用户名: 密码: 验证码:
高埋深地下洞室围岩破坏机理及其稳定性的细观力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高埋深地下洞室结构的大量兴建是人类未来生存发展的必然需求,其围岩破坏机理及其稳定性是现阶段国内外岩土工程界研究的重点和难点问题之一。依托西部某深埋输水隧洞,基于颗粒离散元法、室内物理试验原理、离心模型试验理论及超载理论,由深埋粉砂岩的力学行为入手,本文从六大方面、宏细观相结合的角度详细分析了高埋深地下洞室围岩破坏机理及其稳定性,初步得到了以下成果:
     (1)深埋硬岩的力学行为。深埋粉砂岩的力学行为受加载方式、围压和卸载速率的影响,且微裂纹大量萌生时刻均位于峰后且靠近峰值强度,其分布及数量加载方式、围压及卸载速率有关,是试样破坏模式不同的本质原因。
     (2)含孔洞硬岩破裂机理研究。含孔洞粉砂岩试样的破坏规律完整试样基本相同,只是更易受加载方式和围压的影响。中主应力大小和方向均对含孔洞粉砂岩试样的力学行为具有较大的影响,其破坏特征(脆性或延性)由最小主应力及中主应力最小主应力之差决定;同时其破坏模式不仅中主应力的大小有关,还其方向有关,其根本原因在于孔洞对试样的削弱作用围压对变形抑制作用的相互影响。
     (3)不同断面形式下洞室结构破坏机理研究。“先加载、后开洞”“先开洞、后加载”获得的洞室破坏模式及其发展过程是有差别的。断面形式和侧压力系数均影响洞室开挖后的应力重分布,引起岩体细观微裂纹的萌生、扩展分布差异较大,进而造成岩体宏观破坏模式不同;一定范围内的侧压力系数对洞室稳定是有利的,但断面形式不同,侧压力系数的临界值不同。
     (4)深埋地下洞室结构岩爆破坏机理研究。不论是卸载岩爆还是加载岩爆,岩爆发生时应力变化规律和能量变化规律基本相同。但是岩爆方式不同、最小围压不同,岩爆的具体破坏机理是不同的,并且最小围压对两种岩爆方式的影响是有差别的。
     (5)开挖过程中深埋地下洞室围岩稳定性研究。侧压力系数不同,开挖过程中洞室失稳破坏机理不同,可能发生的岩爆形式不同,AE事件时空分布不同。总体来看,深部岩体在开挖扰动影响下,首先在洞壁表面和开挖面附近区域形成破坏损伤区,而后随着开挖面的不断推进,开挖损伤区逐渐向深部发展,其具体发展形态其侧压力系数关系极大。
     (6)节理对深埋地下洞室稳定性的影响。基于颗粒离散元法编写直剪试验数值程序,应用该程序建立节理细观参数其宏观力学特性的关系。根据真实岩体中节理分布的统计规律,编写生成随机断续节理的子程序,并将其嵌入颗粒离散元法。节理连通率不同,开挖过程中洞室围岩失稳破坏的具体形态、微裂纹分布及其综合位移分布等是有一定差别的;整体来看,随着节理连通率的增加,洞室围岩失稳破坏的可能性增大。
Widespread construction of deep buried underground caverns is the inevitabledemand of human survival and development in the future. At present, the failuremechanism and stability of surrounding rock is one of the key and difficult problemsof the geotechnical engineering at home and abroad. Relied on one deep buriedunderground cavern in the Western China and based on particle flow theory, physicalexperimental principles, centrifugal model theory and overload method, this paperanalyzes the failure mechanism and stability of deep buried surrounding rock ofunderground cavern from six aspects and macro-micro point of view. The results ofthis study are listed as follows.
     (1)Mechanical behavior of the deep-buried hard rock. The mechanicalbehavior of siltstone is influenced by loading method, confining pressure andunloading rate. The time of microcracks forming largely is post and close to peakstrength, and its distribution and number is related to loading method, confiningpressure and unloading rate, which is the essential reason of different failure modes.
     (2)Failure mechanism of the hard rock with a pre-existing hole. The failurerule of siltstone with a pre-existing hole is basically the same as that of wholespecimen, but is influenced more easily by loading method and confining pressure.The size and direction of intermediate principal stress have a significant effect onmechanical behavior of siltstone, and its failure feature (brittleness or ductility) isdeterminated by minimum principal stress and the difference of intermediate andminimum principal stresses. Meanwhile, its failure modes of siltstone specimen aredetermined by the amplitudes and directions of intermediate principal stress, and arerelated to weakening effect of the opening and inhibition effect of confining pressurein essence.
     (3)Failure mechanism of underground caverns with different sections. Thefailure modes and failure processes are different between "loading before excavation"and "loading after excavation". Sections and lateral pressure coefficients have animpact on stress redistribution after excavation, which leads to the differences of theformation, propagation and distribution of microcracks. Lateral pressure coefficient within limits is benefit for the stability of underground caverns. But the critical valuesof lateral pressure coefficients are different with different sections.
     (4)Rockburst's failure mechanism of deep buried underground cavern. Nomatter whether loading or unloading tests of rock burst, the change rules of stress andenergy during the process of rock burst is fundamentally the same. However, thespecific failure mechanism of rock burst is different when test modes and/or minimumconfining pressure are different. And the influence of minimum confining pressure onunloading or loading tests of rock burst is discriminatory.
     (5)Stability study of deep buried surrounding rock of underground cavernduring the excavation process. When lateral pressure coefficients are different, failuremechanism of underground cavern, possible rock burst's types and the spatial andtemporal distribution of AE are different. On the whole, damage zone firstly forms onthe surface of tunnel wall and excavation face by excavation disturbance,subsequently develops toward the deep areas with the advance of excavation face.And its development is related to lateral pressure coefficient.
     (6)Influence of joints on the stability of deep buried underground cavern.Based on particle flow code, numerical program of direct shear test is compiled andapplied to relate the microparamaters of joints and its macromechanics features.According to the statistical law of joints' distribution in real rocks, subroutine ofrandom intermittent joints is compiled and embedded in particle flow code. Whenconnectivity rates of joints are different, specific failure modes of surrounding rockduring the excavation process, the distribution of microcracks and comprehensivedisplacements are different. On the whole, the buckling failure possibility ofsurrounding rock increases with the increase of connectivity rates.
引文
[1]Chun’an Tang, Jimin Wang, Jingjian Zhang. Preliminary engineering application ofmicroseismic monitoring technique to rockburst prediction in tunneling of JinpingⅡ project[J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,2(3):193-208.
    [2]Diering D H. Ultra-deep level mining: future requirements[J]. Journal of the SouthAfrican Institute of Mining and Metallurgy,1997,97(6):249-255.
    [3]Gurtunca R G, Keynote L. Mining below3000m and challenges for the SouthAfrican gold mining industry[A]. In: Proceedings of Mechanics of Jointed andFractured Rock[C]. Rotterdam: A. A. Balkema,1998.3-10.
    [4]Diering D H. Tunnels under pressure in an ultra-deep Wifwatersrand gold mine[J].Journal of the South African Institute of Mining and Metallurgy,2000,100:319-324.
    [5]Vogel M, Andrast H P. Alp transit-safety in construction as a challenge, health andsafety aspects in very deep tunnel construction[J]. Tunneling and UndergroundSpace Technology,2000,15(4):481-484.
    [6]Johnson R A S. Mining at ultra-depth, evaluation of alternatives[A]. In: Precedingsof the2nd North America Rock Mechanics Symposium[C]. Montreal: NARMS’96,1996.359-366.
    [7]Malan D F, Basson F R P. Ultra-deep mining: the increased potential for squeezingconditions[J]. Journal of South African Institute of Mining and Metallurgy,1998,98(11/12):353-363.
    [8]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学工程学报,2005,24(16):2803-2813.
    [9]何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].岩石力学工程学报,2002,21(8):1215-1224.
    [10]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [11]王驹,陈伟明,苏锐,等.高放废物地质处置及其若干关键科学问题[J].岩石力学工程学报,2006,25(4):801-812.
    [12]徐林生.川藏公路二郎山隧道高地应力岩爆问题研究[D].成都:成都理工学院,1999.
    [13]张波.基于岩体各向异性深埋公路隧道安全稳定性研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [14]郭啟良,伍法权,钱卫平,等.乌鞘岭长大深埋隧道围岩变形地应力关系的研究[J].岩石力学工程学报,2006,25(11):2194-2199.
    [15]黄书岭.高应力下脆性岩石的力学模型工程应用研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [16]梁礼绘.高埋深地下洞室围岩稳定性及支护结构研究[D].天津:天津大学,2006.
    [17]王学潮,马国彦.南水北调西线过程及其主要工程地质问题[J].工程地质学报,2002,10(1):38-45.
    [18]Jing L. A review of techniques, advances and outstanding issues in numericalmodeling for rock mechanics and rock engineering[J]. International Journal ofRock Mechanics and Mining Sciences,2003,40(3):283-353.
    [19]Harrison JP, Hudson JA. Engineering rock mechanics. Part2: illustrativeworkable examples[M]. Oxford: Pergamon,2000.
    [20]陈炳瑞,冯夏庭,曾雄辉,等.深埋隧洞TBM掘进微震实时监测特征分析[J].岩石力学工程学报,2011,30(2):275-283.
    [21]徐林生,王兰生,孙宗远,等.二郎山公路隧道地应力测试研究[J].岩石力学工程学报,2003,22(4):611-614.
    [22]徐林生,王兰生.二郎山公路隧道岩爆特征防治措施研究[J].中国公路学报,2003,16(1):74-76.
    [23]徐林生,王兰生,李永林.岩爆形成机制判据研究[J]岩土力学,2002,23(3):300-303.
    [24]彭加寿.二滩水电站地下工程岩爆及其防护[J].水力发电,1998,(7):39-40.
    [25]何满潮.深部开采工程岩石力学的现状及其展望[A].见:中国岩石力学工程学会编.第八次全国岩石力学工程学术大会论文集[C].北京:科学出版社,2004.88-94.
    [26]Diego Mas Ivars, Matthew E. Pierce, Caroline Darcel, et al. The synthetic rockmass approach for jointed rock mass modeling[J]. International Journal of RockMechanics&Mining Sciences,2011,48(2):219-244.
    [27]Read RS.20years of excavation response studies at AECL’s undergroundresearch laboratory[J]. International Journal of Rock Mechanics and MiningSciences,2004,41(8):1251-1275.
    [28]Martin CD, Read RS, Martino JB. Observations of brittle failure around a circulartest tunnel[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(7):1065-1073.
    [29]Tsang CF, Jing LR, Stephansson O, et al. The DECOVALEX Ⅲ project: asummary of activities and lessons learned[J]. International Journal of RockMechanics and Mining Sciences,2005,42(5/6):593-610.
    [30]T. Chan, R. Christiansson, G.S. Boulton, et al. DECOVALEX ⅢBMT3/BENCHPAR WP4: the thermo-hydromechanical responses to a glacialcycle and their potential implications for deep geological disposal of nuclear fuelwaste in a fractured crystalline rock mass[J]. International Journal of RockMechanics&Mining Sciences,2005,42(5/6):805-827.
    [31]L. Jing, CF Tsang, O. Stephansson. DECOVLEX-an international co-operativeresearch project on mathematical models of coupled THM processes for safetyanalysis of radioactive waste repositories[J]. International Journal of RockMechanics and Mining Sciences&Geomechanics Abstracts,1995,32(5):389-398.
    [32]M. Chijimatsu, T.S. Nguyen, L. Jing, et al. Numerical study of the THM effectson the near-field safety of a hypothetical nuclear waste repository-BMT1of theDECOVALEX Ⅲ project. Part1: conceptualization and characterization of theproblems and summary of results[J]. International Journal of Rock Mechanics andMining Sciences,2005,42(5/6):720-730.
    [33]A. Millard, A. Rejeb, M. Chijimatsu, et al. Numerical study of the THM effectson the near-field safety of a hypothetical nuclear waste repository-BMT1of theDECOVALEX Ⅲ project. Part2: effects of THM coupling in continuous andhomogeneous rocks[J]. International Journal of Rock Mechanics and MiningSciences,2005,42(5/6):731-744.
    [34]J. Rutqvist, M. Chijimatsu, L. Jing, et al. A numerical study of THM effects onthe near-field safety of a hypothetical nuclear waste repository-BMT1of theDECOVALEX Ⅲ project. Part3: effects of THM coupling in sparsely fracturedrocks[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(5/6):754-755.
    [35]Stanfors R, Rhen I, Tullborg EL, et al. Overview of geological andhydro-geological conditions of the Asp hard rock laboratory site[J]. AppliedGeochemistry,1999,14(7):819-834.
    [36]Hsiung SM, Chowdhury AH, Nstsrsjs MS. Numerical simulation ofthermal-mechanical processes observed at the drift-scale heater test at YuccaMountain, Nevada, USA[J]. International Journal of Rock Mechanics and MiningSciences,2005,42(5/6):652-666.
    [37]Kwon S, Cho WJ, Han PS. Concept development of an underground researchtunnel for validating the Korean reference HLW disposal system[J]. Tunnellingand Underground Space Technology,2006,21(2):203-217.
    [38]任建喜,葛修润.单轴压缩岩石损伤演化细观机理及其本构模型研究[J].岩石力学工程学报,2001,20(4):425-431.
    [39]Aubertin M, Li L, Simon R. Formulation and application of a short-term strengthcriterion for isotropic rocks[J]. Can. Geotech J.,1999,36(5):947-960.
    [40]B. Haimson, C. Chang. A new true triaxial cell for testing mechanical propertiesof rock, and its use to determine rock strength and deformability of Westerlygranite[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(1-2):285-296.
    [41]Hajiabdolmajid V. Mobilization of strength in brittle failure of rock[D]. Kingston,Canada: Department of Mining Engineering, Queen’s University,2001.
    [42]Hajiabdolmajid V, Kaiser PK, Martin CD. Modeling brittle failure of rock[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(5):731-741.
    [43]卢允德,葛修润,蒋宇,等.大理岩常规三轴压缩全过程试验和本构方程的研究[J].岩石力学工程学报,2004,23(15):2489-2493.
    [44]Bezalel Haimson. True triaxial stresses and the brittle fracture of rock[J]. Pure andApplied Geophysics,2006,163(5-6):1101-1130.
    [45]史贵才,葛修润,卢允德.大理岩应力脆性跌落系数的试验研究[J].岩石力学工程学报,2006,25(8):1625-1631.
    [46]陈景涛,冯夏庭.高应力下硬质岩石的本构模型研究[C]//2006年三峡库区地质灾害岩土环境学术研讨会论文集.重庆:[s. n.],2006:88-103.
    [47]陈景涛,冯夏庭.高地应力下硬岩的本构模型研究[J].岩土力学,2007,28(11):2271-2278.
    [48]陈景涛.高地应力下硬岩本构模型的研究和应用[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [49]江权.高地应力下硬岩弹脆塑性劣化本构模型大型地下洞室群围岩稳定性分析[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [50]江权,冯夏庭,陈国庆.考虑高地应力下围岩劣化的硬岩本构模型研究[J].岩石力学工程学报,2008,27(1):144-152.
    [51]周小平,钱七虎,杨海清.深部岩体强度准则[J].岩石力学工程学报,2008,27(1):117-123.
    [52]张黎明,王在泉,李华峰,等.粉砂岩峰后破坏区应力脆性跌落的试验和本构方程研究[J].实验力学,2008,,2(3):234-240.
    [53]Mingqing You. True-triaxial strength criteria for rock[J]. International Journal ofRock Mechanics&Mining Sciences,2009,46(11):115-127.
    [54]Hiroyuki Shimizu, Tomofumi Koyama, Tsuyoshi Ishida, et al. Distinct elementanalysis for class Ⅱ behavior of rocks under uniaxial compression[J].International Journal of Rock Mechanics&Mining Sciences,2010,47(2):323-333.
    [55]张凯.脆性岩石力学模型流固耦合机理研究[D].武汉:中国科学院武汉岩土力学研究所,2010.
    [56]潘鹏志,冯夏庭,邱士利,等.多轴应力对深埋硬岩破裂行为的影响研究[J].岩石力学工程学报,2011,30(6):1116-1125.
    [57]Hikweon Lee, Bezalel C. Haimson. True triaxial strength, deformability, andbrittle failure of granodiorite from the San Andreas Fault Observatory at Depth[J].International Journal of Rock Mechanics&Mining Sciences,2011,48(7):1199-1207.
    [58]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学工程学报,1998,17(1):24-29.
    [59]尤明庆,苏承东,徐涛.岩石试样的加载卸载过程及杨氏模量[J].岩土工程学报,2001,23(5):588-592.
    [60]谢红强,何江达,徐进.岩石加卸载变形特性及力学参数试验研究[J].岩土工程学报,2003,25(3):336-338.
    [61]张黎明,王在泉,宋全锋,等.粉砂岩卸荷破坏全过程的试验研究[J].岩石力学工程学报,2005,24(增1):5043-5047.
    [62]周小平,哈秋舲,张永兴,等.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J].岩石力学工程学报,2005,24(18):3236-3245.
    [63]李宏哲,夏才初,闫子舰,等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学工程学报,2007,26(10):2104-2109.
    [64]李宏哲,夏才初,肖维民.锦屏水电站大理岩加卸荷本构模型研究[J].岩石力学工程学报,2010,29(7):1489-1495.
    [65]Weng MC, Jeng FS, Hsieh YM, et al. A simple model for stress-inducedanisotropic softening of weak sandstones[J]. International Journal of RockMechanics and Mining Sciences,2008,45(2):155-166.
    [66]张黎明,王在泉,石磊.硬质岩石卸荷破坏特性试验研究[J].岩石力学工程学报,2011,30(10):2012-2018.
    [67]王在泉,张黎明,孙辉,等.不同卸荷速度条件下灰岩力学特性的试验研究[J].岩土力学,2011,32(4):1045-1050.
    [68]邱士利,冯夏庭,张传庆,等.不同卸围压速率下深埋大理岩卸荷力学试验研究[J].岩石力学工程学报,2010,29(9):1807-1817.
    [69]王洪亮,范鹏贤,王明洋,等.应变率对红砂岩渐进破坏过程和特征应力的影响[J].岩土力学,2011,,3(5):1340-1346.
    [70]尹小涛,葛修润,李春光,等.加载速率对岩石材料力学行为的影响[J].岩石力学工程学报,2010,29(增1):2610-2615.
    [71]L.N. Germanovich, A.V. Dyskin. Fracture mechanisms and instability of openingsin compression[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(1-2):263-284.
    [72]C.A. Tang, L.G. Tham, P.K.K. Lee, et al. Numerical studies of the influence ofmicrostructure on rock failure in uniaxial compression–Part Ⅰ: effect ofheterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(4):555-569.
    [73]C.A. Tang, L.G. Tham, P.K.K. Lee, et al. Numerical studies of the influence ofmicrostructure on rock failure in uniaxial compression–Part Ⅱ: constraint,slenderness and size effect[J]. International Journal of Rock Mechanics andMining Sciences,2000,37(4):571-583.
    [74]A. Fakhimi, F. Carcalho, T. Ishida, et al. Simulation of failure around a circularopening in rock[J]. International Journal of Rock Mechanics&Mining Sciences,2002,39(4):507-515.
    [75]W.C. Zhu, C.A. Tang. Micromechanical model for simulating the fracture processof rock[J]. Rock Mechanics and Rock Engineering,2004,37(1):25-56.
    [76]H.Y. Liu, M. Roquete, S.Q. Kou, et al. Characterization of rock heterogeneity andnumerical verification[J]. Engineering Geology,2004,72(1-2):89-119.
    [77]H.Y. Liu, S.Q. Kou, P.-A. Lindqvist, et al. Numerical studies on the failureprocess and associated microseismicity in rock under triaxial compression[J].Tectonophysics,2004,384(1-4):149-174.
    [78]W.C. Zhu, J. Liu, C.A. Tang, et al. Simulation of progressive fracturing processesaround underground excavations under biaxial compression[J]. Tunnelling andUnderground Space Technology,2005,20(3):231-247.
    [79]梁正召,杨天鸿,唐春安,等.非均匀性岩石破坏过程的三维损伤软化模型数值模拟[J].岩土工程学报,2005,27(12):1447-1452.
    [80]梁正召.三维条件下的岩石破裂过程分析及其数值试验方法研究[D].沈阳:东北大学,2005.
    [81]王士民,刘丰军,叶飞,等.含预制裂纹脆性岩石破坏数值模拟研究[J].岩土力学,2006,27(增):235-238.
    [82]陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学工程学报,2006,25(8):1537-1543.
    [83]杨圣奇,徐卫亚,苏承东.岩样单轴压缩变形破坏能量特征研究[J].固体力学学报,2006,27(2):213-216.
    [84]Young Ming Tien, Ming Chuan Kuo, Charng Hsein Juang. An experimentalinvestigation of the failure mechanism of simulated transversely isotropic rocks[J].International Journal of Rock Mechanics&Mining Sciences,2006,43(8):1163-1181.
    [85]Rajendra P. Tiwari, K. Seshagiri Rao. Post failure behavior of a rock mass underthe influence of triaxial and true triaxial confinement[J]. Engineering Geology,2006,84(3-4):112-129.
    [86]Feng Xiating, Pan Pengzhi, Zhou Hui. Simulation of the rock microfracturingprocess under uniaxial compression using an elasto-plastic cellular automaton[J].International Journal of Rock Mechanics&Mining Sciences,2006,43(7):1091-1108.
    [87]R.H.C Wong, P. Lin, C.A. Tang. Experimental and numerical study on splittingfailure of brittle solids containing single pore under uniaxial compression[J].Mechanics of Materials,2006,38(1-2):142-159.
    [88]Tomofumi Koyama, Lanru Jing. Effects of model scale and particle size onmicro-mechanical properties and failure processes of rocks—A particlemechanics approach[J]. Engineering Analysis with Boundary Elements,2007,31(5):458-472.
    [89]M. Cai. Influence of intermediate principal stress on rock fracturing and strengthnear excavation boundaries-insight from numerical modeling[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2008,45(5):763-772.
    [90]吕森鹏,陈卫忠,贾善坡,等.脆性岩石破坏试验研究[J].岩石力学工程学报,2009,28(增1):2772-2777.
    [91]潘鹏志,冯夏庭,周辉.脆性岩石破裂演化过程的三维细胞自动机模拟[J].岩土力学,2009,30(5):1471-1476.
    [92]Pengzhi Pan, Xiating Feng, John A. Hudson. Study of failure and scale effects inrocks under uniaxial compression using3D cellular automata[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2009,46(4):674-685.
    [93]Meifegn Cai, Dongmei Liu. Study of failure mechanisms of rock undercompressive-shear loading using real-time laser holography[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2009,46(1):59-68.
    [94]刘招伟,李元海.含孔洞岩石单轴压缩下变形破裂规律的实验研究[J].工程力学,2010,27(8):133-139.
    [95]尤明庆,苏承东.砂岩孔道试样压拉应力下强度和破坏的研究[J].岩石力学工程学报,2010,29(6):1096-1105.
    [96]Jianqing Xiao, Dexin Ding, Fuliang Jiang, et al. Fatigue damage variable andevolution of rock subjected to cyclic loading[J]. International Journal of RockMechanics&Mining Sciences,2010,47(3):461-468.
    [97]李地元,李夕兵,李春林,等.单轴压缩下含预制孔洞板状花岗岩试样力学响应的试验和数值研究[J].岩石力学工程学报,2011,30(6):1198-1206.
    [98]谢林茂,朱万成,王述红,等.含孔洞岩石试样三维破裂过程的并行计算分析[J].岩土工程学报,2011,33(9):1447-1455.
    [99]Diyuan Li, Charlie C. Li, Xibing Li. Influence of sample height-to-width ratiosonfailure mode for rectangular prism samples of hard rock loaded in uniaxialcompression[J]. Rock Mech Rock Eng,2011,44(3):253-267.
    [100]S.Y. Wang, S.W. Sloan, D.C. Sheng, et al. Numerical analysis of the failureprocess around a circular opening in rock[J]. Computers and Geotechnics,2012(39):8-16.
    [101]Pengzhi Pan, Xiating Feng, J.A. Hudson. The influence of the intermediateprincipal stress on rock failure behavior: a numerical study[J]. EngineeringGeology,2012,124:109-118.
    [102]徐桂生,王兰生,李永林.岩爆形成机制判据研究[J].岩土力学,2002,23(3):300-303.
    [103]郭树林,姚香,严鹏,等.中国深井岩爆研究现状评述[J].黄金,2009,30(1):18-21.
    [104]谢和平.深部资源开采诱发的工程灾害基础科学问题[C]//深部开采基础理论工程实践.北京:科学出版社,2006:3-14.
    [105]郭然,潘长良,于润沧.有岩爆倾向硬岩矿床采矿理论技术[M].北京:冶金工业出版社,2003.
    [106]何满潮,苗金丽,李德建,等.深部花岗岩试样岩爆过程实验研究[J].岩石力学工程学报,2007,26(5):865-876.
    [107] A. Zubelewicz, Z. Mróz. Numerical simulation of rock burst processes treatedas problems of dynamic instability[J]. Rock Mechanics and Rock Engineering,1983,16(4):253-274.
    [108]谭以安.岩爆岩石断口扫描电镜分析及岩爆渐进破坏过程[J].电子显微镜,1989,8(2):41-48.
    [109]R.Q. Huang, X.N. Wang. Analysis of dynamic disturbance on rock burst[J].Bulletin of Engineering Geology and the Environment,1999,57(3):281-284.
    [110]许东俊,章光,李廷芥,等.岩爆应力状态研究[J].岩石力学工程学报,2000,19(3):169-172.
    [111]李廷芥,王耀辉,张梅英,等.岩石裂纹的分形特性及岩爆机理研究[J].岩石力学工程学报,2000,19(1):6-10.
    [112]J.F. Hazzard, R.P. Young. Simulating acoustic emissions in bonded-particlemodels of rock[J]. International Journal of Rock Mechanics and MiningSciences,2000,37(5):867-872.
    [113]James F. Hazzard, R. Paul Young. Moment tensors and micromechanicalmodels[J]. Tectonophysics,2002,356(1-3):181-197.
    [114]J.F. Hazzard, R.P. Young. Dynamic modeling of induced seismicity[J].International Journal of Rock Mechanics&Mining Sciences,2004,41(8):1365-1376.
    [115]R.Q. Huang, X.N. Wang, L.S. Chan. Triaxial unloading test of rocks and itsimplication for rock burst[J]. Bulletin of Engineering Geology and theEnvironment,2001,60(1):37-41.
    [116]许迎年,许文胜,王元汉,等.岩爆模拟试验及岩爆机理研究[J].岩石力学工程学报,2002,21(10):1462-1466.
    [117]徐则民,黄润秋,罗杏春,等.静荷载理论在岩爆研究中的局限性及岩爆岩石动力学机理的初步分析[J].岩石力学工程学报,2003,22(8):1255-1262.
    [118]杨健,王连俊.岩爆机理声发射试验研究[J].岩石力学工程学报,2005,24(20):3796-3802.
    [119]张黎明,王在泉,贺俊征,等.卸荷条件下岩爆机理的试验研究[J].岩石力学工程学报,2005,24(增1):4769-4773.
    [120]陈陆望,白世伟.坚硬脆性岩体中圆形洞室岩爆破坏的平面应变模型试验研究[J].岩石力学工程学报,2007,26(12):2504-2509.
    [121]陈陆望,白世伟,尹晓曦,等.坚硬岩体中马蹄形洞室岩爆破坏平面应变模型试验[J].岩土工程学报,2008,30(10):1520-1526.
    [122]汪波,何川,俞涛.苍岭隧道岩爆预测的数值分析及初期支护时机探讨[J].岩土力学,2007,28(6):1181-1186.
    [123]Xibing Li, Zilong Zhou, Tat-Seng Lok, et al. Innovative testing technique ofrock subjected to coupled static and dynamic loads[J]. International Journal ofRock Mechanics&Mining Sciences,2008,45(5):739-748.
    [124]Yin Zhiqiang, Li Xibing, Jin Jiefang, et al. Failure characteristics of high stressrock induced by impact disturbance under confining pressure unloading[J].Transactions of Nonferrous Metals Society of China,2012,22(1):175-184.
    [125]Lu Aihong, Mao Xianbiao, Liu Haishun. Physical simulation of rock burstinduced by stress waves[J]. Journal of China University of Mining&Technology,2008,18(3):401-405.
    [126]苗金丽,何满潮,李德建,等.花岗岩应变岩爆声发射特征及微观断裂机制[J].岩石力学工程学报,2009,28(8):1593-1603.
    [127]苗金丽.岩爆的能量特征实验分析[D].北京:中国矿业大学,2009.
    [128]黄锋,徐则民.用动光弹方法研究隧道岩爆的爆破扰动机理[J].爆炸冲击,2009,29(6):632-636.
    [129]黄锋.隧道岩爆的动力学机理及其控制的实验研究[J].岩土力学,2010,31(4):1139-1142.
    [130]张永双,熊探宇,杜宇本,等.高黎贡山深埋隧道地应力特征及岩爆模拟试验[J].岩石力学工程学报,2009,28(11):2286-2294.
    [131]陈卫忠,吕森鹏,郭小红,等.基于能量原理的卸围压试验岩爆判据研究[J].岩石力学工程学报,2009,28(8):1530-1540.
    [132]陈卫忠,吕森鹏,郭小红,等.脆性岩石卸围压试验岩爆机理研究[J].岩土工程学报,2010,32(6):963-969.
    [133]吴顺川,周喻,高斌.卸载岩爆试验及PFC3D数值模拟研究[J].岩石力学工程学报,2010,29(增2):4082-4088.
    [134]吴世勇,龚秋明,王鸽,等.锦屏Ⅱ级水电站深部大理岩板裂化破坏试验研究及其对TBM开挖的影响[J].岩石力学工程学报,2010,29(6):1089-1095.
    [135]Q.M. Gong, L.J. Yin, S.Y. Wu, et al. Rock burst and slabbing failure and itsinfluence on TBM excavation at headrace tunnels in jinping Ⅱ hydropowerstation[J]. Engineering Geology,2012,124(4):98-108.
    [136]Quan Jiang, Xiating Feng, Tianbing Xiang, et al. Rockburst characteristics andnumerical simulation based on a new energy index: a case study of a tunnel at2500m depth[J]. Bulletin of Engineering Geology and the Environment,2010,69(3):381-388.
    [137]M.C. He, J.L. Miao, J.L. Feng. Rock burst process of limestone and its acousticemission characteristics under true-triaxial unloading conditions[J].International Journal of Rock Mechanics&Mining Sciences,2010,47(2):286-298.
    [138]W.C. Zhu, Z.H. Li, L.j. Zhu, et al. Numerical simulation on rockburst ofunderground opening triggered by dynamic disturbance[J]. Tunnelling andUnderground Space Technology,2010,25(5):587-599.
    [139]Xu Xuefeng, Dou Linming, Lu Caiping, et al. Frequency spectrum analysis onmicro-seismic signal of rock bursts induced by dynamic disturbance[J]. MiningScience and Technology,2010,20(5):682-685.
    [140]徐士良,朱合华.公路隧道通风竖井岩爆机制颗粒流模拟研究[J].岩土力学,2011,32(3):885-898.
    [141]李天斌,王湘锋,孟陆波.岩爆的相似材料物理模拟研究[J].岩石力学工程学报,2011,30(增1):2610-2616.
    [142]杨艳霜,周辉,张传庆,等.大理岩单轴压缩时滞性破坏的试验研究[J].岩土力学,2011,32(9):2714-2720.
    [143]He Manchao, Nie Wen, Zhao Zhiye, et al. Micro-and macro-fractures of coarsegranite under true-triaxial unloading conditions[J]. Mining Science andTechnology (China),2011,21(3):389-394.
    [144]Shaojun Li, Xiating Feng, Zhanhai Li, et al. In-situ monitoring of rockburstnucleation and evolution in the deeply buried tunnels of Jinping Ⅱhydropower station[J]. Engineering Geology,2012,137-138:85-96.
    [145]Stephen D.Falls, R.Paul Young. Acoustic emission and ultrasonic-velocitymethods used to characterise the excavation disturbance associated with deeptunnels in hard rock[J]. Tectonophysics,1998,289(1-3):1-15.
    [146]吴世勇,任旭华,陈祥荣,等.锦屏二级水电站引水隧洞围岩稳定分析及支护设计[J].岩石力学工程学报,2005,24(20):3777-3782.
    [147]M. Cai, P.K. Kaiser. Assessment of excavation damaged zone using amicromechanics model[J]. Tunnelling and Underground Space Technology,2005,20(4):301-310.
    [148]张传庆.基于破坏接近度的岩石工程安全性评价方法的研究[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [149]苏国韶,冯夏庭,江权,等.高地应力下地下工程稳定性分析优化的局部能量释放率新指标研究[J].岩石力学工程学报,2006,25(12):2453-2460.
    [150]M. Cai, P.K. Kaiser, H. Morioka, et al. FLAC/PFC coupled numerical simulationof AE in large-scale underground excavations[J]. International Journal of RockMechanics&Mining Sciences,2007,44(4):550-564.
    [151]A. Golshani, M. Oda, Y. Okui, et al. Numerical simulation of the excavationdamaged zone around an opening in brittle rock[J]. International Journal ofRock Mechanics&Mining Sciences,2007,44(6):835-845.
    [152]A. Hirata, Y. Kameoka, T. Hirano. Safety management based on detection ofpossible rock bursts by AE monitoring during tunnel excavation[J]. RockMechanics and Rock Engineering,2007,40(6):563-576.
    [153]P. Jia, C.A. Tang. Numerical study on failure mechanism of tunnel in jointedrock mass[J]. Tunnelling and Underground Space Technology,2008,23(5):500-507.
    [154]T. Funatsu, T. Hoshino, H. Sawae, et al. Numerical analysis to better understandthe mechanism of the effects of ground supports and reinforcements on thestability of tunnels using the distinct element method[J]. Tunnelling andUnderground Space Technology,2008,23(5):561-573.
    [155]李仲奎,周钟,汤雪峰,等.锦屏一级水电站地下厂房洞室群稳定性分析思考[J].岩石力学工程学报,2009,28(9):2167-2175.
    [156]李勇.高地应力条件下大型地下洞室群分步开挖稳定性及流变效应研究[D].济南:山东大学,2009.
    [157]刘宁.高地应力条件下围岩劈裂破坏的力学机理及其能量分析模型研究[D].济南:山东大学,2009.
    [158]隋斌.深部岩体脆性破坏机理及相关问题研究[D].济南:山东大学,2009.
    [159]李树忱,钱七虎,张敦福,等.深埋隧道开挖过程动态及破裂形态分析[J].岩石力学工程学报,2009,28(10):2104-2112.
    [160]S. Kwon, C.S. Lee, S.J. Cho, et al. An investigation of the excavation damagedzone at the KAERI underground research tunnel[J]. Tunnelling andUnderground Technology,2009,24(1):1-13.
    [161]Q.H. Qian, X.P. Zhou, H.Q. Yang, et al. Zonal disintegration of surrounding rockmass around the diversion tunnels in Jinping Ⅱ Hydropower Station,Southwestern China[J]. Theoretical and Applied Fracture Mechanics,2009,51(2):129-138.
    [162]John Hadjigeorgiou, Kamran Esmaieli, Martin Grenon. Stability analysis ofvertical excavations in hard rock by integrating a fracture system into a PFCmodel[J]. Tunnelling and Underground Space Technology,2009,24(3):296-308.
    [163]F. Pellet, M. Roosefid, F. Deleruyelle. On the3D numerical modeling of thetime-dependent development of the damage zone around underground galleriesduring and after excavation[J]. Tunnelling and Underground Space Technology,2009,24(6):665-674.
    [164]李晓静.深埋洞室劈裂破坏形成机理的试验和理论研究[D].济南:山东大学,2007.
    [165]张传庆,冯夏庭,周辉,等.深部试验隧洞围岩脆性破坏及数值模拟[J].岩石力学工程学报,2010,29(10):2063-2068.
    [166]江权,冯夏庭,苏国韶,等.高地应力下拉西瓦水电站地下洞室群稳定性分析[J].水力发电学报,2010,29(5):132-140.
    [167]魏进兵,邓建辉,王俤剀,等.锦屏一级水电站地下厂房围岩变形破坏特征分析[J].岩石力学工程学报,2010,29(6):1198-1205.
    [168]陈国庆,冯夏庭,江权,等.考虑岩体劣化的大型地下厂房围岩变形动态监测预警方法研究[J].岩土力学,2010,31(9):3012-3018.
    [169]陈炳瑞,冯夏庭,肖亚勋,等.深埋隧洞TBM施工过程围岩损伤演化声发射试验[J].岩石力学工程学报,2010,29(8):1562-1569.
    [170]宋义敏,潘一山,章梦涛,等.洞室围岩三种破坏形式的试验研究[J].岩石力学工程学报,2010,29(增1):2741-2746.
    [171]L.R. Alejano, E. Alonso, A. Rodríguez-Dono, et al. Application of theconvergence-confinement method to tunnels in rock masses exhibitingHoek-Brown strain-softening behavior[J]. International Journal of RockMechanics&Mining Sciences,2010,47(1):150-160.
    [172]X.P. Zhou, F.H. Wang, Q.H. Qian, et al. Zonal fracturing mechanism in deepcrack-weakened rock masses[J]. Theoretical and Applied Fracture Mechanics,2008,50(1):57-65.
    [173]W.S. Zhu, X.J. Li, Q.B. Zhang, et al. A study on sidewall displacementprediction and stability evaluations for large underground power stationcaverns[J]. International Journal of Rock Mechanics&Mining Sciences,2010,47(7):1055-1062.
    [174]Tang Lizhong, Xia KW. Seismological method for prediction of areal rockburstsin deep mine with seismic source mechanism and unstable failure theory[J]. J.Cent. South Univ. Technol.,2010,17(5):947-953.
    [175]唐礼忠,汪令辉,张君,等.大规模开采矿山地震视应力和变形区域性危险地震预测[J].岩石力学工程学报,2011,30(6):1168-1178.
    [176]朱维申,杨为民,项吕,等.大型洞室边墙松弛劈裂区的室内和现场研究及反馈分析[J].岩石力学工程学报,2011,30(7):1310-1317.
    [177]李晓静,朱维申,李术才,等.考虑开挖卸荷劈裂效应的脆性裂隙围岩位移预测新方法[J].岩石力学工程学报,2011,30(7):1445-1453.
    [178]刘会波,肖明,陈俊涛.岩体地下工程局部围岩失稳的能量耗散突变判据[J].武汉大学学报(工学版),2011,44(2):202-206.
    [179]向天兵,冯夏庭,江权,等.大型洞室群围岩破坏模式的动态识别调控[J].岩石力学工程学报,2011,30(5):871-883.
    [180]江权,冯夏庭,向天兵,等.大型洞室群稳定性分析智能动态优化设计的数值仿真研究[J].岩石力学工程学报,2011,30(3):524-539.
    [181]冯夏庭,江权,向天兵,等.大型洞室群智能动态设计方法及其实践[J].岩石力学工程学报,2011,30(3):433-448.
    [182]张建海,胡著秀,杨永涛,等.地下厂房围岩松动圈声波拟合及监测反馈分析[J].岩石力学工程学报,2011,30(6):1191-1197.
    [183]罗忆,卢文波,周创兵,等.高地应力条件下地下厂房开挖动态卸荷引起的变形突变机制研究[J].岩土力学,2011,32(5):1553-1560.
    [184]陈浩,任伟中,李丹,等.深隧道围岩稳定性的数值模拟模型试验研究[J].岩土力学,2011,32(增2):615-620.
    [185]A. Serrano, C. Olalla, I. Reig. Convergence of circular tunnels in elastoplasticrock masses with non-linear failure criteria and non-associated flow laws[J].International Journal of Rock Mechanics&Mining Sciences,2011,48(6):878-887.
    [186]X.P. Zhou, H.F. Song, Q.H. Qian. Zonal disintegration of deep crack-weakenedrock masses: A non-Euclidean model[J]. Theoretical and Applied FractureMechanics,2011,55(3):227-236.
    [187]Zhu Weishen, Li Yong, Li Shucai, et al. Quasi-three-dimensional physical modeltests on a cavern complex under high in-situ stresses[J]. International Journal ofRock Mechanics&Mining Sciences,2011,48(2):199-209.
    [188]Li Shaojun, Feng Xiating, Li Zhanhai, et al. In situ experiments on width andevolution characteristics of excavation damaged zone in deeply buriedtunnels[J]. Science China Technological Sciences,2011,54(suppl.1):167-174.
    [189]张伯虎,邓建辉,高明忠,等.基于微震监测的水电站地下厂房安全性评价研究[J].岩石力学工程学报,2012,31(5):937-944.
    [190]Cundall P A. A computer model for simulating progressive large scalemovements in blocky system. In:Muller Led,ed. Proc Symp Int Soc RockMechanics. Rotterdam:Balkama A A,1971,(1):8-12.
    [191]Strack O D L, Cundall P A. The distinct element method as a tool for research ingranular media, Part Ⅰ. Report to the National Science Foundation, Minnesota:University of Minnesota,1978.
    [192]Cundall P A, Strack O D L. The distinct element method as a tool for research ingranular media, Part Ⅱ. Report to the National Science Foundation, Minnesota:University of Minnesota,1979.
    [193]Cundall P A, Strack O D L. A discrete numerical model for granularassemblies[J]. Geotechnique,1979,29(1):47-65.
    [194]Cundall P A. UDEC-a generalized distinct element program for modeling jointedrock. Report PCAR-1-80, Peter Cundall Associates, European Research Office,US Army Corps of Engineers,1980.
    [195]Cundall P A. Formation of a three-dimensional distinct element model-Part I: ascheme to detect and represent contacts in a system composed of manypolyhedral blocks[J]. Int J Rock Mech Min Sci Geomech Abstr,1988,25(3):107-116.
    [196]ITASCA Consulting Group, Inc. UDEC Manual,1992.
    [197]ITASCA Consulting Group, Inc.3DEC Manual,1994.
    [198]Shi G. Discontinuous deformation analysis-a new numerical model for thestatics, dynamics of block systems[D]. University of California, Berkeley, USA,1988.
    [199]Shyu K. Nodal-based discontinuous deformation analysis[D]. University ofCalifornia, Berkeley, USA,1993.
    [200]Chang QT. Nonlinear dynamic discontinuous deformation analysis with finiteelement meshed block systems[D]. University of California, Berkeley, USA,1994.
    [201]Kim Y, Amadei B, Pan E. Modeling the effect of water, excavation sequence androck reinforcement with discontinuous deformation analysis[J]. Int J Rock MechMin Sci,1999,36(7):949-970.
    [202]Jing L, Ma Y, Fang Z. Modelling of fluid flow and solid deformation forfractured rocks with discontinuous deformation analysis (DDA) method[J]. Int JRock Mech Min Sci,2001,38(3):343-355.
    [203]罗勇,龚晓南,连峰.三维离散颗粒单元模拟无黏性土的工程力学性质[J].岩土工程学报,2008,30(2):292-297.
    [204]孙其诚,厚美瑛,金峰.颗粒物质物理力学[M].北京:科学出版社,2011.
    [205]Itasca. Particle flow code, PFC3D, release3.1[M]. Minneapolis, Minnesota:Itasca Consulting Group, Inc.,2005.
    [206] Itasca. PFC2D (Particle Flow Code in2Dimensions)[M]. Minneapolis,Minnesota: Itasca Consulting Group, Inc.;2005.
    [207]Di Renzo A, Di Maio F. Comparison of contact-force models for the simulationof collisions in dem-based granular flow codes. Chem Eng Sci,2004,59(3):525-541.
    [208]Potyondy DO, Cundall PA. A bonded-particle model for rock[J]. InternationalJournal of Rock Mechanics and Mining Sciences,2004,41(8):1329-1364.
    [209]Cho N., Martin C.D., Sego D.C.. A clumped particle model for rock[J].International Journal of Rock Mechanics&Mining Sciences,2007,44(7):997-1010.
    [210]Jeoung Seok Yoon, Aron Zang, Ove Stephansson. Simulating fracture andfriction of Aue granite under confined asymmetric compressive test usingclumped particle model[J]. International Journal of Rock Mechanics&MiningSciences,2012,49:68-83.
    [211]C. Wang, D.D. Tannant, P.A. Lilly. Numerical analysis of the stability of heavilyjointed rock slope using PFC2D[J]. International Journal of Rock Mechanics&Mining Sciences,2003,40(3):415-424.
    [212]Baoquan An, Dwayne D. Tannant. Discrete element method contact model fordynamic simulation of inelastic rock impact[J]. Computers&Geosciences,33(4):513-521.
    [213]Young-Zoo Lee, WulfSchubert. Determination of the round length for tunnelexcavation in weak rock[J]. Tunnelling and Underground Space Technology,2008,23(3):221-231.
    [214]Toivo Wanne. Bonded-particle modeling of thermally induced damage inrock[D]. Toronto: Department of Civil Engineering University of Toronto,2009.
    [215]Thi-Huong Tran, Romain Vénier, Bernard Cambou. Discrete modeling ofrock-ageing in rockfill dams[J]. Computers and Geotechnics,2009,36(1-2):264-275.
    [216]Jung-Wook Park, Jae-Joon Song. Numerical simulation of a direct shear test on arock joint using a bonded-particle model[J]. International Journal of RockMechanics&Mining Sciences,2009,46(8):1315-1328.
    [217]Ahmed Elmekati, Usama El Shamy. A practical co-simulation approach formultiscale analysis of geotechnical systems[J]. Computers and Geotechnics,2010,37(4):494-503.
    [218]Myung Sagong, Duhee Park, Jaeho Yoo, et al. Experimental and numericalanalyses of an opening in a jointed rock mass under biaxial compression[J].International Journal of Rock Mechanics&Mining Sciences,2011,48(7):1055-1067.
    [219]A. Fakhimi, E. Alavi Gharahbagh. Discrete element analysis of the effect of poresize and pore distribution on the mechanical behavior of rock[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2011,48(1):77-85.
    [220]Heekwang Lee, Seokwon Jeon. An experimental and numerical study of fracturecoalescence in pre-crack specimens under uniaxial compression[J]. InternationalJournal of Solids and Structures,2011,48(6):979-999.
    [221]B.S. Kim, S.W. Park, S. Kato. DEM simulation of collapse behaviours ofunsaturated granular materials under general stress states[J]. Computers andGeotechnics,2012,42:52-61.
    [222]Z.X. Zhang, X.Y. Hu, Kieffer D. Scott. A discrete numerical approach formodeling face stability in slurry shield tunneling in soft soils[J]. Computers andGeotechnics,2011,38(2):94-104.
    [223]周健,池永等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,,2(6):701-704.
    [224]周健,廖雄华,池永等.土的室内平面应变试验的颗粒流模拟[J].同济大学学报,2002,30(9):1044-1050.
    [225]曾远.土体破坏细观机理及颗粒流数值模拟[D].上海:同济大学,2006.
    [226]张刚.管涌现象细观机理的模型试验颗粒流数值模拟研究[D].上海:同济大学,2007.
    [227]张志刚.节理岩体强度确定方法及其各向异性特征研究[D].北京:北京交通大学,2007.
    [228]尹小涛.岩土材料工程性质数值试验研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [229]魏龙海.基于离散元法的卵石层中成都地铁施工力学行为[D].成都:西南交通大学,2009.
    [230]黄绵松.堆石混凝土中自密实混凝土充填性能的离散元模拟研究[D].北京:清华大学水利水电工程系,2010.
    [231]R.P. Chen, L.J. Tang, D.S. Ling, et al. Face stability analysis of shallow shieldtunnels in dry sandy ground using the discrete element method[J]. Computersand Geotechnics,2011,38(2):187-195.
    [232]刘宁,张春生,褚卫江.深埋大理岩破裂扩展时间效应的颗粒流模拟[J].岩石力学工程学报,2011,30(10):1989-1996.
    [233]刘新荣,傅晏,郑颖人,等.颗粒流细观强度参数岩石断裂韧度之间的关系[J].岩石力学工程学报,2011,30(10):2084-2089.
    [234]Haimson B, Rudnicki J W. The effect of the intermediate principle stress on faultformation and fault angle in siltstone[J]. Journal of Structural Geology,2010,32(11):1701-1711.
    [235]Mogi K. Experimental rock mechanics[M]. London: Taylor and Francis Group,2007:1-189.
    [236]Bhawani Singh, R. K. Goel, V. K. Mehrotra, et al. Effect of intermediateprincipal stress on strength of anisotropic rock mass[J]. Tunnelling andUnderground Space Technology,1998,13(1):71-79.
    [237]石露,李小春.真三轴试验中的端部摩擦效应分析[J].岩土力学,2009,30(4):1159-1164.
    [238]C. Chang, B. Haimson. Non-dilatant deformation and failure mechanism in twoLong Valley Caldera rocks under true triaxial compression[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2005,42(3):402-414.
    [239]向天兵,冯夏庭,陈炳瑞,等.三向应力状态下单结构面岩石试样破坏机制真三轴试验研究[J].岩土力学,2009,30(10):2908-2916.
    [240]Jeoungseok Yoon. Application of experimental design and optimization to PFCmodel calibration in uniaxial compression simulation[J]. International Journal ofRock Mechanics&Mining Sciences,2007,44(6):871-889.
    [241]Yuannian Wang, Fulvio Tonon. Calibration of a discrete element model for intactup to its peak strength[J]. International Journal for Numerical and AnalyticalMethods in Geomechanics,2010,34(5):447-469.
    [242]A.S. Tawadrous, D. DeGagné, M. Pierce, et al. Prediction of uniaxialcompression PFC3D model micro-properties using artificial neural networks[J].International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(18):1953-1962.
    [243]Martin CD, Christiansson R, S derh ll. Rock stability considerations for sitingand constructing a KBS-3repository: based on experiences from sp HRL,AECL’s URL, Tunneling and Mining[M]. University of Michigan: SvenskK rnbr nslehantering AB,2001.
    [244]M. Cai, P.K. Kaiser, Y. Tasaka, et al. Generalized crack initiation and crackdamage stress thresholds of brittle rock masses near underground excavations[J].International Journal of Rock Mechanics&Mining Sciences,2004,41(5):833-847.
    [245]张晓平,王思敬,韩庚友,等.岩石单轴压缩条件下裂纹扩展试验研究——以片状岩石为例[J].岩石力学工程学报,2011,30(9):1772-1781.
    [246]朱泽奇,盛谦,冷先伦,等.三峡花岗岩起裂机制研究[J].岩石力学工程学报,2007.26(12):2570-2575.
    [247]Eberhardt E. Brittle rock fracture and progressive damage in uniaxialcompression[D]. Saskatoon: University of Saskatchewan,1998.
    [248]Diederichs MS, Kaiser PK, Eberhardt E. Damage initiation and propagation inhard rock during tunneling and the influence of near-face stress rotation[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(5):785-812.
    [249]Hoek E, Brown ET. Practical estimates of rock mass strength[J]. InternationalJournal of Rock Mechanics&Mining Sciences,1997,34(8):1165-1186.
    [250]Hoek E, Brown ET. Underground excavation in rock[M]. London: Institution ofMining and Metallurgy,1980.
    [251]Sofianos AI. Tunnelling Mohr-Coulomb strength parameters for rock massessatisfying the generalized Hoek-Brown criterion[J]. International Journal ofRock Mechanics&Mining Sciences,2003,40(3):435-440.
    [252]哈秋舲.岩石边坡工程卸荷非线性岩石(体)力学[J].岩石力学工程学报,1997,16(4):386-391.
    [253]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学工程学报,1993,12(4):321-327.
    [254]任建喜,葛修润,蒲毅彬,等.岩石卸荷损伤演化机制CT实时分析初探[J].岩石力学工程学报,2000,19(6):697-701.
    [255]汪斌,朱杰兵,邬爱清,等.锦屏大理岩加、卸载应力路径下力学性质试验研究[J].岩石力学工程学报,2008,27(10):2138-2145.
    [256]尤明庆,华安增.岩石试验的三轴卸围压试验[J].岩石力学工程学报,1998,17(1):24-29.
    [257]黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学工程学报,2008,17(11):2205-2213.
    [258]Ewy R.T., Cook N.G.W.. Deformation and fracture around cylindrical openingsin rock-I. Observations and analysis of deformations[J]. International Journal ofRock Mechanics and Mining Sciences and Geomechanics Abstracts,1990,27(5):387-407.
    [259]Ewy R.T., Cook N.G.W.. Deformation and fracture around cylindrical openingsin rock-II. Initiation, growth and interaction of fractures[J]. International Journalof Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1990,27(5):409-427.
    [260]Bezalel Haimson, John W. Rudnicki. The effect of the intermediate principalstress on fault formation and fault angle in siltstone[J]. Journal of StructuralGeology,2010,32(11):1701-1711.
    [261]X.P. Zhou, X.R. Bao, M.H. Yu, et al. Triaxial stress state of cylindrical openingsfor rocks modeled by elastoplasticity and strength criterion[J]. Theoretical andApplied Fracture Mechanics,2010,53(1):65-73.
    [262]Mingqing You. True-triaxial strength criterion for rock[J]. International Journalof Rock Mechanics&Mining Sciences,2009,46(1):115-127.
    [263]L.B. Colmenares, M.D. Zoback. A statistical evaluation of intact rock failurecriteria constrained by polyaxial test data for five different rocks[J].International Journal of Rock Mechanics&Mining Sciences,2002,39(6):695-729.
    [264]Read R.S.. Characterizing excavation damage in highly stressed granite atAECL’s Underground Research Laboratory[C]//Martino J.B., Martin C.D..Proceedings of the International Conference on Deep Geological Disposal ofRadioactive Waste. Winnipeg: Canadian Nuclear Society, Toronto,1994:35-46.
    [265]Hajiabdolmajid V., Kaiser P.K., Martin C.D.. Modelling brittle failure of rock[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(6):731-741.
    [266]Carter B.J., LajtaiE.Z., Petukhov A.. Primary and remote fracture aroundunderground cavities[J]. International Journal for Numerical and AnalyticalMethods in Geomechanics,1991,15(1):21-40.
    [267]Hajiabdolmajid V., Kaiser P.K., Martin C.D.. Brittleness of rock and stabilityassessment in hard rock tunneling[J]. Tunnelling and Underground SpaceTechnology,2003,18(1):35-48.
    [268]Timoshenko S., Goodier J.N.. Theory of elasticity[M]. New York: McGraw-HillBook Company,1951.
    [269]Fung YC. A first course in continuum mechanics[M]. Englewood Cliffs, NewJersey: Prentice-Hall, Inc.,1977.
    [270]Brady BHG, Brown ET.地下采矿岩石力学[M].冯树仁,佘诗刚,朱祚铎,等译.北京:煤炭工业出版社,1990.
    [271]窦林名,何学秋.采矿地球物理学[M].徐州:中国矿业大学出版社,2001.
    [272]李长洪,蔡美峰,乔兰,等.岩石全应力-应变曲线及其岩爆关系[J].北京科技大学学报,1999,21(6):513-515.
    [273]潘一山,章梦涛.冲击地压失稳理论的解析分析[J].岩石力学工程学报,1996,15(增):504-510.
    [274]Dyskin AV, Germanovich LN. Model of rock burst caused by cracks growingnear free surface[C]//Proceedings of Rock bursts and Seismicity in Mines.Rotterdam, Netherlands: A.A. Balkema,1993:169-174.
    [275]Fumagalli E. Statical and geomechanical models[M]. New York: Springer,1973.
    [276]Fumagalli E. Geomechanical models of dam foundation[C]//Proceedings of theInternational Colloquium on Physical and Geomechanical Models. Bergamo,Italy:1979.
    [277]高长胜,陈生水,徐光明,等.堤防边坡稳定离心模型试验技术[J].岩石力学工程学报,2005,24(23):4308-4312.
    [278]杜延龄.土工离心模型试验基本原理及其若干基本模拟技术研究[J].水利学报,1993,(8):19-27.
    [279]唐春安,唐烈先,李连崇,等.岩土破裂过程分析RFPA离心加载法[J].岩土工程学报,2007,29(1):71-76.
    [280]介玉新,李广信,陈轮.纤维加筋土和素土边坡的离心模型试验研究[J].岩土工程学报,1998,7(4):12-15.
    [281]段鸿飞,姜振泉,朱术云,等.大埋深高低压弱结构面顶板岩层诱发冲击地压离心模型试验[J].中南大学学报(自然科学版),2011,42(9):2774-2782.
    [282]刘德乾,姜振泉,李建硕,等.深埋煤层开采的离心模型试验研究[J].岩石力学工程学报,2009,28(增2):3909-3913.
    [283]E. Eberhardt. Numerical modeling of three-dimension stress rotation ahead of anadvancing tunnel face[J]. International Journal of Rock Mechanics&MiningSciences,2001,38(4):499-518.
    [284]李仲奎,戴荣,姜逸明. FLAC3D分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].岩石力学工程学报,2002,21(增2):2387-2392.
    [285]肖亚勋,冯夏庭,陈炳瑞,等.深埋隧洞极强岩爆段隧道掘进机半导洞掘进岩爆风险研究[J].岩土力学,2011,32(10):3111-3118.
    [286]李庶林,尹贤刚,郑文达,等.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学工程学报,2005,24(12):2048-2053.
    [287]杨志国,于润沧,郭然,等.微震监测技术在深井矿山中的应用[J].岩石力学工程学报,2008,27(5):1066-1073.
    [288]冯夏庭,陈炳瑞,明华军,等.深埋隧洞岩爆孕育规律机制:即时型岩爆[J].岩石力学工程学报,2012,31(3):433-444.
    [289]陈炳瑞,冯夏庭,明华军,等.深埋隧洞岩爆孕育规律机制:时滞型岩爆[J].岩石力学工程学报,2012,31(3):516-569.
    [290]刘顺桂,刘海宁,王思敬,等.断续节理直剪试验PFC2D数值模拟分析[J].岩石力学工程学报,2008,27(9):1828-1836.
    [291]陈新,廖志红,李德建.节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J].岩石力学工程学报,2011,30(4):781-789.
    [292]刘博,李海波,朱小明.循环剪切荷载作用下岩石节理强度劣化规律试验模拟研究[J].岩石力学工程学报,2011,30(10):2033-2039.
    [293]Diego Mas Ivars. Bonded particle model for jointed rock mass[D]. Sweden:KTH Land and Water Resources Engineering,2010.
    [294]刘远明,夏才初.基于岩桥力学性质弱化机制的非贯通节理岩体直剪试验研究[J].岩石力学工程学报,2010,29(7):1467-1472.
    [295]J. Duriez, F. Darve, F.-V. Donzé. A discrete modeling-based constitutive relationfor infilled rock joints[J]. International Journal of Rock Mechanics&MiningSciences,2011,48(3):458-468.
    [296]Nima Babanouri, Saeed Karimi Nasab, Alireza Baghbanan, et al.Over-consolidation effect on shear behavior of rock joints[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2011,48(8):1283-1291.
    [297]Ghaboussi J, Wilson EL, Isenberg J. Finite elements for rock joints andinterfaces[J]. J Soil Mech Found Div, ASCE,1973,99:833-848.
    [298]Goodman RE, Taylor RL, Brekke T. A model for the mechanics of jointedrock[J]. J Soil Mech Found Div, ASCE,1968,94:637-659.
    [299]Schwer LE, Lindberg HE. Application brief: a finite element slideline approachfor calculating tunnel response in jointed rock[J]. Int J Numer Anal MethodsGeomech,1992,16:529-540.
    [300]Beer G. Implementation of combined boundary element-finite element analysiswith application in geomechanics [C]//Banerjee PK, Watson JO. Developmentsin boundary element methods. London: Applied Science,1986:191-226.
    [301]Itasca Consulting Group. UDEC reference manual, Version3.0[M]. USA:Minnepolis, MN,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700