用户名: 密码: 验证码:
盾构进出洞水平冻结土帷幕解冻方式及解冻规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构法隧道施工中,端头土体加固是盾构机始发、到达技术的一个重要组成部分,端头土体加固的成功否直接关系到盾构机能否安全始发、到达。因此,合理选择端头加固施工工法是保证盾构法隧道顺利施工非常重要的环节。而冻结法作为一种形式灵活、适应性强、施工无污染、对环境影响小的土体加固方式在盾构进出洞地层加固施工中具有更高的可靠性安全性。然而存在的问题是后期冻土融化过程中产生的沉降会对周围环境造成一定的影响,因此掌握其自然解冻过程中温度场变化规律或者采用人工强制解冻的方法来缩短冻土解冻周期对注浆控制融沉十分必要。
     本文系统介绍了人工冻土解冻方式并提出了自然解冻人工强制解冻的解冻原理及数学模型,以此为基础,利用大型有限元软件分别建立自然解冻强制解冻的数值模型进行温度场计算和各相关因素的敏感性分析。以南京地铁二号线集庆门车站北端头盾构到达人工水平冻结加固工程为依托,进行了现场实测研究,得到了人工冻土自然解冻温度场变化规律并计算结果进行了对比。综合以上研究提出了人工强制解冻施工工艺及参数。
     通过研究表明:南京地铁二号线集庆门车站北端头盾构到达洞口人工水平冻土帷幕自然解冻周期较长。自然解冻完成时间随着土体导热系数和相变潜热的增大而延长,随着容积热容量的增大而减小。隧道内环境温度原始地温越高则对缩短自然解冻周期越有利。而采取人工强制解冻后可以大大缩短解冻完成时间,从而大大缩短了融沉跟踪注浆的时间。通过提高循环热水温度、延长热水循环时间、减小解冻管间距能够有效缩短冻土帷幕人工强制解冻的完成时间。
Tunnel end reinforcement is an important part of arriving and starting of shield machine technology in shield tunnel construction. Whether the soil reinforcement is successful of not is related to the security of arriving and starting of shield machine. Thus it is an important step of successful shield tunnel construction to choose a tunnel end reinforcement appropriately. Artificial freezing is a soil reinforcement method with flexible format, strong adaptability, no pollution, limit influence. It is more reliable and security in construction of shield arriving and starting. However, influence to surrounding environment caused to settlement during frozen soil melting period is a problem of artificial soil freezing. Thus mastering the temperature field law during the nature thawing or adopting artificial thawing method to shorten thawing cycle is necessary for controlling settlement by grouting.
     The thawing styles of artificial freezing soil are introduced in the essay. The principle and mathematical model of nature thawing and artificial thawing is proposed. Base on this nature and artificial thawing numerical models are set up separately used finite element software to calculate temperature field and analysis the factors’sensitivity. Apply on artificial horizontal freezing reinforcement for the north shield arriving in Ji Tsing-men station of line two Nanjing metro measure study in site is carried out. Laws of artificial freezing nature thawing temperature are got. Measuring and calculating results are compared. Artificial thawing technology and parameters are raised regarding on these.
     According to experiment of thawing settlement and consolidation coefficients, artificial thawing displacement field under difficult temperature circulating hot water is compared to the nature thawing.
     In conclusion, artificial horizontal frozen soil wall for the north shield arriving in Ji Tsing-men station of line two Nanjing metro have a long nature thawing period. Nature thawing time will be extended with the increase of thermal conductivity and latent heat and shortened with the increase of volume thermal capacity. It is more beneficial to shorten the thawing period with higher environment temperature in tunnel and higher initial ground temperature. It may greatly shorten the thawing period of artificial frozen soil by using the artificial thawing method. Artificial thawing period of frozen wall can be effectively shortened by raising temperature of circulating hot water, prolonging circulation time and shortening the distance of thawing pipes.
引文
[1] Ping Yang, Jie-ming Ke, J.G. Wang, Y.K. Chow and Fen-bin Zhu. Numerical simulation of frost heave with coupled water freezing, temperature and stress fields in tunnel excavation. Computers and Geotechnics[J].2006, Volume 33 Issues 6-7
    [2]翁家杰.井巷特殊施工[M].煤炭工业出版社,1991
    [3]白楠.人工冻土强制解冻融沉控制研究[D].上海:同济大学土木工程学院,2008
    [4] Kunieda T, Sato T, Ido S. Numerical case studies of ground freezing for the construction of drain pump chambers. In: Ground Freezing91.Rotterdam:Balkema,1991
    [5]李述训,吴通华.冻土温度状况研究方法和应用分析[J].冰川冻土,2004,26(4)
    [6]纳斯诺夫,苏普力克.立井冻结壁形成规律.陈文豹,伍期建,梁惠生译.北京:煤炭工业出版社,1981
    [7]郭兰波.竖井冻结壁温度场的有限元分析[J].中国矿业大学学报,1981(3):183—187
    [8]李述训.人工冻结凿井中热学问题计算方法评价[J],世界冰川冻土,1982(3),23—32
    [9] Tomasz Kozlowski. A semi-empirical model for phase composition of water in clay–water systems. Cold Regions Science and Technology [J].2007, Volume 49, Issue 3
    [10] Klas Hansson and Lars-Christer Lundin. Cold Regions Science and Technology [J].2006,Volume 44 Issue 1
    [11]? ?杨更社,张晶.非均匀温度分布冻土墙围护结构深基坑开挖的有限元数值模拟[J].岩石力学工程学报,2003,22(2):316—320
    [12] Bathe KJIKhoshgoftaar,M RIFinite,Element Free Surface SeePage Analysis without Mesh Iteration. Intemational Journal Numerical Analytical methods in Geomethanics,1978,3(l):13—22
    [13]李述训,立井冻结法凿井工程中的热工计算[J].冰川冻土,1994,16(1)
    [14]李方政,夏明萍.基于指数积分函数的人工冻土温度场解析研究[J].东南大学学报.2004,34(4)
    [15]黄峰.含盐土层人工冻土和帷幕计算方面研究[D].上海:同济大学土木工程学院,2008
    [16]胡向东.白楠.余峰.单排管冻结温度场ТРУПАК和БАХОЛДИН公式的适用性[J].同济大学学报,2008,36(7)
    [17]高兴旺.解冻结壁温度场的一个数值方法[J].冰川冻土.1993,15(1)
    [18]刘劲松,唐锦春,杨俊杰.混凝土水化热对人工冻土墙温度场分布的影响[J].煤炭学报,2002,27(5)
    [19]林璋璋,杨俊杰.3排冻结管冻土壁温度场分析[J].建井技术.2003,24(3)
    [20]汪仁和,徐士良.冻结壁温度场模型试验及其导热系数反分析[J].安徽理工大学学报.2003,23(4)
    [21]任松保,郑正泉.冻结过程中相变界面移动及传热的计算机模拟[J].华中科技大学学报.2003,31(2)
    [22]商翔宇,周国庆,别小勇.冻结土壤温度场数值模拟的改进[J].中国矿业大学学报.2005,34(2)
    [23]沈晓明,高峰,李建军.龙固矿副井冻结壁温度场有限元数值模拟[J].河北理工学院学报.2004,26(2)
    [24]汪仁和,曹荣斌.双排管冻结下冻结壁温度场形成特征的数值分析[J].冰川冻土.2002,24(2)
    [25]徐忠岩.人工冻土强制解冻方法探讨[D].上海:同济大学土木工程学院,2005
    [26]杨平等.冻结壁形成及解冻规律实测研究[J].冰川冻土,1998,20(2):11—14
    [27]肖朝晌,人工地层冻结冻土帷幕形成解冻规律研究[D].上海:同济大学土木工程学院,2007
    [28]王效宾,杨平,张婷等.?盾构出洞水平冻结解冻温度场三维有限元分析[J].解放军理工大学学报(自然科学版).2009,10(6):586—590
    [29]获原春男,矢治幸雄,小宫山清志,近久博志,藤原雅博.地盤凍結工法の融解時にねける周辺地盤の温度変化よ変形挙動露缺浠湫尉偾赱C].第27回土質工学研究発表会,1992:1175一1178
    [30]凍結工法により,生成した凍土短期間で解凍するうを[N].KAJIMA CORPORATION,2005
    [31]徐学祖,邓友生.冻土中水分迁移的实验研究[M].北京:科学出版社,1991
    [32]陈蕊,隧道修复工程中冻土帷幕设计关键问题研究[D].上海:同济大学土木工程学院,2007
    [33]肖朝昀,胡向东.人工地层冻结冻土自然解冻强制解冻实测分析[D].长江大学学报(自然科学版),2009,6(3):92—95
    [34]仇培云,岳丰田.冻结加固工程强制解冻融沉注浆施工技术[J].施工技术,2007,36(8)
    [35]白楠.人工冻土强制解冻融沉控制研究[D].上海:同济大学土木工程学院,2008
    [36]张婷.人工冻土冻胀、融沉特性试验研究[D],南京:南京林业大学,2004.6
    [37]王效宾,杨平,张婷.人工冻土融沉特性试验研究[J].南京林业大学学报,2008,32(4):108—112
    [38]梁波,张贵生,刘德仁.冻融循环条件下土的融沉性质试验研究[J].岩土工程学报,2006,28(10):1213—1217
    [39]邱凡.人工冻土强制解冻基本理论和技术研究[D].上海:同济大学土木工程学院,2007
    [40]秦爱芳,李永和.人工土层冻结法加固在盾构出洞施工中的应用[J].岩土力学,25(S):449—452
    [41]杨平等.人工冻结法在南京地铁张府园车站的应用[J].岩土力学,24(S):388—391
    [42]王灵敏,杨谢生.水平冻结法在土压平衡盾构进洞工程中的应用[J].建井技术,27(5): 40—41
    [43]朱谷军.工程传热热质学[M].航空工业出版社,1989
    [44]侯镇冰等.固体热传导[M].上海科学技术出版社,1984
    [45] Sang, Sayles. Thermal and theological computations for artificially frozen ground construction. In Gound Freezing: Developments In Geotechnical Engineering. Amsterdam: Elsevier,vol.26,PP.311—317:Eng.Geol.13(1979):311—317
    [46]郭宽良,孔祥谦,陈善年,计算传热学[M],合肥:中国科技大学出版社,1988
    [47]崔小朝,姚河省等.伴游相变的热传导焓式有限元法[J].太原重型机械学院学报,1995.6
    [48]王伟,马连湘等. ADINA及其在热分析中的应用[J].现代机械,2007,1:22—23
    [49]缪启龙,许遐祯,潘文卓.南京56年来冬季气温变化特征[J].应用气象学报, 19(5) : 620—626
    [50]杨志江,车平.冷媒循环条件下水平冻结温度场数值模拟.江苏煤炭[J],2004,2:70—71
    [51]靳巍巍,陈有亮.隧道冻结法施工三维有限元温度场及性状分析[J].地下空间工程学报,2007,3(5):918—922(5):918—922
    [52]何发祥,黄英.用BP网络求解土体的导热系数[J].岩土力学,2000,21(1):84—87
    [53]王丽霞等.青藏铁路冻土未冻水含量热参数试验[J].哈尔滨工业大学报,2007,39(10):1660—1663
    [54]朱元林,张家鼓.冻土的融沉性及已融土的压缩性.冰力陈土试刊,1978
    [55]周真云.冻结法施工快速解冻研究及施工实践[J].西部探矿工程,2003,(10)
    [56]徐学祖,王家澄,张立新.冻土物理学.北京:科学出版社,2001
    [57]李文勇,石荣剑,张水宾等.冻结加固融沉注浆作用机理应用技术[J].徐州工程学院学报,2007,22(6):47—51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700