用户名: 密码: 验证码:
Co与ZnO半导体等复合膜磁电阻效应及自旋注入的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从在Fe/Cr金属多层膜中发现巨磁电阻效应以来,人们在磁性金属/非磁性材料的多层膜、颗粒膜和磁性隧道结中都相继发现了磁电阻效应,而且其在磁传感器、计算机读头及磁随机存储器等自旋电子器件上得以广泛应用。相对于金属/绝缘体薄膜而言,以半导体为势垒来研究磁电阻效应的报道却很少,半导体材料具有较低的势垒高度,能显著降低材料的电阻率,同时通过增加半导体的厚度,可以有效减少针孔效应的发生。尽管已有文献报道了磁性金属/半导体薄膜的室温磁电阻效应,但如何进一步提高磁电阻的数值和磁电阻效应的产生机制等有待进一步探究。
     本论文采用磁控溅射超薄分层交替沉积的方法,室温下制备了Co/ZnO等薄膜,对薄膜的结构、磁性、磁电阻效应及金属/半导体界面的自旋电子注入进行了研究。①比较了Co/ZnO与Co/Al_2O_3、Co/C和Co/Cu薄膜的结构和磁电阻效应,探明Co/ZnO薄膜磁电阻效应的来源;②通过在ZnO中加入少量Al来提高薄膜的磁性和磁电阻效应;③在Co/ZnO薄膜中发现了磁电阻效应对其电阻的依赖关系。主要研究内容如下:
     (1)采用固定Co层厚度(0.6 nm),改变ZnO层厚度(0.4-3.0 nm)的方法制备了Co/ZnO薄膜,发现薄膜形成了Co纳米颗粒包裹在ZnO半导体中的颗粒膜结构,薄膜中有少量Co~(2+)取代了ZnO中的Zn~(2+)离子;同时薄膜的室温和低温负磁电阻值分别达到11.9%和26%,薄膜电阻与温度间的lnρ与T~(-1/2)线性关系说明薄膜的磁电阻效应来源于磁性纳米颗粒间电子自旋相关的隧穿输运机制;而高温时lnρ与T~(-1/2)发生微小的非线性偏离说明温度的升高使自旋无关的高阶跳跃输运逐渐增多;薄膜低温时磁电阻效应的加强源于自旋相关的高阶隧穿。
     (2)通过对Co/ZnO、Co/Al_2O_3、Co/C和Co/Cu薄膜结构和磁电阻效应的对比研究,发现四种不同基质材料的薄膜均形成了Co颗粒包裹在非磁性基质中的颗粒膜,随基质材料与金属Co表面能差的增加,薄膜中Co颗粒尺寸逐渐减小;金属Co和半金属C之间较大的电导失配使Co/C薄膜没有室温磁电阻效应;在Co/ZnO薄膜中金属Co颗粒使部分ZnO中的电子极化,较大的室温磁电阻效应可能与Co颗粒与ZnO基质界面处部分极化的电子有关。
     (3)采用磁控溅射方法在ZnO中掺入金属Al制备了Co/ZnAlO (Al: 2at.%)薄膜,发现Co/ZnO与Co/ZnAlO薄膜均形成了磁性纳米颗粒包裹在半导体中的颗粒膜,薄膜的磁性来源于金属Co颗粒以及Co颗粒与半导体基质界面处的梯度磁性半导体;在Co/ZnAlO薄膜中获得12.3%的室温负磁电阻值,这是目前为止在磁性金属/半导体薄膜中得到的最大室温负磁电阻值;Al的加入使Co/ZnAlO薄膜的磁性和室温磁电阻效应同时提高,磁性的增加是由于Al的加入增加了薄膜中载流子浓度,从而增强了磁性半导体的磁性;磁性半导体磁性的增加使其对传导电子的自旋过滤效应增强,提高了Co/ZnAlO薄膜的室温磁电阻效应和自旋电子注入效率。
     (4)通过改变溅射气压和ZnO厚度等一系列实验条件制备了Co/ZnO薄膜,通过大量实验数据系统分析发现Co/ZnO薄膜室温磁电阻效应对其电阻具有明显的依赖性,当1300<R<6000时,薄膜具有8%以上的较大室温负磁电阻值,电阻值太小或过大时磁电阻效应都会减弱;薄膜的结构、磁性及电输运性质等结果表明薄膜磁电阻效应与电阻的依赖关系源于薄膜中电子的输运机制,当薄膜中电子输运以隧穿电导为主时才会表现出较大的室温磁电阻效应,但电阻过大又会使电子隧穿几率减小,降低了磁电阻值;电阻过小时薄膜中磁性颗粒间较大的耦合作用使其磁电阻效应减弱。
     总之,我们在Co/ZnO和Co/ZnAlO薄膜中获得了较大的室温磁电阻效应和较高的室温自旋电子注入效率,阐明了这种磁电阻来源于磁性颗粒间的隧穿输运机制,发现较大室温磁电阻效应与磁性金属颗粒和半导体界面处磁性半导体的自旋过滤效应有关,这为研究金属/半导体界面室温自旋电子注入提供了新的途径,同时其有望在自旋电子学器件中得以广泛应用。
Since the discovery of giant magnetoresistance effect in Fe/Crmultilayers, the magnetoresistance (MR) in magnetic multilayers,granular films and magnetic tunnel junctions composed of magneticmetals and non-magnetic materials have been studied extensively forpotential application in spintronic devices, such as magnetic sensors,hard disk reading heads and magnetic random access memories.There is little research about the MR of semiconductor barrier.Semiconductor can provide a much lower barrier height compared toinsulator with a decrease of resistivity. Moreover, the increasedthickness of semiconductor reduces the probability of pinholes.According to the reports in the literature, room temperature MR hasbeen observed in magnetic metal/semiconductor films. However,there is ample room for further investigation of exploring the origin ofthe MR in magnetic metal/semiconductor films and improving the MRratio.
     In this paper, the films composed of Co and ZnO semiconductoretc. were deposited on glass substrates by sequential magnetronsputtering at room temperature. The structure, magnetic properties,magnetoresistance and spin injection at the interface between metaland semiconductor were studied.①the magnetization and roomtemperature MR in Co/ZnO films was enhanced by Al doping;②theorigin of the MR in Co/ZnO films was studied compared to that inCo/Al_2O_3, Co/C, and Co/Cu films;③the room temperature MR ofCo/ZnO films depends on the resistance of Co/ZnO films. The resultsare summarized as follows:
     (1) Co/ZnO films were deposited by sequential deposition ofultrathin Co layer fixed 0.6 nm and ZnO layer varied from 0.4 to 3.0 nm.The granular films consist of Co particles dispersed in ZnO matrix anda few of +2 valence cobalt ions substitute for Zn2+ions in ZnO lattices.The large negative MR of 11.9% and 26% at room temperature and lowtemperature, respectively, are observed in the Co/ZnO film. Theobserved linear relation between lnρand T~(.1/2)indicates aninter-particle tunneling conduction mechanism in the films. At highertemperatures, lnρstarts to slightly deviate from linear relation,suggesting the presence of spin-independent high-order hopping athigher temperatures due to defects within the ZnO matrix. Theenhanced MR at low temperature is ascribed to spin-dependent high-order tunneling.
     (2) The structure and MR effect for Co/ZnO, Co/Al_2O_3, Co/C andCo/Cu granular films were studied comparatively. Four types of filmsexhibit similarities in structure, comprising Co particles embedded innonmagnetic matrix. The average size of Co particles decreases withan increase of the difference of surface energy between metallic Coand the nonmagnetic matrix, which are smaller than that of cobalt.The absence of MR effect in Co/C films at room temperature isprobably due to the conductivity mismatch between the metallic Coand the semimetal carbon. The large room temperature MR in Co/ZnOgranular films is related to the partially polarized electrons at theinterface between Co particles and ZnO matrix.
     (3) The Co/ZnAlO films were prepared using sequential magnetronsputtering at room temperature by Al doped ZnO (Al: 2at.%). The filmshave a similar structure consisting of Co nanoparticles dispersed insemiconductor matrix. The magnetization of the films comes frommetallic Co particles and the graded magnetic semiconductor at theinterface between Co particles and semiconductor matrix. The MR ofCo/ZnAlO granular film reaches -12.3% at room temperature, which isthe largest value in magnetic metal/semiconductor films by far. Boththe magnetization and the MR effect are higher for films containingCo/ZnAlO than for Co/ZnO. The enhanced magnetization of the films with Al doping is probably due to the enhanced carrier concentrationenhancing the magnetization of the graded magnetic semiconductor.The larger MR in the film with ZnAlO occurs because of the larger spinpolarization of the semiconductor which acts as the spin filter, whichis very promising to improve the spin injection efficiency intosemiconductors.
     (4) Many influential factors of room temperature MR in Co/ZnOfilms was studied by a lot of experimental data by changing theconditions of the sputtering pressure and ZnO normal thickness. Thestudy indicates that the room temperature MR is related to theresistance of Co/ZnO films instead of the sputtering pressure and ZnOthickness. The large room temperature MR (more than 8%) of thefilms is observed on the scale of 1300Ω     In conclusion, large room temperature negative MR and spin injection efficiency were observed in Co/ZnO and Co/ZnAlO films,which is caused by spin-dependent tunneling throughsemiconducting barriers. We found that the enhanced MR comesfrom the spin filtering of the magnetic semiconductor at theinterface between the metallic particles and semiconductor matrix.This provides a new way for the effective electron spin injection atroom temperature between the metal and semiconductor, which isexpected for potential application in spintronics devices.
引文
[1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet,A. Friederich, and J. Chazelas. Giant magnetoresistance of (001)Fe/(001)Cr magneticsuperlattices. Phys. Rev. Lett. 1988, 61:2472-2475.
    [2] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinm. Enhanced magnetoresistance inlayered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989,39:4828-4830.
    [3] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L.Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintronics: A Spin-Based ElectronicsVision for the Future. Science 2001, 294:1488-1495.
    [4] D. Thompson, L. Romankiw, and A. Mayadas. Thin Film Magnetoresistors in Memory,Storage, and Related Applications. IEEE Trans. Magn. 1975, 11:1039-1050.
    [5] W. Thomson. Effects of magnetization on the electric conductivity of nickel and of iron.Proc. Roy. Soc. 1857, 8:546-550.
    [6] R. Schad, C. D. Potter, P. Beli n, G. Verdanck, V. V. Moshchalkov, and Y. Bruynseraede.Appl. Phys. Lett. 1994, 64:3500-3502.
    [7] N. F. Mott. The electrical conductivity of transition metals. Proc. Roy. Soc. A 1936,153:699-717.
    [8] A. Fert and I. A. Campbell. Two-current conduction in nickel. Phys. Rev. Lett. 1968,21:1190-1192.
    [9] A. Fert and I. A. Campbell. Electrical resistivity of ferromagnetic nickel and iron basedalloys. J. Phys. F: Met. Phys. 1976, 6:849.
    [10] S. S. P. Parkin, R. Bhadra, and K. P. Roche. Oscillatory magnetic exchange couplingthrough thin copper layers. Phys. Rev. Lett. 1991, 66:2152-2155.
    [11] W. P. Pratt Jr, S.-F. Lee, J. M. Slaughter, R. Loloee, P. A. Schroeder, and J. Bass.Perpendicular giant magnetoresistances of Ag/Co multilayers. Phys. Rev. Lett. 1991,66:3060-3063.
    [12] A. Chaiken, G. A Prinz, and J. J. Krebs. Magnetotransport study of Fe-Cr-Fe sandwichesgrown on ZnSe (100). J. Appl. Phys. 1990, 67:4892-4894.
    [13] M. T. Johnson, S. T. Purcell, N. W. E. McGee, R. Coehoorn, J. aan de Stegge, and W.Hoving. Structural dependence of the oscillatory exchange interaction across Cu layers. Phys.Rev. Lett. 1992, 68:2688-2691.
    [14] E. E. Fullerton, D. M. Kelly, J. Guimpel, I. K. Schuller, and Y. Bruynseraede.Roughness and giant magnetoresistance in Fe/Cr superlattices. Phys. Rev. Lett. 1992,68:859-862.
    [15] F. Tsui, B. Chen, D. Barlett, R. Clarke, and C. Uher. Scaling behavior of giantmagnetotransport effects in Co/Cu superlattices. Phys. Rev. Lett. 1994, 72:740-743.
    [16] S. S. P. Parkin, Z. G. Li, and D. J. Smith. Giant magnetoresistance in antiferro-magnetic Co/Cu multilayers. Appl. Phys. Lett. 1991, 58:2710-2712.
    [17] S. S. P. Parkin, N. More, and K. P. Roche. Oscillations in Exchange Coupling andMagnetoresistance in Metallic Superlattice Structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev.Lett. 1990, 64:2304-2307.
    [18] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri.Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B 1991, 43:1297-1300.
    [19] T. Iwase, Y. Sakuraba, S. Bosu, K. Saito, S. Mitani, and K. Takanashi. Large interfacespin-asymmetry and magnetoresistance in fully epitaxial Co2MnSi/Ag/Co2MnSicurrent-perpendicular-to-plane magnetoresistive devices. Appl. Phys. Exp. 2009, 2:063003.
    [20] A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T.Parker, A. Hutten, and G. Thomas. Giant magnetoresistance in heterogeneous Cu-Coalloys. Phys. Rev. Lett. 1992, 68:3745-3748.
    [21] J. Q. Xiao, J. S. Jiang, and C. L. Chien. Giant magnetoresistance in nonmultilayermagnetic systems. Phys. Rev. Lett. 1992, 68:3749-3752.
    [22] S. Honda, M. Nawate, M. Tanaka, and T. Okada. Giant magnetoresistance andsuperparamagnetic grains in Co–Ag granular films. J. Appl. Phys. 1997, 82:764-771.
    [23] M. Julliere. Tunneling between ferromagnetic films. Phys. Lett. A 1975, 54:225-226.
    [24] T. Miyazaki and N. Tezuka. Spin polarized tunneling in ferromagnet/insulator/ferr-magnet junctions. J. Magn. Magn. Mater. 1995, 151:403-410.
    [25] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey. Large magnetoresistance atroom temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995,74:3273-3276.
    [26] H. Fujimori, S. Mitani, and S. Ohnuma. Tunnel-type GMR in metal-nonmetal granularalloy thin films. Mater. Sci. Eng. B 1995, 31:219-223.
    [27] A. Milner, A. Gerber, B. Groisman, M. Karpovsky, and A. Gladkikh. Spin dependentelectronic transport in granular ferromagnets. Phys. Rev. Lett. 1996, 76:475-478.
    [ 28 ] H. X. Wei, Q. H. Qin, M. Ma, R. Sharif, and X. F. Han. 80% tunnelingmagnetoresistance at room temperature for thin Al–O barrier magnetic tunnel junctionwith CoFeB as free and reference layers. J. Appl. Phys. 2007, 101:09B501.
    [29] M. Bowen, M. Bibes, A. Barthélémy, J.-P. Contour, A. Anane, Y. Lema tre, and A. Fert.Nearly total spin polarization in La2/3Sr1/3MnO3from tunneling experiments. Appl. Phys.Lett. 2003, 82:233-235.
    [30] J. Wang, P. P. Freitas, E. Snoeck, P. Wei, and J. C. Soares. Spin-dependent tunneljunctions with ZrOxbarriers. Appl. Phys. Lett. 2001, 79:4387-4389.
    [31] M. Sharma, J. H. Nickel, T. C. Anthony, and S. X. Wang. Spin-dependent tunnelingjunctions with AlN and AlON barriers. Appl. Phys. Lett. 2000, 77:2219-2221.
    [ 32 ] A. Gupta, X. W. Li, and G. Xiao. Inverse magnetoresistance in chromium-dioxide-based magnetic tunnel junctions. Appl. Phys. Lett. 2001, 78:1894-1896.
    [33] J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, F. Montaigne, and P. Seneor.Role of Metal-Oxide Interface in Determining the Spin Polarization of Magnetic TunnelJunctions. Science 1999, 286:507-509.
    [34] J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, R. Lyonnet, F. Montaigne, P.Seneor, and A. Vaurès. Inverse Tunnel Magnetoresistance in CoySrTiO3yLa0.7Sr0.3MnO3:New Ideas on Spin-Polarized Tunneling. Phys. Rev. Lett. 1999, 82:4288-4291.
    [35] M. Bibes, M. Bowen, A. Barthélémy, A. Anane, K. Bouzehouane, C. Carrétéro, E.Jacquet, J.-P. Contour, and O. Durand. Growth and characterization of TiO2 as a barrier forspin-polarized tunneling. Appl. Phys. Lett. 2003, 82:3269-3271.
    [36] A. Fert, A. Barthélémy, J. B. Youssef, J. P. Contour, V. Cros, J. M. de Teresa, A. Hamzic,J. M. George, G. Faini, J. Grollier, H. Jaffrès, H. Le Gall, F. Montaigne, F. Pailloux, and F.Petroff. Review of recent results on spin polarized tunneling and magnetic switching by spininjection. Mater. Sci. Eng. B 2001, 84:1-9.
    [37] W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren. Spin-dependenttunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 2001, 63:054416.
    [38] M. Bowen, V. Cros, F. Petroff, A. Fert, C. Martínez Boubeta, J. L. Costa-Kr mer, J. V.Anguita, A. Cebollada, F. Briones, J. M. de Teresa, L. Morellón, M. R. Ibarra, F. Güell, F.Peiró, and A. Cornet. Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunneljunctions on GaAs(001). Appl. Phys. Lett. 2001, 79:1655-1657.
    [39] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H.Yang. Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnelbarriers. Nat. Mater. 2004, 3:862-867.
    [ 40 ] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando. Giant roomtemperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat.Mater. 2004, 3:868-871.
    [41] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda,F. Matsukura, and H. Ohno. Tunnel magnetoresistance of 604% at 300 K by suppressionof Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature.Appl. Phys. Lett. 2008, 93:082508.
    [42] S. Honda, T. Okada, M. Nawate, and M. Tokumoto. Tunneling giant magnetoresistancein heterogeneous Fe-SiO2granular films. Phys. Rev. B 1997, 56:14566-14573.
    [43] S. Honda, T. Okada, and M. Nawate. Tunneling giant magnetoresistance in Fe-SiO2multilayered and alloyed films. J. Magn. Magn. Mater. 1997, 165:153-156.
    [44] N. Kobayashi, S. Ohnuma, T. Masumoto, and H. Fujimori. (Fe–Co)–(Mg-fluoride)insulating nanogranular system with enhanced tunnel-type giant magnetoresistance. J. Appl.Phys. 2001, 90:4159-4162.
    [45] S. Ohnuma, H. Fujimori, S. Furukawa, S. Mitani, and T. Masumoto. Co-(N, O)-basedgranular thin films and their soft magnetic properties. J. Alloy. Compd. 1995, 222:16-172.
    [46] H. Fujimori, S. Ohnuma, N. Kobayashi, and T. Masumoto. Spintronics in metal–insulatornanogranular magnetic thin films. J. Magn. Magn. Mater. 2006, 304:32-35.
    [47] W. Yang, Z. S. Jiang, Y. W. Du, and W. N. Wang. Magnetoresistance of Fe-SiO2granular films. Solid State Commun. 1997, 104:479-484.
    [48] P. LeClair, J. T. Kohlhepp, H. J. M. Swagten, and W. J. M. de Jonge. Interfacial Densityof States in Magnetic Tunnel Junctions. Phys. Rev. Lett. 2001, 86:1066-1069.
    [49] S. Mitani, H. Fujimori, and S. Ohnuma. Temperature dependence of tunnel-type GMR ininsulating granular systems. J. Magn. Magn. Mater. 1998, 177-181:919 -920.
    [50] A. Gerber, A. Milner, G. Deutscher, M. Karpovsky, and A. Gladkikh. Insulatorsuperconductor transition in 3D granular Al-Ge films. Phys. Rev. Lett. 1997, 78:4277-4280.
    [51] T. Furubayashi and I. Nakatani. Giant magnetoresistance in granular Fe–MgF films. J.Appl. Phys. 1996, 79:6258-6260.
    [52] M. Li, J. Shi, Y. Nakamura, and R. Yu. Magnetoresistance of nanocrystalline Co-AlNfilms. Applied Physics A: Materials Science & Processing 2007, 89:807-812.
    [53] Y. E. Kalinin, A. V. Sitnikov, O. V. Stognei, I. V. Zolotukhin, and P. V. Neretin.Electrical properties and giant magnetoresistance of the CoFeB-SiO2amorphous granularcomposites. Materials Science & Engineering A 2001, 304:941-945.
    [54] J. Inoue and S. Maekawa. Theory of tunneling magnetoresistance in granular magneticfilms. Phys. Rev. B 1996, 53:R11927-R11929.
    [55] J. S. Helman and B. Abeles. Tunneling of Spin-Polarized Electrons and Magneto-resistance in Granular Ni Films. Phys. Rev. Lett. 1976, 37:1429-1432.
    [56] S. Mitani, S. Takahashi, K. Takanashi, K. Yakushiji, S. Maekawa, and H. Fujimori.Enhanced Magnetoresistance in Insulating Granular Systems: Evidence for Higher-OrderTunneling. Phys. Rev. Lett. 1998, 81:2799-2802.
    [57] S. Takahashi and S. Maekawa. Effect of Coulomb Blockade on Magnetoresistance inFerromagnetic Tunnel Junctions. Phys. Rev. Lett. 1998, 80:1758-1761.
    [58] T. Zhu and Y. J. Wang. Enhanced tunneling magnetoresistance of Fe-Al2O3granularfilms in the Coulomb blockade regime. Phys. Rev. B 1999, 60:11918-11921.
    [59] B. J. Hattink, M. García del Muro, Z. Konstantinovi , X. Batlle, A. Labarta, and M.Varela. Tunneling magnetoresistance in Co-ZrO2granular thin films. Phys. Rev. B 2006,73:045418.
    [60] S. Kaji, G. Oomi, S. Mitani, S. Takahashi, K. Takanashi, and S. Maekawa. Pressureenhanced tunnel magnetoresistance in Co-Al-O granular films. Phys. Rev. B 2003,68:054429.
    [61] P. Sheng, B. Abeles, and Y. Arie. Hopping Conductivity in Granular Metals. Phys. Rev.Lett. 1973, 31:44-47.
    [62] L. I. Glazman and K. A. Matveev. Inelastic tunneling across thin amorphous films. Zh.Eksp. Teor. Fiz. 1988, 94:332-343.
    [63] Y. Xu, D. Ephron, and M. R. Beasley. Directed inelastic hopping of electrons throughmetal-insulator-metal tunnel junctions. Phys. Rev. B 1995, 52:2843-2859.
    [64] J. Dai and J. Tang. Temperature dependence of the conductance and magnetoresistanceof CrO2powder compacts. Phys. Rev. B 2001, 63:064410.
    [65] N. F. Mott. Localized states in a pseudogap and near extremities of conduction andvalence bands. Phil. Mag. 1969, 19:835-852.
    [66] S. Sankar, B. Dieny, and A. E. Berkowitz. Spin-polarized tunneling in discontinuousCoFe/HfO2multilayers. J. Appl. Phys. 1997, 81:5512-5514.
    [67] B. Dieny, S. Sankar, M. R. McCartney, D. J. Smith, P. Bayle-Guillemaud, and A. E.Berkowitz. Spin-dependent tunneling in discontinuous metal/insulator multilayers. J. Magn.Magn. Mater. 1998, 185:283-292.
    [68] G. N. Kakazei, Yu. G. Pogorelov, A. M. L. Lopes, J. B. Sousa, S. Cardoso, P. P. Freitas,M. M. Pereira de Azevedo, and E. Snoeck. Tunnel magnetoresistance and magnetic orderingin ion-beam sputtered Co80Fe20/Al2O3discontinuous multilayers. J. Appl. Phys. 2001,90:4044-4048.
    [69] K. M. Bhutta and G. Reiss. Magnetoresistance and transport properties of CoFeB/MgOgranular systems. J. Appl. Phys. 2010, 107:113718.
    [70] A. García-García, A. Vovk, J. A. Pardo, P. trichovanec, P. A. Algarabel, C. Magén, J.M. De Teresa, L. Morellón, and M. R. Ibarra. Tunneling magnetoresistance in Fe/MgOgranular multilayers. J. Appl. Phys. 2010, 107: 033704.
    [71] A. García-García, A. Vovk, P. trichovanec, J. A. Pardo, C. Magén, P. A. Algarabel, J.M. De Teresa, L. Morellón, and M. R. Ibarra. Determination of the percolation threshold inFe/MgO magnetic granular multilayers. J. Phys.: Condens. Matter. 2010, 22:056003.
    [72] A. García-García, J. A. Pardo, P. trichovanec, C. Magén, A. Vovk, J. M. De Teresa, G.N. Kakazei, Y. G. Pogorelov, L. Morellón, P. A. Algarabel, and M. R. Ibarra. Tunnelingmagnetoresistance in epitaxial discontinuous Fe/MgO multilayers. Appl. Phys. Lett. 2011,98:122502.
    [73] A. García-García, A. Vovk, J. A. Pardo, P. trichovanec, C. Magén, E. Snoeck, P. A.Algarabel, J. M. De Teresa, L. Morellón, and M. R. Ibarra. Magnetic properties of Fe/MgOgranular multilayers prepared by pulsed laser deposition. J. Appl. Phys. 2009, 105:063909.
    [74] M. Guth, V. Da Costa, G. Schmerber, A. Dinia, and H. A. M. van den Berg. Tunnelmagnetoresistance in magnetic tunnel junctions with ZnS barrier. J. Appl. Phys. 2001,89:6748-6750.
    [75] F. Gustavsson, J.-M. George, V. H. Etgens, and M. Eddrief. Structural and transportproperties of epitaxial Fe/ZnSe/FeCo. Phys. Rev. B 2001, 64:184422-184427.
    [76] X. Jiang, A. F. Panchula, and S. S. P. Parkin. Magnetic tunnel junctions with ZnSebarriers. Appl. Phys. Lett. 2003, 83:5244-5246.
    [77] H. Saito, S. Yuasa, K. Ando, Y. Hamada, and Y. Suzuki. Spin-polarized tunneling inmetal-insulator-semiconductor Fe/ZnSe/Ga1 xMnxAs magnetic tunnel diodes. Appl. Phys.Lett. 2006, 89:232502.
    [ 78 ] H. Saito, A. Yamamoto, S. Yuasa, and K. Ando. Tunneling spectroscopy inFe/ZnSe/Ga1 xMnxAs magnetic tunnel diodes. J. Appl. Phys. 2008, 103:07D127.
    [79] C. Song, X. J. Liu, F. Zeng, and F. Pan. Fully epitaxial (Zn,Co)O/ZnO/(Zn,Co)Ojunction and its tunnel magnetoresistance. Appl. Phys. Lett. 2007, 91:042106.
    [80] C. Song, Y. C. Yang, X. W. Li, X. J. Liu, F. Zeng, and F. Pan. Anomalous voltagedependence of tunnel magnetoresistance in (Zn,Co)O-based junction with double barrier.Appl. Phys. Lett. 2007, 91:172109.
    [81] F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng. Ferromagnetism and possibleapplication in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R 2008,62:1-35.
    [82] S. Ramachandran, J. T. Prater, N. Sudhakar, D. Kumar, and J. Narayan. Magneticproperties of epitaxial oxide heterostructures. Solid State Commun. 2008, 145:18-22.
    [83] J. Varalda, G. A. P. Ribeiro, M. Eddrief, M. Marangolo, J. M. George, V. H. Etgens, D.H. Mosca, and A. J. A. de Oliveira. Magnetism and tunneling magnetoresistance of Fenanoparticles embedded in ZnSe epilayers. J. Phys. D: Appl. Phys. 2007, 40:2421–2424.
    [84] A. R. de Moraes, C. K. Saul, D. H. Mosca, J. Varalda, P. Schio, A. J. A. de Oliveira,M. A. Canesqui, V. Garcia, D. Demaille, M. Eddrief, V. H. Etgens, and J. M. George.Magnetoresistance in granular magnetic tunnel junctions with Fe nanoparticles embeddedin ZnSe semiconducting epilayer. J. Appl. Phys. 2008, 103:123714.
    [85] S. S. Yan, C. Ren, X. Wang, Y. Xin, Z. X. Zhou, L. M. Mei, M. J. Ren, Y. X. Chen, Y.H. Liu, and H. Garmestani. Ferromagnetism and magnetoresistance of Co–ZnOinhomogeneous magnetic semiconductors. Appl. Phys. Lett. 2004, 84: 2376-2378.
    [86] Y. F. Tian, S. Yan, Y. P. Zhang, P. F. Xing, G. L. Liu, Y. X. Chen, and L. M. Mei,Spin-dependent variable range hopping and magnetoresistance in Ti1 xCoxO2and Zn1 xCoxOmagnetic semiconductor films. J Phys: Condens. Matter. 2006, 18:10469-10480.
    [87] Y. F. Tian, S. S. Yan, Y. P. Zhang, H. Q. Song, G. Ji, G. L. Liu, Y. X. Chen, L. M. Mei,J. P. Liu, B. Altuncevahir, and V. Chakka. Transformation of electrical transport fromvariable range hopping to hard gap resistance in Zn1 xFexO1 vmagnetic semiconductor films.J. Appl. Phys. 2006, 100: 103901.
    [88]C. Y. Hsu, J. C. A. Huang, S. F. Chen, C. P. Liu, S. J. Sun, and Y. Tzeng. Tunablemagnetic order of Co nanoparticles and magnetotransport in Co/ZnO nanocomposites. Appl.Phys. Lett. 2008, 93:072506.
    [89] M. Tay, Y. Wu, G. C. Han, T. C. Chong, Y. K. Zheng, S. J. Wang, Y. Chen, and X. Pan.Ferromagnetism in inhomogeneous Zn1 xCoxO thin films. J. Appl. Phys. 2006, 100:063910.
    [90] G. Schmidt, D. Ferrand, and L. W. Molenkamp. Fundamental obstacle for electrical spininjection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 2000,62:R4790-R4793.
    [91] P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson. Observation of Spin Injectionat a Ferromagnet-Semiconductor Interface. Phys. Rev. Lett. 1999, 83:203.
    [92] C.-M. Hu, J. Nitta, A. Jensen, J. B. Hansen, and H. Takayanagi. Spin-polarized transportin a two-dimensional electron gas with interdigital-ferromagnetic contacts. Phys. Rev. B 2001,63:125333.
    [93] H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Sch nherr, and K. H. Ploog.Room-Temperature Spin Injection from Fe into GaAs. Phys. Rev. Lett. 2001, 87:016601.
    [94] A. Fert and H. Jaffrès. Conditions for efficient spin injection from a ferromagnetic metalinto a semiconductor. Phys. Rev. B 2001, 64:184420.
    [95] E. I. Rashba. Theory of electrical spin injection: Tunnel contacts as a solution of theconductivity mismatch problem. Phys. Rev. B 2000, 62:R16267-R16270.
    [96] J. D. Albrecht and D. L. Smith. Electron spin injection at a Schottky contact. Phys. Rev.B 2002, 66:113303.
    [97] E. Tereshchenko, D. Lamine, G. Lampel, Y. Lassailly, X. Li, D. Paget, and J. Peretti.Transport and magnetic properties of Fe/GaAs Schottky junctions for spin polarimetryapplications. J. Appl. Phys. 2011, 109:113708.
    [98] V. F. Motsnyi, J. De Boeck, J. Das, W. Van Roy, G. Borghs, E. Goovaerts, and V. I.Safarov. Electrical spin injection in a ferromagnet/tunnel barrier/semiconductorheterostructure. Appl. Phys. Lett. 2002, 81:265.
    [99] T. Manago and H. Akinaga. Spin-polarized light-emitting diode using metal/insulator/semiconductor structures. Appl. Phys. Lett. 2002, 81:694.
    [100] X. Jiang, R. Wang, R. M. Shelby, R. M. Macfarlane, S. R. Bank, J. S. Harris, and S. S. P.Parkin. Highly Spin-Polarized Room-Temperature Tunnel Injector for SemiconductorSpintronics using MgO(100). Phys. Rev. Lett. 2005, 94:056601.
    [101] O. M. J. van’t Erve, G. Kioseoglou, A. T. Hanbicki, C. H. Li1, B. T. Jonker, R. Mallory,M. Yasar, and A. Petrou. Comparison of Fe/Schottky and Fe/Al2O3tunnel barrier contacts forelectrical spin injection into GaAs. Appl. Phys. Lett. 2004, 84:4334.
    [102] H. Saito, J. C. Le Breton, V. Zayets, Y. Mineno, S. Yuasa, and K. Ando. Efficient spininjection into semiconductor from an Fe/GaOxtunnel injector. Appl. Phys. Lett. 2010, 96:012501.
    [103] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W.Molenkamp. Injection and detection of a spin-polarized current in a light-emitting diode.Nature 1999, 402:787-790.
    [104] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom.Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 1999,402:790-792.
    [105] B. T. Jonker, Y. D. Park, and B. R. Bennett. Robust electrical spin injection into asemiconductor heterostructure. Phys. Rev. B 2000, 62:8180.
    [106] D. K. Young, E. Johnston-Halperin, D. D. Awschalom, Y. Ohno and H. Ohno.Anisotropic electrical spin injection in ferromagnetic semiconductor heterostructures. Appl.Phys. Lett. 2002, 80:1598.
    [107] P. LeClair, J. K. Ha, H. J. M. Swagten, J. T. Kohlhepp, C. H. van de Vin, and W. J. M.de Jonge. Large magnetoresistance using hybrid spin filter devices. Appl. Phys. Lett. 2002,80:625
    [108] A. T. Filip, P. LeClair, C. J. P. Smits, J. T. Kohlhepp, H. J. M. Swagten, B. Koopmans,and W. J. M. de Jonge. Spin-injection device based on EuS magnetic tunnel barriers. Appl.Phys. Lett. 2002, 81:1815.
    [109] C. J. P. Smits, A. T. Filip, J. T. Kohlhepp, H. J. M. Swagten, B. Koopmans, and W. J.M. de Jonge. Magnetic and structural properties of EuS for magnetic tunnel junction barriers.J. Appl. Phys. 2004, 95:7405.
    [110] T. S. Santos and J. S. Moodera. Observation of spin filtering with a ferromagnetic EuOtunnel barrier. Phys. Rev. B 2004, 69:241203(R).
    [111] J. S. Moodera1, T. S. Santos1, and T. Nagahama1. The phenomena of spin-filtertunneling. J. Phys.: Condens. Matter. 2007, 19:165202.
    [112] J. S. Moodera, X. Hao, G. A. Gibson, and R. Meservey. Electron-Spin Polarization inTunnel Junctions in Applied Field with Ferromagnetic EuS Barriers. Phys. Rev. Lett. 1988,61:637-640.
    [113] X. Hao, J. S. Moodera, and R. Meservey. Spin-filter effect of ferromagnetic europiumsulfide tunnel barriers. Phys. Rev. B 1990, 42:8235-8243.
    [114] J. S. Moodera, R. Meservey, and X. Hao. Variation of the electron-spin polarization inEuSe tunnel junctions from zero to near 100% in a magnetic field. Phys. Rev. Lett. 1993,70:853-856.
    [115] E. Wada, K. Watanabe, Y. Shirahata, M. Itoh, M. Yamaguchi, and T. Taniyama.Efficient spin injection into GaAs quantum well across Fe3O4spin filter. Appl. Phys. Lett.2010, 96:102510.
    [1] Y. Deng and D. N. Lambeth. The effects of substrate and bias on CoNiCr/Cr thin films.IEEE Trans. Magn. 1992, 28:3096-3098.
    [2] M. Takahashi, A. Kikuchi, and S. Kawakita. The ultra clean sputtering process and highdensity magnetic recording media. IEEE Trans. Magn. 1997, 33:2938-2943.
    [3]王立衡,黄运添,郑海涛.薄膜技术.北京:清华大学出版社,1991年.
    [4]许小红. SmCo和FePt磁记录薄膜的结构和性能研究.武汉:华中科技大学博士后研究工作报告. 2003, P18-19.
    [5]许小红,武海顺.压电薄膜的制备、结构和应用.北京:科学出版社,2002,P49-51.
    [6]唐伟忠.薄膜材料制备原理、技术及应用(第二版).北京:冶金工业出版社,2003年.
    [7]潘道皑,赵成大,郑载兴.物质结构(第二版).高等教育出版社, 1989年.
    [8]吴旻. X射线衍射及应用.沈阳大学学报(自然科学版), 1995, 4:7-12.
    [9]吴刚.材料结构表征及应用.化学工业出版社, 2002年.
    [10]马如璋,徐祖雄.材料物理现代研究方法.冶金工业出版社, 1997年.
    [11] B. V. Crist. Annotated Handbooks of Monochromatic XPS Spectra. published by XPSInternational LLC, 2005, Mountain View, CA, USA.
    [12] J. H. Moulder, W. F. Strickle, P. E. Sobol, and K. D. Bomben, Handbook of X-rayPhotoelectron Spectroscopy, edited by J. Chastain. 1992, Perkin-Elmer, Eden Prairie, MN.
    [13]王芳,许小红.振动样品磁强计在磁记录介质中的应用.信息记录材料,2004,5:46-52.
    [14] Quantum Design China网站:http://www.qd-china.com/products2.aspx?id=37.
    [15]赵藻藩,周性尧,张悟铭等.仪器分析.高等教育出版社, 1999年.
    [16]彭子龙.博士学位论文.武汉:华中科技大学,2001, P20-21.
    [17] J. van der Pauw. A method of measure the resistivity and hall coefficient on lamellan ofarbitrary shape. Phillips Technical Review 1959, 20:220.
    [1] J. Q. Xiao, J. S. Jiang, and C. L. Chien. Giant magnetoresistance in nonmultilayermagnetic systems. Phys. Rev. Lett. 1992, 68:3749-3752.
    [2] A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T.Parker, A. Hutten, and G. Thomas. Giant magnetoresistance in heterogeneous Cu-Co alloys.1992, 68:3745-3748.
    [3] G. N. Kakazei, Yu. G. Pogorelov, A. M. L. Lopes, J. B. Sousa, S. Cardoso, P. P. Freitas,M. M. Pereira de Azevedo, and E. Snoeck. Tunnel magnetoresistance and magnetic orderingin ion-beam sputtered Co80Fe20/Al2O3discontinuous multilayers. J. Appl. Phys. 2001,90:4044-4048.
    [4] B. Dieny, S. Sankar, M. R. McCartney, D. J. Smith, P. Bayle-Guillemaud, and A. E.Berkowitz. Spin-dependent tunneling in discontinuous metal/insulator multilayers. J. Magn.Magn. Mater. 1998, 185:283-292.
    [5] A. García-García, A. Vovk, J. A. Pardo, P. trichovanec, C. Magén, E. Snoeck, P. A.Algarabel, J. M. De Teresa, L. Morellón, and M. R. Ibarra. Magnetic properties of Fe/MgOgranular multilayers prepared by pulsed laser deposition. J. Appl. Phys. 2009, 105:063909.
    [6] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.–H.Yang. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnelbarriers. Nat. Mater. 2004, 3:862-867.
    [7] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando. Giant room-temperaturemagnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004,3:868-871.
    [8] T. Miyazaki and N. Tezuka. Spin polarized tunneling in ferromagnet/insulator/ferromagnet junctions. J. Magn. Magn. Mater. 1995,151:403-410.
    [9] M. Guth, V. Da Costa, G. Schmerber, A. Dinia, and H. A. M. van den Berg. Tunnelmagnetoresistance in magnetic tunnel junctions with ZnS barrier. J. Appl. Phys. 2001,89:6748-6750.
    [10] F. Gustavsson, J-M. George, V. H. Etgens, and M. Eddrief. Structural and transportproperties of epitaxial Fe/ZnSe/FeCo. Phys. Rev. B 2001, 64:184422-184427.
    [11] X. Jiang, A. F. Panchula, and S. S. P. Parkin. Magnetic tunnel junctions with ZnSebarriers. Appl. Phys. Lett. 2003, 83:5244-5246.
    [12] A. R. de Moraes, C. K. Saul, D. H. Mosca, J. Varalda, P. Schio, A. J. A. de Oliveira,M. A. Canesqui, V. Garcia, D. Demaille, M. Eddrief, V. H. Etgens, and J. M. George.Magnetoresistance in granular magnetic tunnel junctions with Fe nanoparticles embeddedin ZnSe semiconducting epilayer. J. Appl. Phys. 2008, 103:123714.
    [13] S. S. Yan, C. Ren, X. Wang, Y. Xin, Z. X. Zhou, L. M. Mei, M. J. Ren, Y. X. Chen, Y. H.Liu, and H. Garmestani. Ferromagnetism and magnetoresistance of Co-ZnO inhomogeneousmagnetic semiconductors. Appl. Phys. Lett. 2004, 84: 2376-2378.
    [14] Y. F. Tian, S. S. Yan, Y. P. Zhang, H. Q. Song, G. Ji, G. L. Liu, Y. X. Chen, L. M. Mei,J. P. Liu, B. Altuncevahir, and V. Chakka. Transformation of electrical transport fromvariable range hopping to hard gap resistance in Zn1 xFexO1 vmagnetic semiconductor films.J. Appl. Phys. 2006, 100: 103901.
    [15] C. Y. Hsu, J. C. A. Huang, S. F. Chen, C. P. Liu, S. J. Sun, and Y. Tzeng. Tunablemagnetic order of Co nanoparticles and magnetotransport in Co/ZnO nanocomposites. Appl.Phys. Lett. 2008, 93:072506.
    [16] X. L. Li, Z. Y. Quan, X. H. Xu, H. S. Wu, and G. A. Gehring. Magnetoresistance inCo/ZnO Films. IEEE Trans.Magn. 2008, 44:2684-2687.
    [17] J. H. Moulder, W. F. Strickle, P. E. Sobol, and K. D. Bomben, Handbookof X-rayPhotoelectron Spectroscopy. Edited by J. Chastain (Perkin-Elmer, Eden Prairie, MN, 1992),P82.
    [18] J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, and J. A. Anderson.Influence of Zn on the characteristics and catalytic behavior of TiO2-supported Pt catalysts. J.Catal. 2004, 223:179-190.
    [19] A. Jesche, A. Gorbunoff, A. Mensch, H. St cker, A. A. Levin, and D. C. Meyer.Structure and giant magnetoresistance of granular Co-Cu nanolayers prepared by cross-beampulsed laser deposition. J. Appl. Phys. 2010, 107:023904.
    [20] N. Jedrecy, H. J. von Bardeleben, and D. Demaille. High-temperature ferromagnetism bymeans of oriented nanocolumns: Co clustering in (Zn,Co)O. Phys. Rev. B 2009, 80:205204.
    [21] S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R.Ramesh, R. L. Greene, and T. Venkatesan. Co-occurrence of Superparamagnetism andAnomalous Hall Effect in Highly Reduced Cobalt-Doped Rutile TiO2-δFilms. Phys. Rev. Lett.2004, 92:166601.
    [22] K. Potzger, K. Kuepper, Q. Xu, S. Zhou, H. Schmidt, M. Helm, and J. Fassbender. Highcluster formation tendency in Co implanted ZnO. J. Appl. Phys. 2008, 104:023510.
    [23] S. Zhou, K. Potzger, J. von Borany, R. Gr tzschel, W. Skorupa, M. Helm, and J.Fassbender. Crystallographically oriented Co and Ni nanocrystals inside ZnO formed byion implantation and postannealing. Phys. Rev. B 2008, 77:035209.
    [24] S. R. Shinde, S. D. Kulkarni, A. G. Banpurkar, R. Nawathey-Dixit1, S. K. Date, and S. B.Ogale. Magnetic properties of nanosized powders of magnetic oxides synthesized by pulsedlaser ablation. J. Appl. Phys. 2000, 88:1566.
    [25] L. Zhang, B. X. Huang, Y. H. Liu, L. S. Zhang, R. Z. Zhang, and L. M. Mei. Giantmagnetoresistance in Fe-In2O3granular films. J. Magn.Magn. Mater. 2003, 261:257-262.
    [26] B. D. Cullity. Introduction to Magnetic Materials. (Addison-Wesley, Reading, MA,1972), P410.
    [27] E. A. Davis and N. F. Mott. Conduction in non-crystalline systems V. Conductivity,optical absorption and photoconductivity in amorphous semiconductors. Phil. Mag. 1970,22:0903-0922.
    [28] P. Sheng, B. Abeles, and Y. Arie. Hopping Conductivity in Granular Metals. Phys. Rev.Lett. 1973, 31:44-47.
    [29] B. J. Hattink, A. Labarta, M. García del Muro, X. Batlle. F. Sánchez, and M. Varela.Competing tunneling and capacitive paths in Co-ZrO2granular thin films. Phys. Rev. B 2003,67:033402.
    [30] C. Song, X. J. Liu, F. Zeng, and F. Pan. Fully epitaxial (Zn,Co)O/ZnO/(Zn,Co)O junctionand its tunnel magnetoresistance. Appl. Phys. Lett. 2007, 91:042106.
    [31] F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng. Ferromagnetism and possibleapplication in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R 2008,62:1-35.
    [32] X. Jiang, A. F. Panchula, and S. S. P. Parkin. Magnetic tunnel junctions with ZnSebarriers. Appl. Phys. Lett. 2003, 83:5244-5246.
    [33] J. Inoue and S. Maekawa. Theory of tunneling magnetoresistance in granular magneticfilms. Phys. Rev. B 1996, 53:R11927-R11929.
    [34] G. J. Strijkers, Y. Ji, F. Y. Yang, C. L. Chien, and J. M. Byers. Andreev reflections atmetal/superconductor point contacts: Measurement and analysis. Phys. Rev. B 2001,63:104510.
    [35] S. Mitani, S. Takahashi, K. Takanashi, K. Yakushiji, S. Maekawa, and H. Fujimori.Enhanced Magnetoresistance in Insulating Granular Systems: Evidence for Higher-OrderTunneling. Phys. Rev. Lett. 1998, 81:2799-2802.
    [36] T. Zhu and Y. J. Wang. Enhanced tunneling magnetoresistance of Fe-Al2O3granularfilms in the Coulomb blockade regime. Phys. Rev. B 1999, 60:11918-11921.
    [37] J. Dai and J. Tang. Temperature dependence of the conductance and magnetoresistanceof CrO2powder compacts. Phys. Rev. B 2001, 63:064410.
    [38] A. García-García, A. Vovk, J. A. Pardo, P. trichovanec, P. A. Algarabel, C. Magén, J.M. De Teresa, L. Morellón, and M. R. Ibarra. Tunneling magnetoresistance in Fe/MgOgranular multilayers. J. Appl. Phys. 2010, 107: 033704.
    [39] Y. Xu, D. Ephron, and M. R. Beasley. Directed inelastic hopping of electrons throughmetal-insulator-metal tunnel junctions. Phys. Rev. B 1995, 52:2843-2859.
    [ 1 ] H. X. Wei, Q. H. Qin, M. Ma, R. Sharif, and X. F. Han. 80% tunnelingmagnetoresistance at room temperature for thin Al–O barrier magnetic tunnel junctionwith CoFeB as free and reference layers. J. Appl. Phys. 2007, 101:09B501.
    [2] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda,F. Matsukura, and H. Ohno. Tunnel magnetoresistance of 604% at 300 K by suppressionof Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature.Appl. Phys. Lett. 2008, 93:082508.
    [3] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.–H.Yang. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnelbarriers, Nat. Mater. 2004, 3:862-867.
    [4] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando. Giant room-temperaturemagnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004,3:868-871.
    [5] J. Q. Xiao, J. S. Jiang, and C. L. Chien. Giant magnetoresistance in nonmultilayermagnetic systems. Phys. Rev. Lett. 1992, 68:3749-3752.
    [6] A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T.Parker, A. Hutten, and G. Thomas. Giant magnetoresistance in heterogeneous Cu-Coalloys. Phys. Rev. Lett. 1992, 68:3745-3748.
    [7] C. Z. Wang, Y. H. Rong, T. Y. Hsu. Designs of higher tunnelling giant magnetoresistancein granular films. Mater. Lett. 2006, 60:379-382.
    [8] S. Sahoo, O. Sichelschmidt, O. Petracic, C. Binek, W. Kleemann, G. N. Kakazei, Y. G.Pogorelov, J. B. Sousa, S. Cardoso, and P. P. Freitas. Magnetic states of discontinuousCo80Fe20Al2O3multilayers. J. Magn. Magn. Mater. 2002, 240:433-435.
    [9] F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng. Ferromagnetism and possibleapplication in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R 2008,62:1-35.
    [10] Z. Y. Quan, X. H. Xu, X. L. Li, Q. Feng, and G. A. Gehring. Investigation of structureand magnetoresistance in Co/ZnO films. J. Appl. Phys. 2010, 108:103912.
    [11] S. S. Yan, C. Ren, X. Wang, Y. Xin, Z. X. Zhou, L. M. Mei, M. J. Ren, Y. X. Chen, Y. H.Liu, and H. Garmestani. Ferromagnetism and magnetoresistance of Co-ZnO inhomogeneousmagnetic semiconductors. Appl. Phys. Lett. 2004, 84:2376-2378.
    [12] X. Zhang, X. Z. Zhang, and C. H. Wan. The effect of Co on room temperature positivemagnetoresistance in the CoxC1 x/Si system. J. Appl. Phys. 2010, 108:063712.
    [13] E. W. Hill, A. K. Geim, K. Novoselov, F. Schedin, and P. Blake. Graphene Spin ValveDevices. IEEE Trans. Magn. 2006, 42:2694-2696.
    [14] S. Honda, A. Yamamura, T. Hiraiwa, R. Sato, and J. Inoue. Magnetoresistance inferromagnetic-metal/graphene/ferromagnetic-metal lateral junctions. Phys. Rev. B 2010,82:033402.
    [15] S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R.Ramesh, R. L. Greene, and T. Venkatesan. Co-occurrence of Superparamagnetism andAnomalous Hall Effect in Highly Reduced Cobalt-Doped Rutile TiO2-δFilms. Phys. Rev. Lett.2004, 92:166601.
    [16] B. D. Cullity. Introduction to magnetic materials. 2nd ed. Boston: Addison-Wesley,1972.
    [17] S. Zhou, K. Potzger, J. von Borany, R. Gr tzschel, W. Skorupa, M. Helm, and J.Fassbender. Crystallographically oriented Co and Ni nanocrystals inside ZnO formed byion implantation and postannealing. Phys. Rev. B 2008, 77:035209.
    [18] B. Dieny, S. Sankar, M. R. McCartney, D. J. Smith, P. Bayle-Guillemaud, and A. E.Berkowitz. J. Magn. Magn. Mater. 1998, 185:283-292.
    [19] W. R. Tyson and W. A. Miller. Surface free energies of solid metals: Estimation fromliquid surface tension measurements. Surf. Sci. 1977, 62:267-276.
    [20] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito. Control of preferred orientation forZnOxfilms: control of self-texture. J. Cryst. Growth. 1993, 130:269-279.
    [21] T. S. Jakubov and D. E. Mainwaring. The surface tension of a solid at the solid–vacuuminterface, an evaluation from adsorption and wall potential calculations. J. Colloid InterfaceSci. 2007, 307:477-480.
    [22] M. Saraiva, H. Chen, W. P. Leroy, and S. Mahieu. Influence of Al Content on theProperties of MgO Grown by Reactive Magnetron Sputtering. Plasma Process. Polym. 2009,6:S751-S754.
    [23] L. Huang, S. J. Chey, and J. H. Weaver. Buffer-Layer-Assisted Growth of Nanocrystals:Ag-Xe-Si(111). Phys. Rev. Lett. 1998, 80:4095-4098.
    [24] B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie. Structural and electrical properties ofgranular metal films. Adv. Phys. 1975, 24, 407-461.
    [25] Q. Z. Xue, X. Zhang. Anomalous electrical transport properties of amorphous carbonfilms on Si substrates. Carbon 2005, 43:760-764.
    [26] M. Csontos, J. Balogh, D. Kaptás, L. F. Kiss, A. Kovács, and G. Mihály. Magnetic andtransport properties of Fe-Ag granular multilayers. Phys. Rev. B 2006, 73:184412.
    [27] J. A. De Toro1, J. P. Andrés, J. A. González, J. P. Goff, A. J. Barbero, and J. M. Riveiro.Improved giant magnetoresistance in nanogranular Co/Ag: The role of interparticle RKKYinteractions. Phys. Rev. B 2004, 70:224412.
    [28] A. Halpern and E. Erlbach, Schaum's Outline of Beginning Physics II: Waves,Electromagnetism, Optics, and Modern Physics. (New York: McGraw-Hill, 1998), P141.
    [29] G. K. White and S. B. Woods. Electrical and Thermal Resistivity of the TransitionElements at Low Temperatures. Phil. Trans. R. Soc. Lond. A 1959, 251:273-302.
    [30] W. H. Wang, K. Pi, Y. Li, Y. F. Chiang, P. Wei, J. Shi, and R. K. Kawakami.Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 2008,77:020402(R).
    [31] E. Badaeva, C. M. Isborn, Y. Feng, S. T. Ochsenbein, D. R. Gamelin, and X. Li.Theoretical Characterization of Electronic Transitions in Co2+- and Mn2+-Doped ZnONanocrystals. J. Phys. Chem. C. 2009, 113:8710-8717.
    [32] S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang and S. J. Chua.Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapordeposition. J. Appl. Phys. 2005, 98:013505.
    [33] C. Clavero, A. Cebollada, G. Armelles, Y. Huttel, J. Arbiol, F. Peiró, and A. Cornet.Size effects in the magneto-optical response of Co nanoparticles. Phys. Rev. B 2005,72:024441.
    [34] X. W. Sun and H. S. Kwok. Optical properties of epitaxially grown zinc oxide films onsapphire by pulsed laser deposition. J. Appl. Phys. 1999, 86:408-411.
    [35] G. S. Krinchik. Ferromagnetic Hall Effect at Optical Frequencies and Inner EffectiveMagnetic Field of Ferromagnetic Metals. J. Appl. Phys. 1964, 35:1089-1092.
    [36] J. R. Neal, A. J. Behan, R. M. Ibrahim, H. J. Blythe, M. Ziese, A. M. Fox, and G. A.Gehring. Room-Temperature Magneto-Optics of Ferromagnetic Transition-Metal-DopedZnO Thin Films. 2006, 96:097208.
    [37] A. T. Filip, P. LeClair, C. J. P. Smits, J. T. Kohlhepp, H. J. M. Swagten, B. Koopmans,and W. J. M. de Jonge. Spin-injection device based on EuS magnetic tunnel barriers. Appl.Phys. Lett. 2002, 81:1815-1817.
    [38] S. A. Makhlouf, K. Sumiyama, and K. Suzuki.Characteristic High-Field Dependence ofMagnetoresistance in Fe/Ag Granular Thin Films Fabricated by Sputtering and Annealing.Jpn. J. Appl. Phys. 1994, 33:4913-4918.
    [1] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees. Fundamentalobstacle for electrical spin injection from a ferromagnetic metal into a diffusivesemiconductor. Phys. Rev. B 2000, 62:R4790-R4793.
    [2] E. I. Rashba. Theory of electrical spin injection: Tunnel contacts as a solution of theconductivity mismatch problem. Phys. Rev. B 2000, 62:R16267- R16267.
    [3] X. Jiang, R. Wang, R. M. , Shelby. R. M. Macfarlane, S. R. Bank, J. S. Harris, and S. S. P.Parkin. Highly Spin-Polarized Room-Temperature Tunnel Injector for SemiconductorSpintronics using MgO(100). Phys. Rev. Lett. 2005, 94:056601.
    [4] A. Fert and H. Jaffrès. Conditions for efficient spin injection from a ferromagnetic metalinto a semiconductor. Phys. Rev. B 2001, 64:184420.
    [5] V. F. Motsnyi, J. De Boeck, J. Das, W. Van Roy, G. Borghs, E. Goovaerts, and V. I. Safarov.Electrical spin injection in a ferromagnet/tunnel barrier/semiconductor heterostructure. Appl.Phys. Lett. 2002, 81:265.
    [6] O. M. J. van’t Erve, G. Kioseoglou, A. T. Hanbicki, C. H. Li1, B. T. Jonker, R. Mallory, M.Yasar, and A. Petrou. Comparison of Fe/Schottky and Fe/Al2O3tunnel barrier contacts forelectrical spin injection into GaAs. Appl. Phys. Lett. 2004, 84:4334.
    [7] T. Manago and H. Akinaga. Spin-polarized light-emitting diode using metal/insulator/semiconductor structures. Appl. Phys. Lett. 2002, 81:694.
    [8] A. T. Filip, P. LeClair, C. J. P. Smits, J. T. Kohlhepp, H. J. M. Swagten, B. Koopmans,and W. J. M. de Jonge. Spin-injection device based on EuS magnetic tunnel barriers. Appl.Phys. Lett. 2002, 81:1815.
    [9] P. LeClair, J. K. Ha, H. J. M. Swagten, J. T. Kohlhepp, C. H. van de Vin, and W. J. M. deJonge. Large magnetoresistance using hybrid spin filter devices. Appl. Phys. Lett. 2002,80:625
    [10] C. J. P. Smits, A. T. Filip, J. T. Kohlhepp, H. J. M. Swagten, B. Koopmans, and W. J. M.de Jonge. Magnetic and structural properties of EuS for magnetic tunnel junction barriers. J.Appl. Phys. 2004, 95:7405.
    [11] E. Wada, K. Watanabe, Y. Shirahata, M. Itoh, M. Yamaguchi, and T. Taniyama.Efficient spin injection into GaAs quantum well across Fe3O4spin filter. Appl. Phys. Lett.2010, 96:102510.
    [12] F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng. Ferromagnetism and possibleapplication in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R 2008,62:1-35.
    [13] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald. Donor impurity band exchange indilute ferromagnetic oxides. Nat. Mater. 2005, 4:173-179.
    [14] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B.Johansson, and G. A. Gehring. Ferromagnetism above room temperature in bulk andtransparent thin films of Mn-doped ZnO. Nat. Mater. 2003, 2:673-677.
    [15] F.-X. Jiang, X.-H. Xu, J. Zhang, X.-C. Fan, H.-S. Wu, M. Alshammari, Q. Feng, H. J.Blythe, D. S. Score, K. Addision, M. Al-Qahtani, and G. A. Gehring. Room temperatureferromagnetism in metallic and insulating (In1-xFex)2O3thin films. J. Appl. Phys. 2011,109:053907.
    [16] F.-X. Jiang, X.-H. Xu, J. Zhang, X.-C. Fan, H.-S. Wu, and G. A. Gehring. Role of carrierand spin in tuning ferromagnetism in Mn and Cr-doped In2O3thin films. Appl. Phys. Lett.2010, 96:052503.
    [17] Z. Y. Quan, W. Liu, X. L. Li, X. H. Xu, K. Addison, D. S. Score and G. A. Gehring.Structural and magnetotransport properties in Co/nonmagnetic films. Mater. Lett. 2011,65:2982- 2984.
    [18] X. H. Xu, H. J. Blythe, M. Ziese, A. J. Behan, J. R. , Neal, A. Mokhtari, R. M. Ibrahim,A. M. Fox, G. A. Gehring. Carrier-induced ferromagnetism in n-type ZnMnAlO andZnCoAlO thin films at room temperature. New J. Phys. 2006, 8:135.
    [19] S. Chattopadhyay and T. K. Nath. Room temperature enhanced positive magneto-resistance in Pt and carrier induced Zn(Fe)O and Zn(Fe,Al)O dilute magnetic semiconductorsjunction. J. Appl. Phys. 2010, 108:083904.
    [20] Z. Y. Quan, X. H. Xu, X. L. Li, Q. Feng, and G. A. Gehring. Investigation of structureand magnetoresistance in Co/ZnO films. J. Appl. Phys. 2010, 108:103912.
    [21] J. H. Moulder, W. .F Strickle, P. E. Sobol, and K. D. Bomben. Handbook of X-rayPhotoelectron Spectroscopy. Eden Prairie: Perkin-Elmer; 1992.
    [22] A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X. H. Xu, J. R. Neal, A. M. Fox, and G.A. Gehring. Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute MagneticSemiconductor and a Dilute Magnetic Insulator. Phys. Rev. Lett. 2008, 100:047206.
    [23]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社, 2003年, P32.
    [24] B. D. Cullity. Introduction to Magnetic Materials. (Addison-Wesley, Reading,MA,1972), P410.
    [25] J. Inoue and S. Maekawa. Theory of tunneling magnetoresistance in granular magneticfilms. Phys. Rev. B 1996, 53:R11927-R11929.
    [26] J. K. Furdyna. Diluted magnetic semiconductors. J. Appl. Phys. 1988, 64:R29-R64.
    [27] P. Sheng, B. Abeles, and Y. Arie. Hopping Conductivity in Granular Metals. Phys. Rev.Lett. 1973, 31:44-47.
    [28] B. J. Hattink, A. Labarta, M. García del Muro, X. Batlle. F. Sánchez, and M. Varela.Competing tunneling and capacitive paths in Co-ZrO2granular thin films. Phys. Rev. B 2003,67:033402.
    [29] L. I. Glazman and K. A. Matveev. Inelastic tunneling across thin amorphous films, Zh.Eksp. Teor. Fiz. 1988, 94:332-343.
    [30] Y. Xu, D. Ephron, and M. R. Beasley. Directed inelastic hopping of electrons throughmetal-insulator-metal tunnel junctions. Phys. Rev. B 1995, 52:2843-2859.
    [31] J. Dai and J. Tang. Temperature dependence of the conductance and magnetoresistanceof CrO2powder compacts. Phys. Rev. B 2001, 63:064410.
    [1] H. Fujimori, S. Mitani, and S. Ohnuma. Tunnel-type GMR in metal-nonmetal granularalloy thin films. Mater. Sci. Eng. B 1995, 31:219-223.
    [2] S. Honda, T. Okada, M. Nawate, and M. Tokumoto. Tunneling giant magnetoresistance inheterogeneous Fe-SiO2granular films. Phys. Rev. B 1997, 56:14566-14573.
    [3] S. Honda, T. Okada, and M. Nawate. Tunneling giant magnetoresistance in Fe-SiO2multilayered and alloyed films. J. Magn. Magn. Mater. 1997, 165:153-156.
    [4] N. Kobayashi, S. Ohnuma, T. Masumoto, and H. Fujimori. (Fe–Co)–(Mg-fluoride)insulating nanogranular system with enhanced tunnel-type giant magnetoresistance. J. Appl.Phys. 2001, 90:4159-4162.
    [5] S. Ohnuma, H. Fujimori, S. Furukawa, S. Mitani, and T. Masumoto. Co-(N,O)-basedgranular thin films and their soft magnetic properties. J. Alloy. Compd. 1995, 222:162-172.
    [6] H. Fujimori, S. Ohnuma, N. Kobayashi, and T. Masumoto. Spintronics in metal–insulatornanogranular magnetic thin films. J. Magn. Magn. Mater. 2006, 304:32-35.
    [7] S. Mitani, S. Takahashi, K. Takanashi, K. Yakushiji, S. Maekawa, and H. Fujimori.Enhanced Magnetoresistance in Insulating Granular Systems: Evidence for Higher-OrderTunneling. Phys. Rev. Lett. 1998, 81:2799-2802.
    [8] W. Yang, Z. S. Jiang, Y. W. Du, and W. N. Wang. Magnetoresistance of Fe-SiO2granularfilms. Solid State Commun. 1997, 104:479-484.
    [9] P. LeClair, J. T. Kohlhepp, H. J. M. Swagten, and W. J. M. de Jonge. Interfacial Densityof States in Magnetic Tunnel Junctions. Phys. Rev. Lett. 2001, 86:1066-1069.
    [10] L. I. Glazman and K. A. Matveev. Inelastic tunneling across thin amorphous films. Zh.Eksp. Teor. Fiz. 1988, 94:332-343.
    [11] C. A. Neugebauer and M. B. Webb. Electrical conduction mechanism in ultrathinevaporated metal films. J. Appl. Phys. 1962, 33:74.
    [12] Z. Y. Quan, X. H. Xu, X. L. Li, Q. Feng, and G. A. Gehring. Investigation of structureand magnetoresistance in Co/ZnO films. J. Appl. Phys. 2010, 108:103912.
    [13] J. H. Lee. Effects of sputtering pressure and thickness on properties of ZnO:Al filmsdeposited on polymer substrates. J. Electroceram 2009, 23:512-518.
    [14] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito. Control of preferred orientation forZnOxfilms: control of self-texture. J. Cryst. Growth. 1993, 130:269-279.
    [15] H. H. Hsieh and C. C. Wu. Amorphous ZnO transparent thin-film transistors fabricatedby fully lithographic and etching processes. Appl. Phys. Lett. 2007, 91:013502.
    [16] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R.Martins. Influence of the deposition pressure on the properties of transparent and conductiveZnO:Ga thin-film produced by r.f. sputtering at room. Thin Solid Films 2003, 427:401.
    [17] K. Ellmer. Magnetron sputtering of transparent conductive zinc oxide: relation betweenthe sputtering parameters and the electronic properties. J. Phys. D: Appl. Phys. 2000, 33:R17
    [18] N. Jedrecy, H. J. von Bardeleben, and D. Demaille. High-temperature ferromagnetism bymeans of oriented nanocolumns: Co clustering in (Zn,Co)O. Phys. Rev. B 2009, 80:205204.
    [19] S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R.Ramesh, R. L. Greene, and T. Venkatesan. Co-occurrence of Superparamagnetism andAnomalous Hall Effect in Highly Reduced Cobalt-Doped Rutile TiO2-δFilms. Phys. Rev. Lett.2004, 92:166601.
    [20] S. Zhou, K. Potzger, J. von Borany, R. Gr tzschel, W. Skorupa, M. Helm, and J.Fassbender. Crystallographically oriented Co and Ni nanocrystals inside ZnO formed byion implantation and postannealing. Phys. Rev. B 2008, 77:035209.
    [21]焦正宽,曹光旱.磁电子学.杭州:浙江大学出版社,2005,P76-77.
    [22] P. Bruno and C. Chappert. Oscillatory coupling between ferromagnetic layers separatedby a nonmagnetic metal spacer. Phys. Rev. Lett. 1991, 67:1602-1605.
    [23] P. Bruno and C. Chappert. Ruderman-Kittel theory of oscillatory interlayer exchangecoupling. Phys. Rev. B 1992, 46:261-270.
    [24] R. Coehoorn. Period of oscillatory exchange interactions in Co/Cu and Fe/Cu multilayersystems. Phys. Rev. B 1991, 44:9331-9337.
    [25] P. Sheng, B. Abeles, and Y. Arie. Hopping Conductivity in Granular Metals. Phys. Rev.Lett. 1973, 31:44-47..
    [26] B. J. Hattink, A. Labarta, M. García del Muro, X. Batlle. F. Sánchez, and M. Varela.Competing tunneling and capacitive paths in Co-ZrO_2granular thin films. Phys. Rev. B 2003,67:033402.
    [27] Y. Xu, D. Ephron, and M. R. Beasley. Directed inelastic hopping of electrons throughmetal-insulator-metal tunnel junctions. Phys. Rev. B 1995, 52:2843-2859.
    [28] J. Dai and J. Tang. Temperature dependence of the conductance and magnetoresistanceof CrO_2powder compacts. Phys. Rev. B 2001, 63:064410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700