S,et al.Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold.J Biomed Mater Res A.2005;73(3):275-83.
    33.黄棣,李吉东,左奕,等.壳聚糖修饰纳米羟基磷灰石/聚酰胺复合多孔支架的制备及性能研究.功能材料,2009,7:1175-1177.
    1. Lohmander LS, Ostenberg A, Englund M, et al.High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury.Arthritis Rheum, 2004,50(10):3145-52.
    2. Nebelung W, Wuschech H.Thirty-five years of follow-up of anterior cruciate ligament-deficient knees in high-level athletes.Arthroscopy,2005,21(6):696-702.
    3. Murray M, Martin SD, Martin TL,et al.Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Sur Br,2000,82(10):1387-1396.
    4. Busam ML, Provencher MT, Bach BR.Complications of anterior cruciate ligament reconstruction with bone-patellar tendon-bone constructs:care and prevention. Am J Sports Med,2008,36:379-394.
    5. Adachi N, Ochi M, Uchio Y, et al. Harvesting hamstring tendons for ACL reconstruction influences postoperative hamstring muscle performance. Arch Orthop Trauma Surg,2003,123(9):460.
    6. Armour T, Forwell L, Litchfield R,et al. Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med,2004,32(7):1639.
    7. Torry M, Decker M, Jockel J,et al. Comparison of tibial rotation strength in patients' status after anterior cruciate ligament reconstruction with hamstring versus patellar tendon autografts.Clin J Sport Med,2004,14(6):325.
    8. Phillips BB. Arthroscopy of the Lower Extremity. In:Canale ST, Beaty JH, eds. Campbell's Operative Orthopaedics. Philadelphia:Mosby,2008,_2811-2922.
    9. Bernardino S.ACL prosthesis:any promise for the future?Knee Surg Sports Traumatol Arthrosc,2009. DOI10.1007/s00167-009-0982-y.
    10. Legnani C, Ventura A, Terzaghi C,et al.Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature.Int Orthop,2010,34(4):465-71.
    11. Klein W, Jensen KU. Synovitis and artificial ligaments. Arthroscopy, 1992;8:116-124.
    12. Paulos LE, Rosenberg TD, Grewe SR. The Gore-Tex anterior cruciate ligament prosthesis:a long-term follow-up. Am J Sports Med,1992;20:246-252.
    13. Jenkins DH, McKibbin B.The role of flexible carbon-fibre implants as tendon and ligament substitutes in clinical practice. A preliminary report.J Bone Joint Surg Br. 1980;62(4):497-9.
    14. Rushton N, Dandy DJ, Naylor CP. The clinical, arthroscopic and histological findings after replacement of the anterior cruciate ligament with carbon fibre. J Bone Joint Surg Br,1983,65:308-309.
    15. Glousman R, Shields C, Kerlan R, et al. Gore-Tex prosthetic ligament in anterior cruciate deficient knees. Am J Sports Med,1988,16 (4):321-326
    16. Ahlfeld SK, Larson RL, Collins RH (1987) Anterior cruciate reconstruction in the chronically unstable knee using an expanded polytetrafluoroethylene (PTFE) prosthetic ligament. Am J Sports Med,15(4):326-330.
    17. Roolker W, Patt TW, van Dijk CN,The Gore-Tex prosthetic ligament as a salvage procedure in deficient knees.Knee Surg Sports Traumatol Arthrosc,2000,8(1):20-25.
    18. Paulos LE, Rosenberg TD, Grewe SR. The Gore-Tex anterior cruciate ligament prosthesis:a long-term follow-up. Am J Sports Med,1992;20:246-252.
    19. Ferkel RD, Fox JM, Wood D,et al. Arthroscopic "second look" at the Gore-Tex ligament.Am J Sports Med,1989,17(2):147-153.
    20. Fukubayashi T, Ikeda K.Follow-up study of Gore-Tex artificial ligament--special emphasis on tunnel osteolysis.J Long Term Eff Med Implants,2000,10(4):267-77.
    21. Denti M, Bigoni M, Dodaro G,et al.Long-term results of the Leeds-Keio anterior cruciate ligament reconstruction.Knee Surg Sports Traumatol Arthrosc,1995;3(2):75-7.
    22. Marcacci M, Zaffagnini S, Visani A, Arthroscopic reconstruction of the anterior cruciate ligament with Leeds-Keio ligament in non-professional athletes. Results after a minimum 5 years' follow-up.Knee Surg Sports Traumatol Arthrosc. 1996;4(1):9-13.
    23. Muren O, Dahlstedt L, Dalen N.Reconstruction of acute anterior cruciate ligament injuries:a prospective, randomised study of 40 patients with 7-year follow-up. No advantage of synthetic augmentation compared to a traditional patellar tendon graft.Arch Orthop Trauma Surg,2003,123(4):144-7.
    24. Murray AW, Macnicol MF. 10-16 year results of Leeds-Keio anterior cruciate ligament reconstruction.Knee.2004 Feb;11(1):9-14.
    25. Jones AP, Sidhom S, Sefton G. Long-term clinical review (10-20 years) after reconstruction of the anterior cruciate ligament using the Leeds-Keio synthetic ligament. J Long Term Eff Med Implants,2007,17:59-69.
    26.敖英芳,王永健,曲绵域,等.Leeds-Keio人工韧带辅助自体髌腱(中1/3)移植重建前交叉韧带.中国运动医学杂志,2005,24(6):681-684.
    27. Fujikawa K, Kobayashi T, Sasazaki Y, et al. Anterior cruciate ligament reconstruction with the Leeds-Keio artificial ligament. J Long Term Eff Med Implants,2000,10(4):225-238.
    28. Jadeja H, Yeoh D, Lal M, et al.Patterns of failure with time of an artificial scaffold class ligament used for reconstruction of the human anterior cruciate ligament.Knee,2007,14(6):439-42.
    29. Petrou G, Chardouvelis C, Kouzoupis A,et al.Reconstruction of the anterior cruciate ligament using the polyester ABC ligament scaffold:a minimum follow-up of four years.J Bone Joint Surg Br,2006,88(7):893-9.
    30. Dericks G. Ligament advanced reinforcement system anterior cruciate ligament reconstruction. Op Tech Sports Med,1995,3:187-205.
    31.东庆泽.人工十字韧带在预扭角度下之生物力学特性.台南:成功大学,2006.
    32. Hagemeister N, Duval N, Yahia L,et al. Comparison of two methods for reconstruction of the posterior cruciate ligament using a computer based method: quantitative evaluation of laxity, three-dimensional kinematics and ligament deformation measurement in cadaver knees. Knee,2002,9:291-299.
    33. Trieb K, Blahovec H, Brand G, Sabeti M, Dominkus M, Kotz R. In vivo and invitro cellular ingrowth into a new generation of artificial ligaments. Eur Surg Res 2004;36:148-151.
    34.陈世益,洪国威,戈允申,等.LARS人工韧带与自体胭绳肌腱重建前交叉韧带早期临床疗效比较。中国运动医学杂志,2007,26(5):530-533.
    35.齐志明,王立德,于利,等.关节镜下人工韧带重建前交叉韧带的临床初步体会.中 国微创外科杂志,2005,5(5):364-366.
    36. Nau T, Lavoie P, Duval N.A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 2002;84:356-360.
    37. Lavoie P, Fletcher J, Duval N. Patient satisfaction needs as related to knee stability and objective findings after ACL reconstruction using the LARS artificial ligament. Knee 2000;7:157-163.
    38. Talbot M, Berry G, Fernandes J, Ranger P. Knee dislocations. Can J Surg 2004;47:20-24.
    39. Zaffagnini S, Muccioli GM, Chatrath V, et al. Histological and ultrastructural evaluation of Leeds-Keio ligament 20 years after implant:a case report. Knee Surg Sports Traumatol Arthrosc,2008,16:1026-1029.
    40.布吕莱,拉布罗,米戈内,等.仿生人工韧带及其制备方法.中国专利20040004135.X.
    41. Guidoin M, Marois Y, Bejui J,et al. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials,2000,21:2461-2474.
    42. Panni A,Denti M,Franzese S,et al.The bone-ligament junction:A comparison between biological and artificial ACL reconstruction. Knee surgery sports traumatology arthroscopy,1993,1 (1):9-12.
    43. Kock H, Stuemer.Biocompatibility and ingrowth of trevira prostheses following replacement of the cruciate ligament.Med Bio Eng Comput,1992,30(4):CE13-16.
    44. Amis AA, Kempson SA.Bone adaptation to a polyester fiber anterior cruciate ligament replacement.J Long Term Eff Med Implants.1999;9(1-2):153-68.
    45. Rowland JR, Tsukazaki S, Kikuchi T,et al.Radiofrequency-generated glow discharge treatment:potential benefits for polyester ligaments.J Orthop Sci, 2003,8(2):198-206.
    46.张弛,蒋垚.纤维连接蛋白表面修饰对促进新型PET材料人工韧带(LARS)细胞黏附的实验研究.生物骨科材料与临床研究.2009,6(5):16-20.
    47. Ciobanu M, Siove A, Gueguen V, et al.Radical graft polymerization of styrene sulfonate on poly(ethylene terephthalate) films for ACL applications:"grafting from" and chemical characterization.Biomacromolecules.2006;7(3):755-60.
    48. Blanchemain N, Chai F,Haulon S,et al. Biological behaviour of an endothelial cell line (HPMEC) on vascular prostheses grafted with hydroxypropylgamma-cyclodextrine (HPc-CD) and hydroxypropylbeta-cyclodextrine (HPb-CD).J Mater Sci:Mater Med,2008,19:2515-2523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700