用户名: 密码: 验证码:
纳米结构中的交流响应隧穿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米微刻技术和材料生长技术的发展,制造各种介观结构已经成为可能,对介观系统的研究与日俱增。应用电场来控制和操纵介观结构中的输运问题,为交流响应的隧穿这个课题提供了一个广阔的研究领域。本论文主要研究了当交变电场作用在介观系统上,对电子输运的影响和调控。应用非平衡态Green函数方法,研究了几种介观系统的输运行为,对影响输运的条件(交变电场的频率、强度、温度等)作了定性分析,进行了较系统的理论研究,并得到了一些有意义的结果。主要做了以下几项工作:
     (1)研究了单个金属电极与量子点耦合系统的自旋流的交流响应问题,在具体处理问题时我们只考虑量子点中一个自旋简并能级,为简单起见忽略了量子点内的库仑斥力。在引线中引入一个交变驱动电压,量子点内引入一个泵浦旋转磁场,研究在外部交变频率的驱动下,是否会使系统的自旋流产生新的现象。基于非平衡态Green函数方法得到了时间平均自旋流和它的微分表达式。我们发现:由于量子点中的旋转磁场产生的自旋翻转机制,导致引线中的自旋向上和自旋向下的电子的化学势不同引起非平衡自旋分布。对于一个给定的旋转频率,自旋流将随着驱动频率的增加而快速的增长并且出现一些小的台阶。当驱动频率进一步增加,自旋流将会显著的增大且达到一个稳定值。光子辅助隧穿过程引起了一些有趣的特征。自旋流图像中出现的台阶与光子的吸收和发射过程紧密相关。在低温的情况下,这种量子相干特性比较显著。同时,详细讨论了门电压和温度对自旋流的影响。
     (2)研究了在ac场作用下,通过带有侧向耦合量子点的量子线中的光辅助隧穿问题。研究发现电-光子相互作用和量子相干在ac场频率变化下能够产生光子辅助次带反共振。因此,光子的相干吸收和发射可以在主反共振峰附近的次峰的相位测量中探测。讨论了零温和有限温下的电导和传输相位方面的信息。与无ac场的作用的情况相比较,由于传输电子受到ac场的作用,在能级ε=εd +nω处将产生一系列光子次带谷,相对于吸收( n > 0)和发射( n < 0)光子达到共振能级发生反共振,同时伴随着由于量子相干和光子辅助隧穿引起的相移的突变。Fano共振谷的高度受ac场的强度和频率的调制,谷的位置只与ac场的频率有关。有限温的情况下,Fano共振的振幅随着温度的升高减小,当温度高到某一特定的值时( K BT = 0.4接近隧穿耦合强度Γ= 0.49),在反共振峰能级附近第一个光子次带尖谷结构会演化为一个明显的共振峰结构,随着温度进一步升高这个峰的大小会增大。同时,随着温度的升高尖谷结构将很快的被抹平,意味着升高温度破坏了相位相干效应。而且,可以通过改变ac场的强度Δ和频率ω的大小,来调控电导的相移。
     (3)研究了铁磁-量子点-超导系统的自旋相关的Andreev反射隧穿问题,考虑了量子点内的自旋翻转散射相互作用,并且在量子点上加入了外部ac场。研究表明时间平均Andreev反射电导G A随外加ac场,量子点内的自旋翻转散射强度R ,两隧穿耦合强度间的比率以及铁磁引线的自旋极化度P的变化呈现了新颖的隧穿谱结构。在外加ac场的作用下,Andreev反射电导随量子点能级εd变化曲线在能量ε=εd±R + nω0处呈现了一系列光子次带峰,伴随着电子吸收( n > 0)或发射( n < 0)光子达到共振能级隧穿进入量子点的过程。研究结果发现Andreev反射电导行为是自旋翻转散射和量子点与左右引线间的隧穿耦合引起的两劈裂能级的展宽以及外加ac场引起的光子辅助隧穿间的竞争产生的。此外,Andreev反射电导G A-偏压V特性展现为:当Γf 0≥ΓS0时,Andreev反射电导谱为单峰共振,当Γf 0 <ΓS0时,Andreev反射电导谱总是形成共振双峰结构。
With the progress of nanofabrication and material growth technologies, it has been possible to fabricate a variety of mesoscopic structures, resulting in extensive investigation of mesoscopic systems. Applying electric field to control and manipulate the transport of mesoscopic structures provides a wide research field for the alternating response of tunneling. In this thesis, we investigate the influence and manipulation on transport of mesoscopic systems under an ac field. Using the nonequilibrium Green function method, we study transport properties of several kinds of mesoscopic systems and make a qualitative analysis of transport conditions (frequency and amplitude of the ac field, temperature, etc.), obtaining some meaningful results. Main results are summarized as follows:
     (1) We investigate alternating response of the spin current in a quantum dot system coupled to a normal metal electrode. For simplicity, we have neglected the intradot electron-electron Coulomb interaction, and only consider a single level in the quantum dot. An alternating driving voltage and a pumping rotating magnetic field are applied to investigate whether some new phenomenon of spin current can be generated as the driving frequency of the ac field changes. The nonequilibrium Green function technique is used to obtain the general formulas of the time-averaged spin current and its differential. It is found that the spin-flip mechanism induced by pumping rotating magnetic field in the QD leads to the difference of two spin chemical potentials creating a nonequilibrium spin population. For a given rotating frequency, the spin current increases rapidly and shows a series of steps with increasing driving frequency. As the driving frequency is further increasing, the spin current can be significantly enhanced and approaches a stable value. The photon-assisted processes bring about interesting features of spin current. The steps of the spin current are closely related to the photon absorbing and emitting process. These quantum interference features are remarkable at low temperatures. The influence of the gate voltage and temperature on the spin current is examined in detail.
     (2) We investigate photon-assisted transport through a perfect quantum wire with a side-coupled quantum dot in the presence of an ac field. We find that the electron-photon interaction together with the quantum interference of electron wave function can lead to photon-assisted sideband anti-resonance as the ac field frequency varies, which is then useful for tuning coherence and phases of electrons. Consequently, the coherent absorption and emission of photons can be detected via phase measurement at the sidebands of the main anti-resonance. Zero and limited temperature dependence of the conductance and transmission phase are discussed. Compared to the situation of without the ac field, the ac field leads to a series of photonic sideband valleys atε=εd + nω, that is, an electron absorbs ( n > 0) or emits ( n < 0) photons to become resonant energy level where anti-resonances occur, accompanied with a sudden change in the phase shift due to the quantum interference and the photon-assisted tunneling. The amount of the phase shift varies with the ac field amplitude, despite that the anti-resonance location does not. The conductance amplitude decreases with increasing temperatures and the width of the anti-resonance becomes larger for sufficient low temperatures. The dip structure at the first photonic sideband will develop into a noticeable peak around the anti-resonance level when the temperature increases to 0.4 comparable to the magnitude ofΓ(Γ= 0.49), and this peak is then enhanced with further increasing temperatures. Meanwhile, the dip structures are rapidly smeared out with increasing temperatures, suggesting that phase coherence is destroyed with increasing temperatures. Furthermore, we can manipulate the phase shift of the conductance by changing the frequencyωand magnitudeΔof the ac field.
     (3) We investigate Andreev reflection (AR) tunneling through a ferromagnet-quantum dot-superconductor (F-QD-S) system in the presence of an external ac field. The intradot spin-flip scattering in the QD is involved. It is shown that the time-averaged AR conductance displays interesting behaviors depending on the external ac field, the intradot spin-flip scattering R , the ratio of the two tunneling coupling strengths and the spin polarization P of the F-lead, respectively. In the presence of the ac field, the AR conductance versus the QD energy level exhibits a series of photonic sideband peaksε=εd±R + nω0, that is, the electron absorbs ( n > 0) or emits ( n < 0) photons to become resonant tunneling through the QD. And the observed behaviors of the AR conductance are a consequence of the competition between the intradot spin-flip scattering and the tunneling coupling strength of the two leads together with the external ac field. In addition, the AR conductance-bias voltage characteristic shows that whenΓf 0≥ΓS0, the AR conductance displays a single-peak resonance and whenΓf 0 <ΓS0, the AR conductance always develops into the double-peak indicating a novel structure.
引文
[1] B. L. Altshuler, P. A. Lee, and R. A. Webb, Mesoscopic Phenomena in Solids [M], New York: North-Holland, (1991).
    [2] H. Fukuyama, and T. Ando, Transport Phenomena in Mesoscopic Systems [M], Berlin: Springer-Verlag, (1992).
    [3] S. Datt, Electronic Transport in Mesoscopic Systems [M], London: Cambridge University Press, (1995).
    [4]阎守胜,甘子钊,介观物理[M],北京:北京大学出版社, (1995).
    [5] Y. Imery, Introduction to Mesoscopic Physics [M], New York & Oxford: Oxford University Press, (1997).
    [6]冯端,金国钧,凝聚态物理学[M],北京:高等教育出版社, (2003).
    [7]周义昌,李华钟,介观尺度上的物理[J],物理学进展, 13, 423, (1999).
    [8]阎守胜,介观体系和介观物理[J],物理, 30, 180, (2001).
    [9] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Coherence and Phase Sensitive Measurements in a Quantum Dot [J], Phys. Rev. Lett., 74, 4047 (1995).
    [10] A. Levyati, and M. Büttiker, Aharonov-Bohm oscillations in a mesoscopic ring with a quantum dot [J], Phys. Rev. B, 52, 14360 (1995).
    [11]马中水,介观物理基础和近期发展几个方面的简单介绍[J],物理, 36, 98 (2007).
    [12] E. R. Mucciolo, C. Chamon, and C. M. Marcus, Adiabatic Quantum Pump of Spin-Polarized Current [J], Phys. Rev. Lett., 89, 146802 (2002).
    [13] R. M. Potok, J. A. Folk, C.M. Marcus, and V. Umansky, Detecting Spin-Polarized Currents in Ballistic Nanostructures [J], Phys. Rev. Lett., 89, 266602 (2002).
    [14] A. Saffarzadeh, M. Bahar, and M. Banihasan, Spin-dependent resonant tunneling in ZnSe/ZnMnSe heterostructures [J], Physica E, 27, 462 (2005).
    [15] M. M. Glazov, P. S. Alekseev, M. A. Odnoblyudov, V. M. Chistyakov, S. A. Tarasenko, and I. N. Yassievich, Spin-dependent resonant tunneling in symmetrical double-barrier structures [J], Phys. Rev. B, 71, 155313 (2005).
    [16] S. A. Gurvitz, D. Mozyrsky, and G. P. Berman, Coherent effects in magnetotransport through Zeeman-split levels [J], Phys. Rev. B, 72, 205341 (2005).
    [17] J. S. Jin, J. H. Guo, J. Y. Luo, and X. Q. Li, Quantum trajectory analysis for electrical detection of single-electron spin resonance [J], Phys. Rev. B, 73, 125312 (2006).
    [18] F. M. Souza, A. P. Jauho, and J. C. Egues, Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green’s functions [J], Phys. Rev. B, 78, 155303 (2008).
    [19] P. Khandelwal, N. N. Kuzma, S. E. Barrett, L. N. Pfeiffer, and K. W. West, Optically Pumped Nuclear Magnetic Resonance Measurements of the Electron Spin Polarization in GaAs Quantum Wells near Landau Level Filling Factorν= 1 / 3 [J], Phys. Rev. Lett., 81, 673 (1998).
    [20] A. D. Stone, M. Y. Azbel, and P. A. Lee, Localization and quantum-mechanical resonant tunneling in the presence of a time-dependent potential [J], Phys. Rev. B, 31, 1707 (1985).
    [21] D. Sokolovski, Resonance tunneling in a periodic time-dependent external field [J], Phys. Rev. B, 37, 4201 (1988).
    [22] P. Johansson, Resonant tunneling with a time-dependent voltage [J], Phys. Rev. B, 41, 9892 (1990).
    [23] L. P. Kouwenhoven, S. Jauhar, K. McCormick, D. Dixon, and P. L. McEuen, Photon-assisted tunneling through a quantum dot [J], Phys. Rev. B, 50 2019 (1994).
    [24] L. P. Kouwenhoven, S. Jauhar, J. Orenstein, and P. L. McEuen, Observation of Photon-Assisted Tunneling through a Quantum Dot [J], Phys. Rev. Lett., 73, 3443 (1994).
    [25] T. K. Ng, ac Response in the Nonequilibrium Anderson Impurity Model [J], Phys. Rev. Lett., 76, 487 (1996).
    [26] H. K. Zhao, G. V. Gehlen, Mesoscopic transport through a normal-metal-quantum-dot-sup erconductor system with ac responses [J], Phys. Rev. B, 58, 13660 (1998)
    [27] M. H. Pedersen, and M. Büttiker, Scattering theory of photon-assisted electron transport [J], Phys. Rev. B, 58, 12993 (1998).
    [28] H. K. Zhao, and J. Wang, Zeeman-split mesoscopic transport through a normal-metal- quantum-dot-superconductor system with ac response [J], Phys. Rev. B, 64, 094505 (2001).
    [29] B. A. Glavin, and K. W. Kim, Resonance-like electrical control of electron spin for microwave measurement [J], Appl. Phys. Lett., 85, 428 (2004).
    [30] D. Bagrets, and F. Pistolesi, Photon-assisted shot noise in mesoscopic conductors [J], Physica E, 40, 123 (2007).
    [31] T. K. T. Nguyen, T. Jonckheere, A. Crépieux, A. V. Nguyen, and T. Martin, Photoassisted Andreev reflection as a probe of quantum noise [J], Phys. Rev. B, 76, 035421 (2007).
    [32] G. C. Xing, W. Ji, Y. G. Zheng, and J. Y. Ying, Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy [J], Appl. Phys. Lett., 93, 241114 (2008).
    [33]张臣,半导体量子点和量子线材料及其制备技术[J],微细加工技术, 1, 74 (2001).
    [34]赵凤瑷,张春玲,王占国,半导体量子点及其应用(Ⅰ) [J],物理, 33, 249 (2004).
    [35]赵凤瑷,张春玲,王占国,半导体量子点及其应用(Ⅱ) [J],物理, 33, 327 (2004).
    [36] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. laibowitz, Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings [J], Phys. Rev. Lett., 54, 2696 (1985).
    [37] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Quantized Conductance of Point Contacts in a Two Dimensional Electron Gas [J], Phys. Rev. Lett., 60, 848 (1988).
    [38] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Forst, D. GHasko, D. C. Peacock, D.A.Ritchie, and G. A. C. Jones, One-Dimensional Transport and the Quantization of the Ballistic Resistance [J], Journal of Physics C: Solid State Physics, 21, 583 (1988).
    [39] J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antoniadis, Conductance Oscillations Periodic in the Density of an One-Dimensional Electron Gas [J], Phys. Rev. Lett., 62, 583 (1989).
    [40] L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, A. van der Enden, C. J. P. M. Harmans, and C. T. Foxon, Single electron charging effects in semiconductor quantum dots [J], Z. Phys. B, 85, 367371 (1991).
    [41] L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, A. van der Enden, C. J. P. M. Harmans, and C. T. Foxon, Quantized current in a quantum dot turnstile [J], Z. Phys. B, 85, 381389 (1991).
    [42] A. F. Morpurgo, B. J. van Wees, and T. M. Klapwijk, Energy Spectroscopy of Andreev Levels between Two Superconductors [J], Phys. Rev. Lett., 79, 4010 (1997).
    [43] F. Giazotto, M. Governale, U. Zülicke, and F. Beltram, Andreev reflection and cyclotron motion at superconductor-normal-metal interfaces [J], Phys. Rev. B, 72, 054518 (2005).
    [44] P. Chalsani, S. K. Upadhyay, O. Ozatay, and R. A. Buhrman, Andreev reflection measurements of spin polarization [J], Phys. Rev. B, 75, 094417 (2007).
    [45] C. M. Ryu, and S. Y. Cho, Phase evolution of the transmission coefficient in an Aharonov-Bohm ring with Fano resonance [J], Phys. Rev. B, 58, 3572 (1998).
    [46] J. G?res, D. Goldhaber-Gordon, S. Heemeyer, and M. A. Kastner, Fano resonances in electronic transport through a single-electron transistor [J], Phys. Rev. B, 62, 2188 (2000).
    [47] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Tuning of the Fano Effect through a Quantum Dot in an Aharonov-Bohm Interferometer [J], Phys. Rev. Lett., 88, 256806 (2002).
    [48] R. Franco, M. S. Figueira, and E. V. Anda, Fano resonance in electronic transport through a quantum wire with a side-coupled quantum dot: X-boson treatment [J], Phys. Rev. B, 67, 155301 (2003).
    [49] K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, Fano resonance in a quantum wire with a side-coupled quantum dot [J], Phys. Rev. B, 70, 035319 (2004).
    [50] M. Yang, and S. S. Li, ac gate-induced Fano resonance and peak splitting of conductance in a quantum dot [J], Phys. Rev. B, 70, 045318 (2004).
    [51] A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Coulomb-Modified Fano Resonance in a One-Lead Quantum Dot [J], Phys. Rev. Lett., 93, 106803 (2004).
    [52] A. Fuhrer, P. Brusheim, T. Ihn, M. Sigrist, K. Ensslin, W. Wegscheider, and M. Bichler, Fano effect in a quantum-ring–quantum-dot system with tunable coupling [J], Phys. Rev. B, 73, 205326 (2006).
    [53] K. Osawa, and S. Kurihara, Fano effect in a Josephson junction with a quantum dot [J], Phys. Rev. B, 78, 224508 (2008).
    [54] T. K. Ng, and P. A. Lee, On-Site Coulomb Repulsion and Resonant Tun-neling [J], Phys. Rev. Lett., 61, 1768 (1988).
    [55] S. Hershfield, J. H. Davies, and J. W. Wilkins, Probing the Kondo Resonance by Resonant Tunneling Through an Anderson Impurity [J], Phys. Rev. Lett., 67, 3720 (1991).
    [56] J. Konig, T. Pohjola, H. Schoeller, and G. Schon, Quantum Fluctuations and the Kondo Effect in small Quantum Dots [J], Physica E, 6, 371 (2000).
    [57] J. Nygard, D. H. Cobden, and P. E. Lindelof, Kondo physics in carbon nanotubes [J], Nature, 408, 342 (2000).
    [58] M. Pustilnik, and L. I. Glazman, Kondo Effect in Real Quantum Dots [J], Phys. Rev. Lett., 87, 216601 (2001).
    [59] C. Buizert, A. Oiwa, K. Shibata, K. Hirakawa, and S. Tarucha, Kondo Universal Scaling for a Quantum Dot Coupled to Superconducting Leads [J], Phys. Rev. Lett., 99, 136806 (2007).
    [60]游彪,盛雯婷,孙亮,张维,杜军,胡安,自旋电子学的发展和应用[J],自然杂志, 25, 220 (2003).
    [61] E. I. Rashba, Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem [J], Phys. Rev. B, 62, 816267 (2000).
    [62] R. D. R. Bhat, and J. E. Sipe, Optically Injected Spin Currents in Semiconductors [J], Phys. Rev. Lett., 85, 5432 (2000).
    [63] H. J. Zhu, Room-temperature spin injection from Fe into GaAs [J], Phys. Rev. Lett., 87, 016601 (2001).
    [64] J. Hübner, and W. W. Rühle, Direct Observation of Optically Injected Spin-Polarized Currents in Semiconductors [J], Phys. Rev. Lett., 90, 216601 (2003).
    [65] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Current-Induced Spin Polarization in Strained Semiconductors [J], Phys. Rev. Lett., 93, 176601(2004).
    [66] N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Tunable Nonlocal Spin Control in a Coupled-Quantum Dot System [J], Science, 304, 565 (2004).
    [67] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of the Spin Hall Effect in Semiconductors [J], Science, 306, 1910 (2004).
    [68] J. A. Gupta, D. D. Awschalom, X. Peng, and A. P. Alivisatos, Spin coherence in semiconductor quantum dots [J], Phys. Rev. B, 59, 10421 (1999).
    [69] Hai-Feng Mu, Gang Su, and Qing-Rong Zheng, Spin current and current-induced spin transfer torque in ferromagnet–quantum dot–ferromagnet coupled systems [J], Phys. Rev. B, 73, 054414, (2006).
    [70] F. M. Souza, A. P. Jauho, and J. C. Egues, Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green’s functions [J], Phys. Rev. B, 78, 155303 (2008).
    [71] A. P. Jauho, Nonequilibrium Green function techniques applied to hot electron quantum transport [J], Solid state Electronics, 32(12), 1265, (1989).
    [72] N. S. Wingreen, K. W. Jacobsen, J. W. Wilkins, Inelastic scattering in resonant tunneling [J], Phys. Rev. B, 40, 11834 (1989).
    [73] Y. Meir, and N. S. Wingreen, Landauer Formula for the Current through an Interacting Electron Region [J], Phys. Rev. Lett., 68, 2512 (1992).
    [74] N. S. Wingreen, A. P. Jauho, and Y. Meir, Time-dependent transport through a mesoscopic structure [J], Phys. Rev. B, 48, 8487 (1993).
    [75] A. P. Jauho, N. S. Wingreen, and Y. Meir, Time-dependent transport in interactiing and noninteracting resonant-tunneling systems [J], Phys. Rev. B, 50, 5528 (1994).
    [76] A. P. Jauho, and N. S. Wingreen, Theory of phase-sensitive measurement of photon-assisted tunneling through a quantum dot [J], Phys. Rev. B, 58, 9619 (1998).
    [77] Q. F. Sun, and T. H. Lin, Influence of microwave fields on the electron tunneling through a quantum dot [J], Phys. Rev. B, 56, 3591 (1997).
    [78] Q. F. Sun, J. Wang, and T. H. Lin, Resonant Andreev reflection in a normal-metal-quantum -dot-superconductor system [J], Phys. Rev. B, 59, 3831 (1999).
    [79] Q.F. Sun, J. Wang, and T. H. Lin, Photon-assisted Andreev tunneling through a mesoscopic hybrid system [J], Phys. Rev. B, 59, 13126 (1999).
    [80] Q. F. Sun, J. Wang, and T. H. Lin, Control of the supercurrent in a mesoscopic four-terminal Josephson junction [J], Phys. Rev. B, 62, 648 (2000).
    [81] Q. F. Sun, H. Guo, and T. H. Lin, Excess Kondo Resonance in a Quantum Dot Device with Normal and Superconducting Leads: The Physics of Andreev-Normal Co-tunneling [J], Phys. Rev. Lett., 87, 176601 (2001).
    [82] Q. F. Sun, H. Guo, and J. Wang, A Spin Cell for Spin Current [J], Phys. Rev. Lett., 90, 258301 (2003).
    [83] W. Long, Q. F. Sun, H. Guo, and J. Wang, Gate-controllable spin battery [J], Appl. Phys. Lett., 83, 1397 (2003).
    [84] Q. F. Sun, J. Wang, and H. Guo, Quantum transport theory for nanostructures with Rashba spin-orbital interaction [J], Phys. Rev. B, 71, 165310 (2005).
    [85] Y. X. Xing, Q. F. Sun, and J. Wang, Response time of a normal-metal/superconductor hybrid system under a step-like pulse bias [J], Phys. Rev. B, 75, 125308 (2007).
    [86] B. G. Wang, J. Wang, and H. Guo, Quantum spin field effect transistor [J], Phys. Rev. B, 67, 092408 (2003).
    [87] J. R. Shi, and X. C. Xie, Radiation-Induced“Zero-Resistance State”and the Photon-Assisted Transport [J], Phys. Rev. Lett., 91, 086801 (2003).
    [88] P. Zhang, Q. K. Xue, Y. P. Wang, and X. C. Xie, Spin-Dependent Transport through an Interacting Quantum Dot [J], Phys. Rev. Lett., 89, 286803 (2002).
    [89] P. Zhang, Q. K. Xue, and X. C. Xie, Spin Current through a Quantum Dot in the Presence of an Oscillating Magnetic Field [J], Phys. Rev. Lett., 91, 196602 (2003).
    [90] Y. Zhu, and T.H. Lin, Writing spin in a quantum dot with ferromagnetic and superconducting electrodes [J], Phys. Rev. B, 69, 121302(R) (2004).
    [91] Y. Zhu, Q. F. Sun, and T.H. Lin, Andreev reflection through a quantum dot coupled with two ferromagnets and a superconductor [J], Phys. Rev. B, 65, 024516 (2001).
    [92] J. F. Feng, and S. J. Xiong, Tunneling resonances and Andreev reflection in transport ofelectrons through a ferromagnetic metal/quantum dot/superconductor system [J], Phys. Rev. B, 67, 045316 (2003).
    [93] B. Béri, J. H. Bardarson, and C. W. J. eenakker, Effect of spin-orbit coupling on the excitation spectrum of Andreev billiards [J], Phys. Rev. B, 75, 165307 (2007).
    [94] H. T. Yang, and C. S. Liu, Description of spin transport and precession in spin-orbit coupling systems and general equation of continuity [J], Phys. Rev. B, 75, 085314 (2007).
    [95] X. F. Cao, Y. M. Shi, X. L. Song, and S. P. Zhou, Spin-dependent Andreev reflection tunneling through a quantum dot with intradot spin-flip scattering [J], Phys. Rev. B, 70, 235341 (2004).
    [96] A.V. Balatsky, and I. Martin, Theory of Single Spin Detection with STM [J], Quantum Inf. Process., 1, 355 (2002).
    [97] J. X. Zhu, and A.V. Balatsky, Quantum Electronic Transport through a Precessing Spin [J], Phys. Rev. Lett., 89, 286802 (2002).
    [98] X. F. Cao, Y. M. Shi, X. L. Song, and H. Chen, Andreev reflection resonant tunneling through a precessing spin [J], Phys. Lett. A, 327, 337 (2004).
    [99] Y. M. Shi, S. P. Zhou, X. F. Cao, H. Huang, and H. Chen, Spin-polarized Andreev reflection tunneling through a precessing magnetic spin [J], Europhys. Lett., 73, 941 (2006).
    [1] J. Rammer, and H. Smith, Quantum field-theoretical methods in transport theory of metals [J], Rev. Mod. Phys., 58, 323 (1986).
    [2] A. P. Jauho, Nonequilibrium Green function techniques applied to hot electron quantum transport [J], Solid state Electronics, 32, 1265 (1989).
    [3] N. S. Wingreen, K. W. Jacobsen, J. W. Wilkins, Inelastic scattering in resonant tunneling [J], Phys. Rev. B, 40, 11834 (1989).
    [4] D. C. Langreth, and P. Nordlander, Derivation of a master equation for charge-transfer processes in atom-surface collisions [J], Phys. Rev. B, 43, 2541 (1991).
    [5] Y. Meir, and N. S. Wingreen, Landauer Formula for the Current through an Interacting Electron Region [J], Phys. Rev. Lett., 68, 2512 (1992).
    [6] P. C. Martin, and J. Schwinger, Theory of Many-Particle Systems [J], Phys. Rev., 115, 1342 (1959).
    [7] J. Schwinger, Brownian motion of a Quantum Oscillator [J], J. Math. Phys., 2, 407 (1961).
    [8] N. S. Wingreen, A. P. Jauho, and Y. Meir, Time-dependent transport through a mesoscopic structure [J], Phys. Rev. B, 48, 8487 (1993).
    [9] A. P. Jauho, N. S. Wingreen, and Y. Meir, Time-dependent transport in interacting and noninteracting resonant-tunneling systems [J], Phys. Rev. B, 50, 5528 (1994).
    [10]蔡建华,龚昌德,姚希贤,孙鑫,李正中,吴萱如,量子统计的格林函数理论[M],北京:科学出版社, (1983).
    [11]卫崇德,章立源,刘福绥,固体物理中的格林函数方法[M],北京:高等教育出版社, (1992).
    [12] G. D. Mahan, Many-Particle Physics [M], New York: Plenum Press, (1990).
    [13] D.C. Ralph, C.T. Black, and M. Timkham, Spectroscopic Measurements of Discrete Electronic States in Single Metal Particles [J], Phys. Rev. Lett., 74, 3241 (1995).
    [14] C.T. Black, D.C. Ralph, and M. Tinkharm, Spectroscopy of the Superconducting Gap in Individual Nanometer-Scale Aluminum Particles [J]. Phys. Rev. Lett., 76, 68 (1996).
    [15]阿部龙藏著,楚珏辉译,统计力学[M],北京:科学出版社, (1979).
    [16] H. Haug, and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer Series in Solid-State Sciences) [M], New York: Springer-Verlag, (1996).
    [17] H. K. Zhao, G. V. Gehlen, Mesoscopic transport through a normal-metal-quantum-dot-sup erconductor system with ac responses [J], Phys. Rev. B, 58, 13660 (1998)
    [18] Q. F. Sun, J. Wang, and T. H. Lin, Resonant Andreev reflection in a normal-metal-quantum -dot-superconductor system [J], Phys. Rev. B, 59, 3831 (1999)
    [19] H. K. Zhao, and J. Wang, Zeeman-split mesoscopic transport through a normal-metal- quantum-dot-superconductor system with ac response [J], Phys. Rev. B, 64, 094505 (2001).
    [20] A. F. Morpurgo, B. J. van Wees, and T. M. Klapwijk, Energy Spectroscopy of Andreev Levelsbetween Two Superconductors [J], Phys. Rev. Lett., 79, 4010 (1997).
    [21] Q. F. Sun, H. Guo, and J. Wang, A Spin Cell for Spin Current [J], Phys. Rev. Lett., 90, 258301 (2003).
    [22] W. Poirier, D. Mailly, and M. Sanquer, Finite Bias Anomaly in the Subgap Conductance of Superconductor-GaAs Junctions [J], Phys. Rev. Lett., 79, 2105 (1997).
    [23] F. Giazotto,M. Governale, U. Zülicke, and F. Beltram, Andreev reflection and cyclotron motion at superconductor—normal-metal interfaces [J], Phys. Rev. B, 72, 054518 (2005).
    [24] Y. X. Xing, Q. F. Sun, and J. Wang, Response time of a normal-metal/superconductor hybrid system under a step-like pulse bias [J], Phys. Rev. B, 75, 125308 (2007).
    [25] M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Experimental evidence for parity-based 2e periodicity in a superconducting single-electron tunneling transistor [J], Phys. Rev. Lett., 69, 1997 (1992).
    [26] C. K. Lui, B. G. Wang, and J. Wang, ac transport through a resonant level between ferromagnetic electrodes [J], Phys. Rev. B, 70, 205316 (2004).
    [27] J. F. Feng, and S. J. Xiong, Tunneling resonances and Andreev reflection in transport of electrons through a ferromagnetic metal/quantum dot/superconductor system [J], Phys. Rev. B, 67, 045316 (2003).
    [28] Y. Zhu, and T. H. Lin, Writing spin in a quantum dot with ferromagnetic and superconducting electrodes [J], Phys. Rev. B, 69, 121302(R) (2004).
    [29] N. van der Post, E. T. Peters, I. K. Yanson, and J. M. van Ruitenbeek, Subgap Structure as Function of the Barrier in Atom-Size Superconducting Tunnel Junctions [J], Phys. Rev. Lett., 73, 2611 (1994).
    [30] T. M. Eiles, John M. Martinis, and M. H. Devoret, Even-odd asymmetry of a superconductor revealed by the Coulomb blockade of Andreev reflection [J], Phys. Rev. Lett., 70, 1862 (1993).
    [31] S. K. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhrman, Probing Ferromagnets with Andreev Reflection [J], Phys. Rev. Lett., 81, 3247 (1998).
    [32] Z.Y. Zeng, Baowen Li, and F. Claro, Electron transport in interacting hybrid mesoscopic systems [J], Eur. Phys. J. B, 32, 401 (2003).
    [33] J. Wang, and B. G. Wang, Quantization of adiabatic pumped charge in the presence of superconducting lead [J], Phys. Rev. B, 65, 153311 (2002).
    [34] T. K. Ng, ac Response in the Nonequilibrium Anderson Impurity Model [J], Phys. Rev. Lett., 76, 487 (1996).
    [35] N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Tunable Nonlocal Spin Control in a Coupled-Quantum Dot System [J], Science, 304, 565 (2004).
    [36] P. G. de Gennes, Superconductivity of Metals and Alloys [M], New York: Benjamin, (1966).
    [37] C. Livermore, C. H. Crouch, R. M. Westervelt, K. L. Campman, and A. C. Gossard, The Coulomb Blockade in Coupled Quantum Dots [J], Science, 274, 1332 (1996).
    [38] B.G. Levi, Kondo Physics Seen in Quantum Dot [J], Physics Today, 51, 17 (1998).
    [39] M. Pustilnik, and L. I. Glazman, Kondo Effect in Real Quantum Dots [J], Phys. Rev. Lett., 87, 216601 (2001).
    [40] J. Konig, T. Pohjola, H. Schoeller, and G. Schon, Quantum Fluctuations and the Kondo Effect in small Quantum Dots [J], Physica E, 6, 371 (2000).
    [41] J. Nygard, D. H. Cobden, and P. E. Lindelof, Kondo physics in carbon nanotubes [J], Nature, 408, 342 (2000).
    [42] R. Aguado, and D. C. Langreth, Out-of-Equilibrium Kondo Effect in Double Quantum Dots [J], Phys. Rev. Lett., 85, 1946 (2000).
    [43] R. López, R. Aguado, and G. Platero, Nonequilibrium Transport through Double Quantum Dots: Kondo Effect versus Antiferromagnetic Coupling [J], Phys. Rev. Lett., 89, 136802 (2002).
    [44] G. Burkard, Quantum physics: A spin solo [J], Nature, 442, 749 (2006).
    [45]阎守胜,甘子钊,介观物理[M],北京:北京大学出版社, (1995).
    [46]阎守胜,固体物理基础[M],北京:北京大学出版社, (2000).
    [47]冯端,金国钧,凝聚态物理学[M],北京:高等教育出版社, (2003).
    [48]李正中,固体理论[M],北京:高等教育出版社, (2003).
    [49]张臣,半导体量子点和量子线材料及其制备技术[J],微细加工技术, 1, 74 (2001).
    [50]赵凤瑷,张春玲,王占国,半导体量子点及其应用(Ⅰ) [J],物理, 33, 249 (2004).
    [51]赵凤瑷,张春玲,王占国,半导体量子点及其应用(Ⅱ) [J],物理, 33, 327 (2004).
    [1] A. V. Balatsky, and I. Martin, Theory of Single Spin Detection with STM [J], Quantum Inf. Process., 1, 355 (2002).
    [2] C. Durkan, and M. E. Welland, Electronic spin detection in molecules using scanning-tunnelingmicroscopy-assisted electron-spin resonance [J], Appl. Phys. Lett., 80, 458 (2002).
    [3] Z. G. Chen, B. G. Wang, D. Y. Xing, and Jian Wang, A spin injector [J], Appl. Phys. Lett., 85, 2553 (2002).
    [4] I. Martin, D. Mozyrsky, and H. W. Jiang, A Scheme for Electrical Detection of Single-Electron Spin Resonance [J], Phys. Rev. Lett., 90, 018301 (2003).
    [5] P. Recher, E. V. Sukhorukov, and D. Loss, Quantum Dot as Spin Filter and Spin Memory [J], Phys. Rev. Lett., 85, 1962 (2000).
    [6] E. R. Mucciolo, C. Chamon, and C. M. Marcus, Adiabatic Quantum Pump of Spin-Polarized Current [J], Phys. Rev. Lett., 89, 146802 (2002).
    [7] R. M. Potok, J. A. Folk, C. M. Marcus, and V. Umansky, Detecting Spin-Polarized Currents in Ballistic Nanostructures [J], Phys. Rev. Lett., 89, 266602 (2002).
    [8] J. X. Zhu, and A. V. Balatsky, Quantum Electronic Transport through a Precessing Spin [J], Phys. Rev. Lett., 89, 286802 (2002).
    [9] P. Zhang, Q. K. Xue, Y. P. Wang, and X.C. Xie, Spin-Dependent Transport through an Interacting Quantum Dot [J], Phys. Rev. Lett., 89, 286803 (2002).
    [10] B. G. Wang, J. Wang, and H. Guo, Quantum spin field effect transistor [J], Phys. Rev. B, 67, 092408 (2003).
    [11] P. Zhang, Q. K. Xue, and X. C. Xie, Spin Current through a Quantum Dot in the Presence of an Oscillating Magnetic Field [J], Phys. Rev. Lett., 91, 196602 (2003).
    [12] A. Saffarzadeh, M. Bahar, and M. Banihasan, Spin-dependent resonant tunneling in ZnSe/ZnMnSe heterostructures [J], Physica E, 27, 462 (2005).
    [13] B. Dong, H. L. Cui, and X. L. Lei, Pumped Spin-Current and Shot-Noise Spectra of a Single Quantum Dot [J], Phys. Rev. Lett., 94, 066601 (2005).
    [14] M. M. Glazov, P. S. Alekseev, M. A. Odnoblyudov, V. M. Chistyakov, S. A. Tarasenko, and I. N. Yassievich, Spin-dependent resonant tunneling in symmetrical double-barrier structures [J], Phys. Rev. B, 71, 155313 (2005).
    [15] S. A. Gurvitz, D. Mozyrsky, and G. P. Berman, Coherent effects in magnetotransport through Zeeman-split levels [J], Phys. Rev. B, 72, 205341 (2005).
    [16] J. S. Jin, J. H. Guo, J. Y. Luo, and X. Q. Li, Quantum trajectory analysis for electrical detection of single-electron spin resonance [J], Phys. Rev. B, 73, 125312 (2006).
    [17] M. Onoda, and N. Nagaosa, Dynamics of Localized Spins Coupled to the Conduction Electrons with Charge and Spin Currents [J], Phys. Rev. Lett., 96, 066603 (2006).
    [18] F. M. Souza, A. P. Jauho, and J. C. Egues, Spin-polarized current and shot noise in thepresence of spin flip in a quantum dot via nonequilibrium Green’s functions [J], Phys. Rev. B, 78, 155303 (2008).
    [19] R. D. R. Bhat, and J. E. Sipe, Optically Injected Spin Currents in Semiconductors [J], Phys. Rev. Lett., 85, 5432 (2000).
    [20] J. Hübner, and W. W. Rühle, Direct Observation of Optically Injected Spin-Polarized Currents in Semiconductors [J], Phys. Rev. Lett., 90, 216601 (2003).
    [21] M. J. Stevens, and A. L. Smirl, Quantum Interference Control of Ballistic Pure Spin Currents in Semiconductors [J], Phys. Rev. Lett., 90, 136603 (2003).
    [22] H. K. Zhao, and J. Wang, Zeeman-split mesoscopic transport through a normal-metal- quantum-dot-superconductor system with ac response [J], Phys. Rev. B, 64, 094505 (2001).
    [23] N. S. Wingreen, A. P. Jauho, and Y. Meir, Time-dependent transport through a mesoscopic structure [J], Phys. Rev. B, 48, 8487 (1993).
    [24] L. P. Kouwenhoven, S. Jauhar, K. McCormick, D. Dixon, and P. L. McEuen, Photon-assisted tunneling through a quantum dot [J], Phys. Rev. B, 50 2019 (1994).
    [25] A. P. Jauho, N. S. Wingreen, and Y. Meir, Time-dependent transport in interactiing and noninteracting resonant-tunneling systems [J], Phys. Rev. B, 50, 5528 (1994).
    [26] L. P. Kouwenhoven, S. Jauhar, J. Orenstein, and P. L. McEuen, Observation of Photon-Assisted Tunneling through a Quantum Dot [J], Phys. Rev. Lett., 73, 3443 (1994).
    [27] C. A. tafford, and N. S. Wingreen, Resonant Photon-Assisted Tunneling through a Double Quantum Dot: An Electron Pump from Spatial Rabi Oscillations [J], Phys. Rev. Lett., 76, 1916 (1996).
    [28] T. K. Ng, ac Response in the Nonequilibrium Anderson Impurity Model [J], Phys. Rev. Lett., 76, 487 (1996).
    [29] Q. F. Sun, and T. H. Lin, Influence of microwave fields on the electron tunneling through a quantum dot [J], Phys. Rev. B, 56, 3591 (1997).
    [30] M. H. Pedersen, and M. Büttiker, Scattering theory of photon-assisted electron transport [J], Phys. Rev. B, 58, 12993 (1998).
    [31] J. S. Shi, Z. H. Ma, and X. C. Xie, Dephasing effect in photon-assisted resonant tunneling through quantum dots [J], Phys. Rev. B, 63, 201311 (2001).
    [32] W. Long, Q. F. Sun, H. Guo, and J. Wang, Gate-controllable spin battery [J], Appl. Phys. Lett., 83 1397 (2003).
    [33] Q. F. Sun, H. G., and J. Wang, A Spin Cell for Spin Current [J], Phys. Rev. Lett., 90, 258301 (2003).
    [34] B. A. Glavin, and K. W. Kim, Resonance-like electrical control of electron spin for microwave measurement [J], Appl. Phys. Lett., 85, 428 (2004).
    [35] C. K. Lui, B. G. Wang, and J. Wang, ac transport through a resonant level between ferromagnetic electrodes [J], Phys. Rev. B, 70, 205316 (2004).
    [36] Y. Zhu, J. Maciejko, T. Ji, H. Guo, and J. Wang, Time-dependent quantum transport: Directanalysis in the time domain [J], Phys. Rev. B, 71, 075317 (2005).
    [37] S. Q. Shen, Spin Transverse Force on Spin Current in an Electric Field [J], Phys. Rev. Lett., 95, 187203 (2005).
    [38] J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory [J], Phys. Rev. B, 74, 085324 (2006).
    [39] D. Bagrets, F. Pistolesi, Photon-assisted shot noise in mesoscopic conductors [J], Physica E, 40, 123 (2007).
    [1] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Coherence and Phase Sensitive Measurements in a Quantum Dot [J], Phys. Rev. Lett., 74, 4047 (1995).
    [2] A. Levyati and M. Büttiker, Aharonov-Bohm oscillations in a mesoscopic ring with a quantum dot [J], Phys. Rev. B, 52, 14360 (1995).
    [3] C. M. Ryu, and S. Y. Cho, Phase evolution of the transmission coefficient in an Aharonov-Bohm ring with Fano resonance [J], Phys. Rev. B, 58, 3572 (1998).
    [4] A. P. Jauho, and N. S. Wingreen, Theory of phase-sensitive measurement of photon-assisted tunneling through a quantum dot [J], Phys. Rev. B, 58, 9619 (1998).
    [5] A. A. Clerk, X. Waintal, and P.W. Brouwer, Fano Resonances as a Probe of Phase Coherence in Quantum Dots [J], Phys. Rev. Lett., 86, 4636 (2001).
    [6] N. S. Wingreen, A. P. Jauho, Y. Meir, Time-dependent transport through a mesoscopic structure [J], Phys. Rev. B, 48, 8487 (1993).
    [7] L. P. Kouwenhoven, S. Jauhar, K. McCormick, D. Dixon, and P. L. McEuen, Photon-assisted tunneling through a quantum dot [J], Phys. Rev. B, 50 2019 (1994).
    [8] A. P. Jauho, N. S. Wingreen, Y. Meir, Time-dependent transport in interactiing and noninteracting resonant-tunneling systems [J], Phys. Rev. B, 50 5528 (1994).
    [9] T. H. Stoof, and Y. V. Nazarov, Time-dependent resonant tunneling via two discrete states [J], Phys. Rev. B, 53, 1050 (1996).
    [10] C. A. Stafford, and N. S. Wingreen, Resonant Photon-Assisted Tunneling through a Double Quantum Dot:An Electron Pump from Spatial Rabi Oscillations [J], Phys. Rev. Lett., 76, 1916 (1996).
    [11] Q. F. Sun, and T.H. Lin, Influence of microwave fields on the electron tunneling through a quantum dot [J], Phys. Rev. B, 56, 3591 (1997).
    [12] M. H. Pedersen, and M. Büttiker, Scattering theory of photon-assisted electron transport [J], Phys. Rev. B, 58, 12993 (1998).
    [13] Y. Zhu, J. Maciejko, T. Ji, H. Guo, and J. Wang, Time-dependent quantum transport: Direct analysis in the time domain [J], Phys. Rev. B, 71, 075317 (2005).
    [14] J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory [J], Phys. Rev. B, 74, 085324 (2006).
    [15] J. G?res, D. Goldhaber-Gordon, S. Heemeyer, and M. A. Kastner, Fano resonances in electronic transport through a single-electron transistor [J], Phys. Rev. B, 62, 2188 (2000).
    [16] K. Kang, S. Y. Cho, J. J. Kim, and S. C. Shin, Anti-Kondo resonance in transport through a quantum wire with a side-coupled quantum dot [J], Phys. Rev. B, 63, 113304 (2001).
    [17] I. G. Zacharia, D. Goldhaber-Gordon, G. Granger, M. A. Kastner, and Y. B. Khavin, Temperature dependence of Fano line shapes in a weakly coupled single-electron transistor [J], Phys. Rev. B, 64, 155311 (2001).
    [18] B. R. Buíka, and Piotr Stefański, Fano and Kondo Resonance in Electronic Current through Nanodevices [J], Phys. Rev. Lett., 86, 5128 (2001).
    [19] Z. Y. Zeng, F. Claro, and A. Pérez, Fano resonances and Aharonov-Bohm effects in transport through a square quantum dot molecule [J], Phys. Rev. B, 65, 085308 (2002).
    [20] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Tuning of the Fano Effect through a Quantum Dot in an Aharonov-Bohm Interferometer [J], Phys. Rev. Lett., 88, 256806 (2002).
    [21] P. A. Orellana, F. Domínguez-Adame, I. Gómez, and M. L. L. deGuevara, Transport through a quantum wire with a side quantum-dot array [J], Phys. Rev. B, 67, 085321 (2003).
    [22] R. Franco, M. S. Figueira, and E. V. Anda, Fano resonance in electronic transport through a quantum wire with a side-coupled quantum dot: X-boson treatment [J], Phys. Rev. B, 67, 155301 (2003).
    [23] K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, Fano resonance in a quantum wire with a side-coupled quantum dot [J], Phys. Rev. B, 70, 035319 (2004).
    [24] M. Yang, and S. S. Li, ac gate-induced Fano resonance and peak splitting of conductance in a quantum dot [J], Phys. Rev. B, 70, 045318 (2004).
    [25] H. G. Luo, T. Xiang, X. Q.Wang, Z. B. Su, and L. Yu, Fano Resonance for Anderson Impurity Systems [J], Phys. Rev. Lett., 92, 256602 (2004).
    [26] A. C. Johnson, C.M. Marcus, M. P. Hanson, and A.C. Gossard, Coulomb-Modified Fano Resonance in a One-Lead Quantum Dot [J], Phys. Rev. Lett., 93, 106803 (2004).
    [27] A. Fuhrer, P. Brusheim, T. Ihn, M. Sigrist, K. Ensslin, W. Wegscheider, and M. Bichler, Fano effect in a quantum-ring-quantum-dot system with tunable coupling [J], Phys. Rev. B, 73, 205326 (2006).
    [28] M. Lee and C. Bruder, Spin filter using a semiconductor quantum ring side coupled to a quantum wire [J], Phys. Rev. B, 73, 085315 (2006).
    [29] K. Osawa, and S. Kurihara, Fano effect in a Josephson junction with a quantum dot [J], Phys. Rev. B, 78, 224508 (2008)
    [1] A. L. Yeyati, J. C. Cuevas, A. López-Dávalos, and A. Martín-Rodero, Resonant tunneling through a small quantum dot coupled to superconducting leads [J], Phys. Rev. B, 55, R6137 (1997).
    [2] Q. F. Sun, J. Wang, and T. H. Lin, Resonant Andreev reflection in a normal-metal- quantum-dot-superconductor system [J], Phys. Rev. B, 59, 3831 (1999).
    [3] Q. F. Sun, J. Wang, T. H. Lin, Control of the supercurrent in a mesoscopic four-terminal Josephson junction [J], Phys. Rev. B, 62, 648 (2000).
    [4] Q. F. Sun, H. Guo, and T.H. Lin, Excess Kondo Resonance in a Quantum Dot Device with Normal and Superconducting Leads: The Physics of Andreev-Normal Co-tunneling [J], Phys. Rev. Lett., 87, 176601 (2001).
    [5] J. Wang, and B. G. Wang, Quantization of adiabatic pumped charge in the presence of superconducting lead [J], Phys. Rev. B, 65, 153311 (2002).
    [6] R. M. Potok, J. A. Folk, C. M. Marcus, and V. Umansky, Detecting Spin-Polarized Currents in Ballistic Nanostructures [J], Phys. Rev. Lett., 89, 266602 (2002).
    [7] B. G. Wang, and J. Wang, Statistical correlation for a three-terminal normal-metal- superconductor-superconductor hybrid system [J], Phys. Rev. B, 67, 014509 (2003).
    [8] Z. Y. Zeng, B. W. Li, and F. Claro, Electronic transport in hybrid mesoscopic structures: A nonequilibrium Green function approach [J], Phys. Rev. B, 68, 115319 (2003).
    [9] Z. Y. Zeng, B. W. Li, and F. Claro, Electron transport in interacting hybrid mesoscopic systems [J], Eur. Phys. J. B, 32, 401 (2003).
    [10] F. Giazotto, M. Governale, U. Zülicke, and F. Beltram, Andreev reflection and cyclotron motion at superconductor-normal-metal interfaces [J], Phys. Rev. B, 72, 054518 (2005).
    [11] P. Chalsani, S. K. Upadhyay, O. Ozatay, and R. A. Buhrman, Andreev reflection measurements of spin polarization [J], Phys. Rev. B, 75, 094417 (2007).
    [12] C. Buizert, A. Oiwa, K. Shibata, K. Hirakawa, and S. Tarucha, Kondo Universal Scaling for a Quantum Dot Coupled to Superconducting Leads [J], Phys. Rev. Lett., 99, 136806 (2007).
    [13] Y. Zhu, and T.H. Lin, Writing spin in a quantum dot with ferromagnetic and superconducting electrodes [J], Phys. Rev. B, 69, 121302(R) (2004).
    [14] Y. Zhu, Q. F. Sun, and T.H. Lin, Andreev reflection through a quantum dot coupled with two ferromagnets and a superconductor [J], Phys. Rev. B, 65, 024516 (2001).
    [15] J.F. Feng and S.J. Xiong, Tunneling resonances and Andreev reflection in transport of electrons through a ferromagnetic metal/quantum dot/superconductor system [J], Phys. Rev. B, 67, 045316 (2003).
    [16] X. F. Cao, Y. M. Shi, X. L. Song, and S. P. Zhou, Spin-dependent Andreev reflection tunneling through a quantum dot with intradot spin-flip scattering [J], Phys. Rev. B, 70, 235341 (2004).
    [17] Y. M. Shi, S. P. Zhou, X. F. Cao, H. Huang and H. Chen, Spin-polarized Andreev reflectiontunneling through a precessing magnetic spin [J], Europhys. Lett., 73, 941 (2006).
    [18] W. Rudziński, and J. Barnas, Tunnel magnetoresistance in ferromagnetic junctions: Tunneling through a single discrete level [J], Phys. Rev. B, 64, 085318 (2001).
    [19] P. Zhang, Q. K. Xue, Y. P. Wang, and X. C. Xie, Spin-Dependent Transport through an Interacting Quantum Dot [J], Phys. Rev. Lett., 89, 286803 (2002).
    [20] R. López and D. Sánchez, Nonequilibrium Spintronic Transport through an Artificial Kondo Impurity: Conductance, Magnetoresistance and Shot Noise [J], Phys. Rev. Lett., 90, 116602 (2003).
    [21] Q. F. Sun, J. Wang and H. Guo, Quantum transport theory for nanostructures with Rashba spin-orbital interaction [J], Phys. Rev. B, 71, 165310 (2005).
    [22] H. T. Yang, and C. S. Liu, Description of spin transport and precession in spin-orbit coupling systems and general equation of continuity [J], Phys. Rev. B, 75, 085314 (2007).
    [23] B. Béri, J. H. Bardarson, and C. W. J. eenakker, Effect of spin-orbit coupling on the excitation spectrum of Andreev billiards [J], Phys. Rev. B, 75, 165307 (2007).
    [24] T. F. Fang, W. Zuo, and H. G. Luo, Kondo Effect in Carbon Nanotube Quantum Dots with Spin-Orbit Coupling [J], Phys. Rev. Lett., 101, 246805 (2008).
    [25] F. M. Souza, A. P. Jauho, and J. C. Egues, Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green’s functions [J], Phys. Rev. B, 78, 155303 (2008).
    [26] T. K. Ng, ac Response in the Nonequilibrium Anderson Impurity Model [J], Phys. Rev. Lett., 76, 487 (1996).
    [27] Q. F. Sun, and T. H. Lin, Influence of microwave fields on the electron tunneling through a quantum dot [J], Phys. Rev. B, 56, 3591(1997).
    [28] H. K. Zhao, and G. v. Gehlen, Mesoscopic transport through a normal-metal-quantum-dot- superconductor system with ac responses [J], Phys. Rev. B, 58, 13660 (1998).
    [29] Q.F. Sun, J. Wang, T. H. Lin, Photon-assisted Andreev tunneling through a mesoscopic hybrid system [J], Phys. Rev. B, 59 13126 (1999).
    [30] H. K. Zhao, and J. Wang, Zeeman-split mesoscopic transport through a normal-metal- quantum-dot-superconductor system with ac response [J], Phys. Rev. B, 64, 094505 (2001).
    [31] C. K. Lui, B. G. Wang, and J. Wang, ac transport through a resonant level between ferromagnetic electrodes [J], Phys. Rev. B, 70, 205316 (2004).
    [32] Y. X. Xing, Q. F. Sun, and J. Wang, Response time of a normal-metal/superconductor hybrid system under a step-like pulse bias [J], Phys. Rev. B, 75, 125308 (2007).
    [33] T. K. T. Nguyen, T. Jonckheere, A. Crépieux, A. V. Nguyen, and T. Martin, Photoassisted Andreev reflection as a probe of quantum noise [J], Phys. Rev. B, 76, 035421 (2007).
    [34] G. C. Xing, W. Ji, Y. G. Zheng, and J. Y. Ying, Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy [J], Appl. Phys. Lett., 93, 241114 (2008).
    [1] D. Shachal, and Y. Manassen, Mechanism of electron-spin resonance studied with use of scanning tunneling microscopy [J], Phys. Rev. B, 46, 4795 (1992).
    [2] Y. Manassen, I. Mukhopadhyay, and N. Ramesh Rao, Electron-spin-resonance STM on iron atoms in silicon [J], Phys. Rev. B, 61, 16223 (2000).
    [3] A.V. Balatsky, and I. Martin, Theory of Single Spin Detection with STM [J], Quantum Inf. Process., 1, 355 (2002).
    [4] J. X. Zhu, and A.V. Balatsky, Quantum Electronic Transport through a Precessing Spin [J], Phys. Rev. Lett., 89, 286802 (2002).
    [5] X. F. Cao, Y. M. Shi, X. L. Song, and H. Chen, Andreev reflection resonant tunneling through a precessing spin [J], Phys. Lett. A, 327, 337 (2004).
    [6] Y. M. Shi, S. P. Zhou, X. F. Cao, H. Huang, and H. Chen, Spin-polarized Andreev reflection tunneling through a precessing magnetic spin [J], Europhys. Lett., 73, 941 (2006).
    [7] S. Hershfield, J. H. Davies, and J. W. Wilkins, Probing the Kondo Resonance by Resonant Tunneling Through an Anderson Impurity [J], Phys. Rev. Lett., 67, 3720 (1991).
    [8] J. Konig, T. Pohjola, H. Schoeller, and G. Schon, Quantum Fluctuations and the Kondo Effect in small Quantum Dots [J], Physica E, 6, 371 (2000).
    [9] J. Nygard, D. H. Cobden, and P. E. Lindelof, Kondo physics in carbon nanotubes [J], Nature, 408, 342 (2000).
    [10] M. Pustilnik, and L. I. Glazman, Kondo Effect in Real Quantum Dots [J], Phys. Rev. Lett., 87, 216601 (2001).
    [11] C. Buizert, A. Oiwa, K. Shibata, K. Hirakawa, and S. Tarucha, Kondo Universal Scaling for a Quantum Dot Coupled to Superconducting Leads [J], Phys. Rev. Lett., 99, 136806 (2007).
    [12] Q. F. Sun, and H. Guo, Double quantum dots: Kondo resonance induced by an interdot interaction [J], Phys. Rev. B, 66, 155308 (2002).
    [13] V. Medenand, and F. Marquardt, Correlation-Induced Resonances in Transport through Coupled Quantum Dots [J], Phys. Rev. Lett., 96, 146801 (2006).
    [14] O. N. Jouravlev, and Y. V. Nazarov, Electron Transport in a Double Quantum Dot Governed by a Nuclear Magnetic Field [J], Phys. Rev. Lett., 96, 176804 (2006).
    [15] D. Stepanenko, and G. Burkard, Quantum gates between capacitively coupled double quantum dot two-spin qubits [J], Phys. Rev. B, 75, 085324 (2007).
    [16] J. E. Hirsch, Spin Hall Effect [J], Phys. Rev. Lett., 83, 1834 (1999).
    [17] S. Q. Shen, M. Ma, X. C Xie, and F. C. Zhang, Resonant Spin Hall Conductance in Two-Dimensional Electron Systems with a Rashba Interaction in a Perpendicular Magnetic Field [J], Phys. Rev. Lett., 92, 256603 (2004).
    [18] O. Bleibaumand, and S. hsmuth, Spin Hall effect in semiconductor heterostructures with cubic Rashba spin-orbit interaction [J], Phys. Rev. B, 74, 195330 (2006).
    [19] W. K. Tse, and S. D. Sarma, Intrinsic spin Hall effect in the presence of extrinsic spin-orbitscattering [J], Phys. Rev. B, 74, 245309 (2006).
    [20] Y. X. Xing, Q. F. Sun, and J. Wang, Symmetry and transport property of spin current induced Spin-Hall effect [J], Phys. Rev. B, 75, 075324 (2007).
    [21] P. Brusheimand, and H. Q. Xu, Spin transport and spin Hall effect in an electron waveguide in the presence of an in-plane magnetic field and spin-orbit interaction [J], Phys. Rev. B, 75, 195333 (2007).
    [22] Z. G. Wang, and P. Zhang, Conversed spin Hall conductance in a two-dimensional electron gas in a perpendicular magnetic field [J], Phys. Rev. B, 75, 233306 (2007).
    [23] S. Bellucci, and P. Onorato, Spin Hall effect and spin-orbit coupling in ballistic nanojunctions [J], Phys. Rev. B, 75, 235326 (2007).
    [24] P. Q. Jin, and Y. Q. Li, Magnification of the spin Hall effect in a bilayer electron gas [J], Phys. Rev. B, 76, 235311 (2007).
    [25] T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Yamada, and J. Inoue, Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals [J], Phys. Rev. B, 77, 165117 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700