用户名: 密码: 验证码:
层状氧化物锂离子电池正极材料的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要以三元氧化物正极材料及由其衍生出的富锂锰基正极材料为研究对象,针对材料体系本征电导率低、倍率性能差、循环稳定性差等缺点,分别通过合成方法的创新改进、表面修饰及电极材料微结构的控制等方法来提高材料的电化学性能。主要研究内容与结果如下:
     采用简化的共沉淀法制备了具有片状一次颗粒的LiMn0.4Ni0.4c0.2O2层状正极材料。研究了合成温度与材料电化学性能的关系,其中800℃煅烧合成的材料具有80-100nm的片层厚度和最好的电化学性能,其在5C(1400mA g-1)的大电流下放电容量达到160mAhg-1,并且在经过50次循环后,容量保持率高达80%。优良的电化学性能主要是由于其具有很好的结晶性和薄片状一次颗粒。经GITT测试计算得锂离子扩散系数为10-11-10-12cm2s-1。
     采用简单的湿化学法对LiNi1/3Co1/3Mn1/3O2正极材料进行了表面氟化物的修饰改性处理。所采用的氟化物为CaF2和LiF。高分辨TEM下观察所包覆CaF2层厚度为4-8nm,而LiF则发生了表面氟掺杂。CaF2包覆后材料在室温下的循环稳定性提高,0.1C下50循环后容量保持率为98.1%,即使是在5C大电流下,50循环后容量保持率也在85%以上。而LiF修饰后材料室温下lO C放电容量达137mAh g-1,在60℃温度下,1C循环50次后,容量保持率为93.5%。低温下性能也很突出,在-20℃时0.1C放电容量达85.6mAh g-1, EIS研究发现,经过氟化物修饰后,LiNi1/3Co1/3Mn1/3O2电极电荷转移阻抗得到了明显的抑制,这是材料电化学性能提高的重要原因。
     采用乙醇同时作为液相燃烧法中的溶剂和助燃剂,合成了富锂锰基正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2。比较了不同温度下合成的材料的形貌和电化学性能。800℃煅烧得到的材料颗粒尺寸为50-150nm,倍率性能优异,再200和2000mAg-1电流密度下放电容量达到了238.6和165.0mAh g-,且具有较好的容量保持率。此外,以蔗糖为溶胶凝胶的络合剂,采用不同的金属源合成了富锂锰基Li[Li0.2Mn0.56Ni0.16Co0.08]O2正极材料。研究了不同金属源对所得材料的结构形貌及电化学性能的影响。采用硝酸盐为金属源所制备的Li[Li0.2Mn0.56Ni0.16Co0.08]O2正极材料具有三维多孔形貌,其表面积高达10.09m2g-1。在200mAg-1和2000mA g-1电流密度下放电容量达到了247.8mAh g-1和135.5mAh g-1.
     采用融熔注入法对Li[Li0.2Mn0.54Ni0.13Co0.13]O2富锂锰基正极材料进行了表面MgO修饰处理究。当MgO包覆量为2wt.%时,Li[Li0.2Mn0.54Ni0.13Co0.13]O2材料具有最好的电化学性能。在室温200mA g-1电流密度下,100次循环后容量保持率为96.4%。当工作温度提高到60℃时,在同样的电流下经过50次循环后,电池的容量保持率也高达94.3%。同时对Li[Li0.2Mn0.56Ni0.16Co0.08]O2富锂锰基正极材料进行了表面稀土氧化物Sm203修饰的研究。Sm203表面修饰同样主要起到了改善Li[Li0.2Mn0.56Ni0.16Co0.08]O2正极材料的循环稳定性的作用。在室温下2.0-4.8V电压区间200mA g-1的电流密度下,经过80次循环后仍具有214.6mAhg-1的容量,容量保持率高达91.5%。
     采用气凝胶模板法制备了多孔Li[Li0.2Mn0.54M0.13Co0.13]O2正极材料。800℃煅烧获得的材料在200mA g-1和2000mA g-1电流密度下放电容量达到了244.0mAh g-1和153.9mAh g-1。但是其循环性能欠佳。而900℃煅烧获得的材料虽然颗粒长大明显,比表面积有所下降,但是由于多孔结构的存在,也表现出良好的倍率性能,且循环稳定性提高。在200mAg-1电流密度下其放电容量容量达220.2mAh g-1。即使在2000mA g-1的大电流下,其容量也高达129.8mAh g-1,并且在120个循环后容量几乎没有衰减。
     对Li[Li0.2Mn0.54Ni0.13Co0.13]O2进行了融熔盐处理,发现经LiCl融熔盐和KCl融熔盐处理后颗粒分别呈类立方体状和薄片状。KCl融熔盐处理后的材料具有高达17.05m2g-1的比表面积及优异的大电流放电性能。在200mA g-1和2000mAg-1电流下放电容量可分别达到254.1mAh g-1和168.5mAh g-1。但是其容量衰减过快。而经LiCl融熔盐处理后的材料虽然放电容量略微下降,但是循环稳定性得到了大幅提高,在200mA g-1电流下经过80次循环其容量保持率高达94.9%。研究发现,这种现象与材料的锂离子扩散系数无关,主要由材料的组织调控。
     采用碳酸盐二元模板法制备了具有空心立方结构二次颗粒的新型Li[Li0.2Mn0.50Ni0.05Co0.25[O2正极材料。该空心结构的形成,有效的提高了材料的比表面积、缩短了锂离子扩散路径,从而提高了材料在大电流下的放电容量。在200mA g-1和2000mA g-1电流下放电容量可分别达到208mAh g-1和110mAhg-1。二元模板法是一种很好的获得不同形貌的富锂锰基锂离子电池正极材料的有效方法。
The research work of this thesis is mainly based on the layered oxide and its derivation called Li-rich manganese based layered oxide cathode materials for Li-ion batteries. Due to the poor rate capability and cycle stability, new synthesis, surface modification and morphology adjustment are performed to improve the electrochemical performances. The main research contents and results are as follows:
     Ball-like LiMn0.4Ni0.4Co0.2O2particles composed of flakes are synthesized by a simplified co-precipitation method. The relationship between the sintered temperature and electrochemical performance of the layered oxides is investigated. The layered oxide with a flake thickness of80-100nm synthesized at800℃has the best electrochemical performance. An initial discharge capacity of160mAh g-1is obtained at5C (1400mA g-1) in the voltage range of2.5-4.5V, and the capacity retention is80%after50cycles. The excellent rate capability is attributed to the good crystallinity and the formation of flake primary particles. In addition, a detailed study of diffusion coefficient of Li+(DLi+) is carried out to further understand this cathode material. The value of DLi+calculated is in the range of10-11-10-12cm2s-1
     CaF2and LiF modified LiMn1/3Ni1/3Co1/3O2cathode materials are prepared via a wet chemical process. The well coated CaF2layer on the LiMn1/3Ni1/3Co1/3O2particle has a thickness of4-8nm determined by High-resolution transmission electron microscopy (TEM) analysis. However, surface F-doping is observed after LiF modification. Cycling stability of the CaF2-coated LiMn1/3Ni1/3Co1/3O2is improved distinctly. Discharge capacity retention of98.1%is obtained at0.1C after50cycles. Furthermore, even at a high charge-discharge rate of5C, the capacity retention maintains above85%. The LiF-modified oxide delivers a high discharge capacity of137mAh g-1at10C at room temperature and exhibits capacity retentions93.5%at1C at60℃after50cycles. Furthermore, it has reversible capacities of85.6mAh g-1at0.1C at-20℃. Electrochemical impedance spectroscopy (EIS) shows that the modified layer stabilizes the surface structure and reduces the charge transfer resistance, resulting in the improved electrochemical performances.
     Li-rich manganese based layered oxide Li[Li0.2Mn0.54Ni0.13Co0.13]O2are synthesized by combustion reaction using alcohol as both solvent and fuel. After comparing the morphology and electrochemical performances of the layered oxides synthesized at different temperatures, the oxide synthesized at800℃with particle size of50-150nm exhibits the best electrochemical performances. High discharge capacities of238.6and165.0mAh g-1are obtained at current densities of200and2000mA g-1in the voltage range of2.0-4.8V, respectively. In addition, Li[Li0.2Mn0.56Ni0.16Co0.08]O2cathode materials are synthesized by sol-gel process with sucrose as complexing agent. The effect of morphology on the electrochemical performances is studied under the using of different metal sources. Porosity with high specific surface area of10.09m2g-1is only observed for the oxide powder synthesized with nitrate. Simultaneously, high discharge capacity of247.8mAh g-1and135.5mAh g-1are obtained at current densities of200mA g-1and2000mA g-1, respectively.
     MgO-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2are synthesized via melting impregnation method followed by a solid state reaction. The2wt.%MgO coated cathode exhibits the excellent cycling stability with capacity retention of96.4%at a current density of200mA g-1after100cycles at room temperature, and94.3%after50cycles at60℃. Simultaneously, Sm2O3-modified Li[Li0.2Mn0.56Ni0.16Co0.08]O2is also synthesized via a simple wet chemical process. Similar effect is obtained as to improve the cycle stability of the cathode. After Sm2O3surface modification, high discharge capacity of214.6mAh g-1with retention of91.5%is obtained at a current density of200mA g-1between2.0V and4.8V after80cycles.
     Macroporous Li1.2Mn0.54Ni0.13Co0.13O2cathode materials with high crystallinity and hexagonal ordering are synthesized by aerogel template. The Li-rich layered oxide synthesized at800℃delivers high discharge capacities of244.0mAh g-1and153.9mAh g-1at current densities of200mA g-1and2000mA g-1between2.0V and4.8V, respectively. However, the cycle stability is unsatisfactory. Increasing the synthesis temperature to900℃, the particles grows with a decrease of surface area. However, the macroporous Li1.2Mn0.54Ni0.13Co0.13O2delivers a high discharge capacity of220.2mAh g-1at a current density of200mA g-1,129.8mAh g-1at a current density of2000mAg-1and almost no capacity fading after120cycles.
     Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode materials are treated in molten salts. Cube-like and plate-like particles are obtained after treated in LiCl and KCl molten salts at800℃, respectively. High discharge capacities of254.1mAh g-1and173.4mAh g-1are obtained at current densities of200mA g-1and2000mA g-1, respectively, for the oxide treated in KCl molten salt with large specific area of17.05 m2g1. However, the cycle stability is poor. In addition, enhanced cycle stability with capacity retention of98.7%after50cycles at1C is obtained for the oxide treated in LiCl molten salt with sacrifice of a little capacity. Such electrochemical performance change is proved to be independent of Li+diffusion coefficient through GITT.
     Hollow Li1.2Mn0.5Co0.25Ni0.05O2microcube is synethesized through a simple binary template method. Such special morphology efficiently increases the surface area, decreases the path of Li+diffusion, and then improves the electrochemical performances at high current density. High reversible discharge capacities of208mAh g-1and110mAh g-1are obtained at a current density of200mA g-1and2000mA g-1, respectively. It is remarkable that such binary template method is an effective way to obtain Li-rich manganese based layered cathode material with specific morphology.
引文
[1]D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai, H. Yamin, The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable 'Rocking-Chair' type batteries [J]. Journal of The Electrochemical Society, 1994,141 (3):603-611.
    [2]R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials [J]. Journal of Materials Chemistry,2011,21,9938-9954.
    [3]Y. Ein-Eli, V.R. Koch. Chemical oxidation:A route to enhanced capacity in Li-lon graphite anodes [J]. Journal of the Electrochemical Society,1997,144 (9):2968-2973.
    [4]J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials [J]. Science,1995,270:590-593.
    [5]X.Y. Song, K. Kinoshita, T.D. Tran, Microstructural characterization of lithiated graphite [J]. Journal of the Electrochemical Society,1996,143 (6):L120-L123.
    [6]E. Peled, in Handbook of Battery Materials, J.O. Besenhard Ed., Wiley-VCH Weinheim, 1999.
    [7]P.L. Walker Jr., Chemistry and Physics of Carbon [M], Ed (Dekker, New York), vol.1-26.
    [8]K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, H. Fujimoto, The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries [J]. Journal of the Electrochemical Society,1995,142 (3): 716-720.
    [9]M. Inaba, H. Yoshida and Z. Ogumi, In situ Raman study of electrochemical lithium insertion into mesocarbon microbeads heat-treated at various temperatures [J]. Journal of the Electrochemical Society,1996,143(8):2572-2578.
    [10]R. Alcantara, F. J. Fernandez-Madrigal, P. Lavela, J.L. Tirado, J.M. Jimenez-Mateos, C.G. Salazar, R. Stoyanova, E. Zhecheva, Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells [J]. Carbon,2000,38 (7):1031-1041.
    [11]H. Yamada, Y. Watanabe, I. Moriguchi, T. Kudo, Rate capability of lithium intercalation into nano-porous graphitized carbons [J]. Solid State Ionics,2008,179(27-32):1706-1709.
    [12]W.X. Chen, J.Y. Lee, Z. Liu, Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites [J]. Electrochemistry Communications,2002,4 (3): 260-265.
    [13]P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Opening carbon nanotubes with oxygen and implications for filling [J]. Nature,1993,362:522-525.
    [14]E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin, Electrochemical storage of lithium in multiwalled carbon nanotubes [J]. Carbon,1999,37 (1):61-69.
    [15]B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu and O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium [J]. Chemical Physics Letters,1999,307 (3-4):153-157.
    [16]G.T. Wu, C.S. Wang, X.B. Zhang, H.S. Yang, Z.F. Qi, P.M. He, W.Z. Li, Structure and Lithium Insertion Properties of Carbon Nanotubes. Journal of the Electrochemical Society [J],1999,146 (5):1696-1701.
    [17]A.S. Claye, J.E. Fischer, C.B. Hufffman, A.G Rinzler, R.E. Smalley, Solid-state electrochemistry of the Li single wall carbon nanotube system [J]. Journal of the Electrochemical Society,2000,147 (8):2845-2852.
    [18]R.A. Huggins, Lithium alloy negative electrodes formed from convertible oxides [J]. Solid State Ionics,1998,113-115(0):57-67.
    [19]M. Winter, J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochimica Acta,1999,45(1-2):31-50.
    [20]M. Green, E. Fielder, B. Scrosati, M. Wachtler, J.S. Moreno, Structured silicon anodes for lithium battery applications [J]. Electrochemical and Solid-State Letters,2003,6 (5): A75-A79.
    [21]N. Dimov, M. Yoshio, Towards creating reversible silicon-based composite anodes for lithium ion batteries [J]. Journal of Power Sources,2007,174 (2):607-612.
    [22]V. Baranchugov, E. Markevich, E. Pollak, G Salitra, D. Aurbach, Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes [J]. Electrochemistry Communications,2007,9 (4):796-800.
    [23]I.A. Courtney, J.R. Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of lithium with tin oxide composites [J]. Journal of the Electrochemical Society, 1997,144 (6):2045-2052.
    [24]O. Crosnier, T. Brousse, X. Devaux, P. Fragnaud, D.M. Schleich, New anode systems for lithium ion cells [J]. Journal of Power Sources,2001,94 (2):169-174.
    [25]L.Y. Beaulieu, J.R. Dahn, The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying [J]. Journal of the Electrochemical Society,2000,147 (9):3237-3241.
    [26]D. Larcher, L.Y. Beaulieu, O. Mao, A.E. George, J.R. Dahn, Study of the reaction of lithium with isostructural A2B and various AlxB alloys [J]. Journal of the Electrochemical Society,2000,147 (5):1703-1708.
    [27]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature,2000,407: 496-499.
    [28]H. Li, G Richter, J. Maier. Reversible formation and decomposition of liF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries [J]. Advanced Materials,2003,15 (9):736-739.
    [29]H. Li, P. Balaya, J. Maier. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides [J]. Journal of the Electrochemical Society,2004,151(11):A1878-A1885.
    [30]F. Badway, N. Pereira, F. Cosandey, G G Amatucci. Carbon-metal fluoride nanocomposites [J]. Journal of The Electrochemical Society,2003,150 (9):A1209-A1218.
    [31]S. Grugeon, S. Laruelle, L. Dupont, J. M. Tarascon. An update on the reactivity of nanoparticles Co-based compounds towards Li [J]. Solid State Sciences,2003,5 (6): 895-904.
    [32]X. H. Huang, J. P. Tu, X. H. Xia, X. L. Wang, J. Y. Xiang. Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries [J]. Electrochemistry Communications,2008,10 (9):1288-1290.
    [33]X. H. Huang, J. P. Tu, X. H. Xia, X. L. Wang, J. Y. Xiang, L. Zhang. Porous NiO/ poly(3,4-ethylenedioxythiophene) films as anode materials for lithium ion batteries [J]. Journal of Power Sources,2010,195 (4):1207-1210.
    [34]Y. M. Kang, K. T. Kim, J. H. Kim, H. S. Kim, P. S. Lee, J. Y. Lee. Electrochemical properties of CO3O4, Ni-Co3O4 mixture and Ni-Co3O4 composite as anode materials for Li ion secondary batteries [J]. Journal of Power Sources,2004,133 (2):252-259.
    [35]Y. L. Ding, C. Y. Wu, H. M. Yu, J. Xie, G S. Cao, T. J. Zhu. Coaxial MnO/C nanotubes as anodes for lithium-ion batteries [J]. Electrochimica Acta,2011,56 (16):5844-5848.
    [36]S.-F. Zheng, J.-S. Hu, L.-S. Zhong, W.-G Song, L.-J. Wan, Y.-G Guo. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries [J]. Chemistry of Materials,2008,20 (11):3617-3622.
    [37]K. Amine,1. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota. Nanostructured anode material for high-power battery system in electric vehicles [J]. Advanced Materials,2010, 22 (28):3052-3057.
    [38]P.J. Masset, R.A. Guidotti, Thermal activated ("thermal") battery technology:Part Ⅲa:FeS2 cathode material [J]. Journal of Power Sources,2008,177 (2):595-609.
    [39]B. Das, M.V. Reddy, P, Malar, T. Osipowicz, G.V.S. Rao, B.V.R. Chowdari. Nanoflake CoN as a high capacity anode for Li-ion batteries [J]. Solid State Ionics,2009,180 (17-19): 1061-1068.
    [40]S. Boyanov, D. Zitoun, M. Menetrier, J.C. Jumas, M. Womes, L. Monconduit. Comparison of the electrochemical lithiation/delitiation mechanisms of FePx(x=1,2,4) based electrodes in Li-ion batteries[J]. Journal of PhysicalChemistry C,2009,113 (51):21441-21452.
    [41]George Moumouzias, George Ritzoulis, Demetrios Siapkas, Demetrios Terzidis, Comparative study of LiBF4, LiAsF6, LiPF6, and LiClO4 as electrolytes in propylene carbonate-diethyl carbonate solutions for Li/LiMn2O4 cells, Journal of Power Sources,2003,122 (1):57-66.
    [42]Ella Zinigrad, Liraz Larush-Asraf, Josef S. Gnanaraj, Milon Sprecher, Doron Aurbach, On the thermal stability of LiPF6 [J], Thermochimica Acta,2005,438 (1-2):184-191.
    [43]R. Fong, U.V. Sacken and J.R. Dahn. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells [J]. Journal of the Electrochemical Society,1990,137 (7): 2009-2013.
    [44]G.H. Wrodnigg, J.O. Besenhard and M. Winter. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes [J]. Journal of the Electrochemical Society,1999, 146 (2):470-472.
    [45]C.X. Wang, H. Nakamura, H. Komatsu, M. Yoshio and H. Yoshitake. Electrochemical behavior of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system [J].Journal of Power Sources,1998,74 (1):142-145.
    [46]S.S. Zhang, K Xu, T.R. Jow, Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery [J]. Journal of Power Sources,2006,160 (2): 1403-1409.
    [47]J. Yu, Z. Han, X. Hu, H. Zhan, Y. Zhou, X. Liu, Solid-state synthesis of LiCoO2/LiCo0.99Ti0.o1O2 composite as cathode material for lithium ion batteries [J]. Journal of Power Sources,2013,225:34-39.
    [48]X. Xiao, X. Liu, L. Wang, H. Zhao, Z. Hu, X. He, Y. Li, LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries [J]. Nano Research,2012,5 (6):395-401.
    [49]W. Tang, L.L. Liu, S. Tian, L. Li, Y.B. Yue, Y.P. Wu, S.Y. Guan, K. Zhu, Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries [J]. Electrochemistry Communications,2010,12 (11):1524-1526.
    [50]H.-S. Kim, T.-K. Ko, B.-K. Na, W.I. Cho, B.W. Chao. Electrochemical properties of LiMxCo1-xO2 [M= Mg, Zr] prepared by sol-gel process [J]. Journal of Power Sources,2004, 138 (1-2):232-239.
    [51]F. Nobili, F. Croce, R. Tossici, I. Meschini, P. Reale, R. Marassi. Sol-gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCo02 cathodes for Li-ion batteries [J]. Journal of Power Sources,2012,197:276-284.
    [52]S.H. Oh, S.M. Lee, W.I. Cho, B.W. Cho. Electrochemical characterization of zirconium-doped LiNi0.8Co0.2O2 cathode materials and investigations on deterioration mechanism [J]. Electrochimica Acta,2006,51 (18):3637-3644.
    [54]P. Ghosh, S. Mahanty, R.N. Basu. Lanthanum-doped LiCoO2 cathode with high rate capability [J]. Electrochimica Acta,2009,54 (5):1654-1661.
    [55]Q. Cao, H.P. Zhang, G.J. Wang, Q. Xia, Y.P. Wu, H.Q. Wu, A novel carbon-coated LiCoO2 as cathode material for lithium ion battery [J]. Electrochemistry Communications,2007,9 (5): 1228-1232.
    [56]M. Mladenov, R. Stoyanova, E. Zhecheva, S. Vassilev, Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes [J]. Electrochemistry Communications,2001,3 (8):410-416.
    [57]Z. Wang, C. Wu, L. Liu, F. Wu, L. Chen, X. Huang, Electrochemical evaluation and structural characterization of commercial LiCo02 surfaces modified with MgO for lithium-ion batteries [J]. Journal of the Electrochemical Society,2002,149 (4):A466-A471.
    [58]H. Zhao, L. Gao, W. Qiu, X. Zhang, Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating [J]. Journal of Power Sources,2004,132 (1-2): 195-200.
    [59]G.T.-K. Fey, C.-Z. Lu, J.-D. Huang, T.P. Kumar, Y.-C. Chang, Nanoparticulate coatings for enhanced cyclability of LiCoO2 cathodes [J]. Journal of Power Sources,2005,146 (1-2): 65-70.
    [60]G Ting-Kuo Fey, C.-Z. Lu, T. Prem Kumar, Y.-C. Chang, TiO2 coating for long-cycling LiCoO2:a comparison of coating procedures [J]. Surface and Coatings Technology,2005, 199(1):22-31.
    [61]Z. Wang, H. Dong, L. Chen, Y. Mo, X. Huang, Understanding mechanism of improved electrochemical performance of surface modified LiCoO2 [J]. Solid State Ionics,2004,175 (1-4):239-242.
    [62]Z. Yang, Q. Qiao, W. Yang, Improvement of structural and electrochemical properties of commercial LiCoO2 by coating with LaF3 [J]. Electrochimica Acta,2011,56 (13): 4791-4796.
    [63]Y. Cho, J. Eom, J. Cho, High performance LiCoO2 cathode materials at 60℃ for lithium secondary batteries prepared by the facile nanoscale dry-coating method [J]. Journal of the Electrochemical Society,2010,157 (5):A617-A624.
    [64]H.J. Lee, Y.J. Park, Interface characterization of MgF2-coated LiCo02 thin films [J]. Solid State Ionics,2013,230(0):86-91.
    [65]K.-S. Lee, S.-T. Myung, D.-W. Kim, Y.-K. Sun, AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries [J]. Journal of Power Sources,2011,196(16):6974-6977.
    [66]GT.K. Fey, Z.X. Weng, J.G. Chen, C.Z. Lu, T.P. Kumar, S.P. Naik, A.S.T. Chiang, D.C. Lee, J.R. Lin, Preformed boehmite nanoparticles as coating materials for long-cycling LiCoO2 [J]. Journal of Applied Electrochemistry,2004,34 (7):715-722.
    [67]S.H. Choi, J.H. Kim, Y.N. Ko, K.M. Yang, Y.C. Kang, Preparation and electrochemical properties of glass-modified LiCoO2 cathode powders. Journal of Power Sources,2013, 244(0):129-135.
    [68]M.M. Thackeray, W.I. F. David, P.G Bruce, J.B. Goodenough, Lithium insertion into manganese spinels [J]. Materials Research Bulletin,1983,18 (4):461-472.
    [69]V.W.J. Verhoeven, I.M. de Schepper, G. Nachtegaal, A.P.M. Kentgens, E.M. Kelder, J. Schoonman, F.M. Mulder, Lithium dynamics in LiMn2O4 probed directly by two-dimensional Li-7NMR [J]. Physical Review Letters,2001,86 (19):4314-4317.
    [70]G. Ting-Kuo Fey, Y. Cho, T. Prem Kumar, Nanocrystalline LiMn2O4 derived by HMTA-assisted solution combustion synthesis as a lithium-intercalating cathode material, Mater [J]. Chemical Physics,2006,99 (2-3):451-458.
    [71]X.M. He, J.J. Li, Y. Cai, C.Y. Jiang, C.R. Wan, Preparation of spherical spinel LiMn2O4 cathode material for Li-ion batteries [J]. Materials Chemistry and Physics,2006,95 (1): 105-108.
    [72]H.J. Bang, V.S. Donepudi, J. Prakash, Preparation and characterization of partially substituted LiMvMn2-vO4 (M= Ni, Co, Fe) spinel cathodes for Li-ion batteries [J]. Electrochimica Acta, 2002,48:442-451.
    [73]GM. Song, W.-J. Li, Y. Zhou, Synthesis of Mg-doped LiMn2O4 powders for lithium-ion batteries by rotary heating [J]. Materials Chemistry and Physics,2004,87:162-167.
    [74]A. Subramania, N. Angayarkanni, T. Vasudevan, Synthesis of nano-crystalline LiSr,Mn2-xO4 powder by a novel sol-gel thermolysis process for Li-ion polymer battery [J]. Journal of Power Sources,2006,158 (2):1410-1413.
    [75]L. H. Yu, X.P. Qiu, J.Y. Xi, W.T. Zhu, L.Q. Chen, Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery [J]. Electrochimica Acta,2006,51 (28):6406-6411.
    [76]D. Guan, J.A. Jeevarajan, Y. Wang, Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin A12O3 coatings [J]. Nanoscale,2011,3 (4):1465-1469.
    [77]J.S. Gnanaraj, V.G Pol, A. Gedanken, D. Aurbach, Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method [J]. Electrochemistry Communications,2003,5(11):940-945.
    [78]Q. Chen, Y. Wang, T. Zhang, W. Yin, J. Yang, X. Wang, Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries [J]. Electrochimica Acta, 2012,83(0):65-72.
    [79]K.H. Jung, H.-G. Kim, YJ. Park, Effects of protecting layer [Li,La]TiO3 on electrochemical properties of LiMn2O4 for lithium batteries [J]. Journal of Alloys and Compounds,2011, 509(12):4426-4432.
    [80]J. Liu, W. Qiu, L. Yu, H. Zhao, T. Li, Synthesis and electrochemical characterization of layered Li(Ni1/3Co1/3Mn1/3)O2 cathode materials by low-temperature solid-state reaction [J]. Journal of Alloys and Compounds,2008,449 (1-2):326-330.
    [81]G.G. Amatucci, A. Blyr, C. Sigala, P. Alfonse, J.M. Tarascon, Surface treatments of spinels for improved elevated temperature performance [J]. Solid State Ionics, 1997,104 (1-2):13-25.
    [82]Y. Idemoto, H. Narai, N. Koura, Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries [J]. Journal of Power Sources,2003,119-121:125-129.
    [83]K. Dokko, M. Mohamedi, N. Anzue, T. Itoh, I. Uchida, In situ Raman spectroscopic studies of LiNi,Mn2-xO4 thin film cathode materials for lithium ion second batteries [J]. Journal of Materials Chemistry,2002,12:3688-3693.
    [84]K. Hong, Y. Sun, Synthesis and electrochemical characteristics of LiCrxNi0.5-xMn1.5O4 spinel as 5 V cathode materials for lithium secondary batteries [J]. Journal of Power Sources,2002, 109 (2):427-430.
    [85]A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemistry Society, 1997,144:1188.
    [86]A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough. Effect of structure on the Fe3+/Fe2+redox couple in iron phosphates [J]. Journal of the Electrochemistry Society,1997,144 (5):1609-1613.
    [87]G.X. Wang, S.L. Bewlay, K. Kontantinov, H.K. Liu, S.X. Dou, J.H. Ahn. Physical and electrochemical properties of doped lithium iron phosphate electrodes [J]. Electrochimica Acta,2004,502 (2-3):443-447.
    [88]S.Y. Chung, Y.M. Chiang. Microscale measurements of the electrical conductivity of doped LiFePO4 [J]. Journal of the Electrochemistry Solid-State Letter,2003,6 (12):A278-A281.
    [89]GX. Wang, S. Bewlay, J. Yao, J.H. Ahn, S.X. Dou, H.K. Liu. Characterization of LiMxFe1-xPO4 (M=Mg, Zr, Ti) cathode materials prepared by the sol-gel method [J]. Journal of the Electrochemistry Solid-State Letter,2004,7 (12):A503-A506.
    [90]D.Y. Wang, H.Li, S.Q. Shi, X.J. Huang, L.Q. Chen. Improving the rate performance of LiFePO4 by Fe-site doping [J]. Electrochimica Acta,2005,50 (14):2955-2958.
    [91]H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochemistry Communications,2006,8 (10): 1553-1557.
    [92]H.C. Shin, S.B. Park, H. Jang, K.Y. Chung, W. Ⅱ. Cho, C.S. Kim, B.W. Cho. Rate performance and structural change of Cr-doped LiFePO4/C during cycling [J]. Electrochimica Acta,2008,53 (27):7946-7951.
    [93]L. Yang, L. Jiao, Y. Miao, H, Yuan. Improvement of electrochemical properties of LiFePO4/C cathode materials by chlorine doping [J]. Journal of Solid State Electrochemistry,2009,13: 1541-1544.
    [94]N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier. M. Armand. Electroactivity of natural and synthetic triphylite [J]. Journal of Power Sources,2001,97-98:503-507.
    [95]K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, K.T. Kang, H.G Kim. Surface modification by silver coating for improving electrochemical properties of LiFePO4 [J]. Solid State Communications,2004,129 (5):311-314.
    [96]C. Delacourt, C. Wurm, L. Laffont, J.B. Leriche, C. Masquelier. Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4 composites [J]. Solid State Ionics, 2006,177 (3-4):333-341.
    [97]C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, H.L. Li. Synthesis and characterization of LiFePO4/(Ag-t-C) composite cathodes with nano-carbon webs [J]. Powder Technology,2008, 181 (3):301-306.
    [98]H.H. Chang, C.C. Chang, C.Y. Su, H.C. Wu, M.H. Yang, N.L. Wu. Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries [J]. Journal of Power Sources,2008,185 (1):466-472.
    [99]H. Liu, J.Y. Xie, K. Wang. Synthesis and characterization of LiFePO4/ (C+Fe2P) composite cathodes [J]. Solid State Ionics,2008,179 (27-32):1768-1771.
    [100]A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [101]K.S. Park, K.T. Kang, S.B. Lee, G.Y. Kim, YJ. Park, H.G. Kim. Synthesis of LiFePO4 with fine particle by co-precipitation method [J]. Materials Research Bulletin,2004,39 (12): 1803-1810.
    [102]S.H. Yang, P.Y Zavalij, M.S. Whittinghan. Hydrothermal synthesis of lithium iron phosphate cathodes [J]. Electrochemistry Communications,2001,3 (9):505-508.
    [103]T. Ohzuku, Y. Makimura, Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries [J]. Chemistry Letters,2001,30 (7):642-643.
    [104]Y.W. Zeng, Investigation of LiNi1/3Co1/3Mn1/3O2 cathode particles after 300 discharge/charge cycling in a lithium-ion battery by analytical TEM [J]. Journal of Power Sources,2008,183 (1):316-324.
    [105]Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.-T. Myung, K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries [J]. Nature Materials,2012,11 (11):942-947.
    [106]H.-S. Shin, D. Shin, Y.-K. Sun, Synthesis and electrochemical properties of Li[Ni0.4Co0.2Mn)0.4-x)Mgx]O2-yFy via a carbonate co-precipitation [J]. Current Applied Physics,2006,6, Supplement 1(0):el2-el6.
    [107]W.-S. Yoon, K.-W. Nam, D. Jang, K.Y. Chung, J. Hanson, J.-M. Chen, X.-Q. Yang, Structural study of the coating effect on the thermal stability of charged MgO-coated LiNio.gCoo.2O2 cathodes investigated by in situ XRD [J]. Journal of Power Sources,2012, 217:128-134.
    [108]K.K. Cheralathan, N.Y. Kang, H.S. Park, YJ. Lee, W.C. Choi, Y.S. Ko, Y.-K. Park, Preparation of spherical LiNi0.80Co0.15Mn0.05O2 lithium-ion cathode material by continuous co-precipitation [J]. Journal of Power Sources,2010,195 (5):1486-1494.
    [109]S. Zhang, C. Deng, B.L. Fu, S.Y Yang, L. Ma, Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method [J]. Powder Technology,2010,198 (3):373-380.
    [110]K. Yin, W. Fang, B. Zhong, X. Guo, Y. Tang, X. Nie, The effects of precipitant agent on structure and performance of Li[Ni1/3Mn1/3Co1/3]O2 cathode material via a carbonate co-precipitation method [J]. Electrochimica Acta,2012,85:99-103.
    [111]K.-C. Jiang, S. Xin, J.-S. Lee, J. Kim, X.-L. Xiao, Y.-G Guo, Improved kinetics of Li[Ni1/3Mn1/3Co1/3]O2 cathode material through reduced graphene oxide networks [J]. Physical Chemistry Chemical Physics,2012,14 (8):2934-2939.
    [112]J. Xu, S.-L. Chou, Q.-F. Gu, H.-K. Liu, S.-X. Dou, The effect of different binders on electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode material in lithium ion batteries [J]. Journal of Power Sources,2013,225:172-178.
    [113]C. Nithya, R. Thirunakaran, A. Sivashanmugam, GV.M. Kiruthika, S. Gopukumar, High-capacity sol-gel synthesis of LiNixCoyMn1-x-yO2(0≤x,≤y<0.5) cathode material for use in lithium rechargeable batteries [J]. Journal of Physical Chemistry C,2009,113 (41): 17936-17944.
    [114]J.M. Zheng, X.B. Wu, Y. Yang, A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery [J]. Electrochimica Acta,2011,56 (8):3071-3078.
    [115]Gangulibabu, D. Bhuvaneswari, N. Kalaiselvi, Comparison of com starch-assisted sol-gel and combustion methods to prepare LiMnxCoyNizO2 compounds [J]. Journal of Solid State Electrochemistry,2013,17 (1):9-17.
    [116]S.H. Kang, P. Kempgens, S. Greenbaum, A.J. Kropf, K. Amine, M.M. Thackeray, Interpreting the structural and electrochemical complexity of 0.5Li2MnO3-0.5LiMO2 electrodes for lithium batteries (M= Mn0.5-xNi0.5-xCo2x,0≤x≤0.5) [J]. Journal of Materials Chemistry,2007,17 (20):2069-2077.
    [117]S.H. Kang, K. Amine, Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55-0.52)O2-zFz cathode materials for Li-ion secondary batteries [J]. Journal of Power Sources,2005,146 (1-2):654-657.
    [118]J. Shu, M. Shui, D. Xu, D. Wang, Y. Ren, J. Yao, R. Ma, T. Yi, L. Li, S. Gao, W. Zheng, L. Hou, J. Xu, Z. Zhu, M. Li, Tartaric acid-assisted sol-gel synthesis of LiNio0.5Co0.5-xTixO2 (0≤x≤0.5) as cathode materials for lithium-ion batteries [J]. Journal of Electroanalytical Chemistry,2011,663 (2):90-97.
    [119]D. Bhuvaneswari, Gangulibabu, N. Kalaiselvi, Surfactant-coassisted sol-gel synthesis to prepare LiNiyMnyCo1-2yO2 with improved electrochemical behavior [J]. Journal of Solid State Electrochemistry,2012,16 (11):3667-3674.
    [120]T. Zhao, S. Chen, L. Li, X. Zhang, R. Chen, I. Belharouak, F. Wu, K. Amine, Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries [J]. Journal of Power Sources,2013, 228(0):206-213.
    [121]B. Markovsky, D. Kovacheva, Y. Talyosef, M. Gorova, J. Grinblat, D. Aurbach, Studies of nanosized LiNi0.5Mn0.5O2-layered compounds produced by self-combustion reaction as cathodes for lithium-ion batteries [J]. Electrochemical and Solid-State Letters,2006,9 (10): A449-A453.
    [122]O. Haik, S.K. Martha, H. Sclar, Z. Samuk-Fromovich, E. Zinigrad, B. Markovsky, D. Kovacheva, N. Saliyski, D. Aurbach, Characterizations of self-combustion reactions (SCR) for the production of nanomaterials used as advanced cathodes in Li-ion batteries [J]. Thermochimica Acta,2009,493 (1-2):96-104.
    [123]P. Periasamy, N. Kalaiselvi, Electrochemical performance behavior of combustion-synthesized LiNi0.5Mn0.5O2 lithium-intercalation cathodes [J]. Journal of Power Sources, 2006,159 (2):1360-1364.
    [124]M. Sathiya, A.S. Prakash, K Ramesha, A.K. Shukla, Rapid synthetic routes to prepare LiNi1/3Mn1/3Co1/3O2 as a high voltage, high-capacity Li-ion battery cathode material [J]. Materials Research Bulletin,2009,44 (10):1990-1994.
    [125]M. Song, I. Kwon, S. Shim, J.H. Song, Electrochemical characterizations of Fe-substituted LiNiO2 synthesized in air by the combustion method [J]. Ceramics International,2010,36 (4):1225-1231.
    [126]S.N. Kwon, J. Song, D.R. Mumm, Effects of cathode fabrication conditions and cycling on the electrochemical performance of LiNiO2 synthesized by combustion and calcination [J]. Ceramics International,2011,37 (5):1543-1548.
    [127]M. Song, S. Kwon, H. Park, Variation of cathode properties of LiNi0.97sM0.025O2 (M= Ga, In and T1) prepared by the combustion method [J]. Ceramics International,2009,35 (8): 3135-3141.
    [128]J. Xie, X. Huang, Z. Zhu, J. Dai, Hydrothermal synthesis of Li(Ni1/3Co1/3Mn1/3)O2 for lithium rechargeable batteries [J]. Ceramics International,2010,36 (8):2485-2487.
    [129]K. Du, Z. Peng, G. Hu, Y. Yang, L. Qi, Synthesis of LiMn1/3Ni1/3Co1/3O2 in molten KCl for rechargeable lithium-ion batteries [J]. Journal of Alloys and Compounds,2009,476 (1-2): 329-334.
    [130]M.V. Reddy, B.D. Tung, L. Yang, N.D. Quang Minh, K.P. Loh, B.V.R. Chowdari, Molten salt method of preparation and cathodic studies on layered-cathode materials Li(Co0.7Ni0.3)O2 and Li(Ni0.7Co0.3)O2 for Li-ion batteries [J]. Journal of Power Sources, 2013,225:374-381.
    [131]K.S. Tan, M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries [J]. Journal of Power Sources,2005, 147(1-2):241-248.
    [132]M.V. Reddy, GV.S. Rao, B.V.R. Chowdari, Synthesis by molten salt and cathodic properties of Li(Ni1/3Co1/3Mn1/3)O2 [J]. Journal of Power Sources,2006,159 (1):263-267.
    [133]H. Ren, Y. Wang, D. Li, L. Ren, Z. Peng, Y. Zhou, Synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium battery by the rheological phase method [J]. Journal of Power Sources,2008,178 (1):439-444.
    [134]J.H. Kim, J.H. Yi, Y.N. Ko, Y.C. Kang, Electrochemical properties of nano-sized LiNi1/3Co1/3Mn1/3O2 powders in the range from 56 to 101 nm prepared by flame spray pyrolysis [J]. Materials Chemistry and Physics,2012,134 (1):254-259.
    [135]B. Zhang, G. Chen, Y. Liang, P. Xu, Structural and electrochemical properties of LiNi0.5Mn0.5-xAlxO2 (x=0,0.02,0.05,0.08, and 0.1) cathode materials for lithium-ion batteries [J]. Solid State Ionics,2009,180 (4-5):398-404.
    [136]F. Wu, M. Wang, Y. Su, L. Bao, S. Chen, A novel layered material of LiNi0.32Mn0.33Co0.33Al0.01O2 for advanced lithium-ion batteries [J]. Journal of Power Sources, 2010,195(9):2900-2904.
    [137]Y. Ding, P. Zhang, Z. Long, Y. Jiang, F. Xu, Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning [J]. Journal of Alloys and Compounds,2009,487(1-2):507-510.
    [138]S.H. Ju, J.H. Kim, Y.C. Kang, Electrochemical properties of LiNi0.gCo0.2-xAlxO2 (0    [139]S. Yoon, C.W. Lee, Y.S. Bae, I. Hwang, Y.-K. Park, J.H. Song, Method of preparation for particle growth enhancement of LiNio.gCo0.15Al0.05O2 [J]. Electrochemical and Solid-State Letters,2009,12 (11):A211-A214.
    [140]D.P. Abraham, S. Kawauchi, D.W. Dees, Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2 [J]. Electrochimica Acta,2008,53 (5):2121-2129.
    [141]W.M. Liu, G.R. Hu, Z.D. Peng, K. Du, Y.B. Cao, Q. Liu, Synthesis of spherical LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries by a co-oxidation-controlled crystallization method [J]. Chinese Chemical Letters,2011,22 (9):1099-1102.
    [142]W. Liu, G. Hu, K. Du, Z. Peng, Y. Cao, Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2 [J]. Journal of Power Sources,2013,230:201-206.
    [143]M.V. Reddy, GV. Subba Rao, B.V.R. Chowdari, Preparation and characterization of LiNi0.5Co0.5O2 and LiNi0.5Co0.4Al0.1O2 by molten salt synthesis for Li ion batteries [J]. Journal of Physical Chemistry C,2007,111 (31):11712-11720.
    [144]G-T. Kim, J.-U. Kim, Y.-J. Sim, K.-W. Kim, Electrochemical properties of LiCrxNi0.5-xMn0.5O2 prepared by co-precipitation method for lithium secondary batteries [J]. Journal of Power Sources,2006,158 (2):1414-1418.
    [145]N.K. Karan, M. Balasubramanian, D.P. Abraham, M.M. Furczon, D.K. Pradhan, JJ. Saavedra-Arias, R. Thomas, R.S. Katiyar, Structural characteristics and electrochemical performance of layered Li[Mn0.5-xCr2XNi0.5-x]02 cathode materials [J]. Journal of Power Sources,2009,187 (2):586-590.
    [146]B. Zhang, L. Li, J. Zheng, Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion battery [J]. Journal of Alloys and Compounds,2012,520:190-194.
    [147]D. Li, T. Muta, H. Noguchi, Electrochemical characteristics of LiNi0.5Mn0.5-xTixO2 prepared by solid state method [J]. Journal of Power Sources,2004,135 (1-2):262-266.
    [148]P.-Y. Liao, J.-G Duh, H.-S. Sheu, Structural and thermal properties of LiNi0.6-xMgxCo0.25Mn0.15O2 cathode materials [J]. Journal of Power Sources,2008,183 (2): 766-770.
    [149]Y. Weng, S. Xu, G. Huang, C. Jiang, Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries [J]. Journal of Hazardous Materials,2013,246-247:163-172.
    [150]S.H. Kang, K. Amine, Comparative study of Li(Ni0.5-xMn0.5-xM2x')O2 (M'= Mg, Al, Co, Ni, Ti; x=0,0.025) cathode materials for rechargeable lithium batteries [J]. Journal of Power Sources,2003,119-121:150-155.
    [151]S.W. Woo, S.T. Myung, H. Bang, D.W. Kim, Y.K. Sun, Improvement of electrochemical and thermal properties of LiNi0.8Co0.15Al0.05O2 positive electrode materials by multiple metal (Al, Mg) substitution [J]. Electrochimica Acta,2009,54 (15):3851-3856.
    [152]D. Li, Y. Sasaki, K. Kobayakawa, Y. Sato, Morphological, structural, and electrochemical characteristics of LiNi0.5Mn0.4M0.1O2 (M=Li, Mg, Co, Al) [J]. Journal of Power Sources, 2006,157(1):488-493.
    [153]Q. Liu, K. Du, H. Guo, Z.-d. Peng, Y.-b. Cao, G-r. Hu, Structural and electrochemical properties of Co-Mn-Mg multi-doped nickel based cathode materials LiNi0.9Co0.1-x[Mn1/2Mg1/2]xO2 for secondary lithium ion batteries [J]. Electrochimica Acta, 2013,90:350-357.
    [154]G-H. Kim, M.-H. Kim, S.-T. Myung, Y.K. Sun, Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2-zFz as lithium intercalation material [J]. Journal of Power Sources, 2005,146 (1-2):602-605.
    [155]Y.-S. He, L. Pei, X.-Z. Liao, Z.-F. Ma, Synthesis of LiNi1/3Co1/3Mn1/3O2-zF2 cathode material from oxalate precursors for lithium ion battery [J]. Journal of Fluorine Chemistry,2007,128 (2):139-143.
    [156]C. Hu, J. Guo, J. Wen, Y. Peng, Y. Chen, Preparation and electrochemical performance of LiNi0.5Mn0.5O2-xFx (0    [157]Y.Q. Qiao, X.L. Wang, Y. Zhou, J.Y. Xiang, D. Zhang, S.J. Shi, J.P. Tu, Electrochemical performance of carbon-coated Li3V2(PO4)3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis [J]. Electrochimica Acta,2010,56 (1):510-516.
    [158]Y.Q. Qiao, X.L. Wang, J.Y. Xiang, D. Zhang, W.L. Liu, J.P. Tu, Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source [J]. Electrochimica Acta,2011,56 (5):2269-2275.
    [159]C. Su, X. Bu, L. Xu, J. Liu, C. Zhang, A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries [J]. Electrochimica Acta, 2012,64:190-195.
    [160]T. Jiang, W. Pan, J. Wang, X. Bie, F. Du, Y. Wei, C. Wang, G. Chen, Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method [J]. Electrochimica Acta,2010,55 (12):3864-3869.
    [161]K. Zaghib, J. Dube, A. Dallaire, K. Galoustov, A. Guerfi, M. Ramanathan, A. Benmayza, J. Prakash, A. Mauger, C.M. Julien, Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries [J]. Journal of Power Sources, 2012,219:36-44.
    [162]R. Guo, P. Shi, X. Cheng, C. Du, Synthesis and characterization of carbon-coated LiN1/3Co1/3Mn1/3O2 cathode material prepared by polyvinyl alcohol pyrolysis route [J]. Journal of Alloys and Compounds,2009,473 (1-2):53-59.
    [163]J. Liu, Q. Wang, B. Reeja-Jayan, A. Manthiram, Carbon-coated high capacity layered Li[Lio.2Mno.54Nio.i3Coo.i3]02 cathodes [J]. Electrochemistry Communications,2010,12 (6): 750-753.
    [164]H.-J. Kweon, SJ. Kim, D.G Park, Modification of LixNi1-yCoyO2 by applying a surface coating of MgO [J]. Journal of Power Sources,2000,88 (2):255-261.
    [165]E. Zhecheva, R. Stoyanova, G Tyuliev, K. Tenchev, M. Mladenov, S. Vassilev, Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO [J]. Solid State Sciences,2003,5 (5): 711-720.
    [166]H.J. Kweon, D.G. Park, Surface modification of LiSr0.002Ni0.9Co0.1O2 by overcoating with a magnesium oxide [J]. Electrochemical and Solid-State Letters,2000,3 (3):128-130.
    [167]Y. Huang, J. Chen, F. Cheng, W. Wan, W. Liu, H. Zhou, X. Zhang, A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process [J]. Journal of Power Sources,2010,195 (24):8267-8274.
    [168]J.-T. Lee, F.-M. Wang, C.-S. Cheng, C.-C. Li, C.-H. Lin, Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries [J]. Electrochimica Acta,2010,55 (12):4002-4006.
    [169]D. Li, Y. Kato, K. Kobayakawa, H. Noguchi, Y. Sato, Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating [J]. Journal of Power Sources,2006,160 (2):1342-1348.
    [170]A. Sakuda, A. Hayashi, M. Tatsumisago, Electrochemical performance of all-solid-state lithium secondary batteries improved by the coating of Li2O-TiO2 films on LiCoO2 electrode [J]. Journal of Power Sources,2010,195 (2):599-603.
    [171]J.M. Zheng, J. Li, Z.R. Zhang, X.J. Guo, Y. Yang, The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]P2 cathode material for lithium-ion battery [J]. Solid State Ionics,2008,179 (27-32):1794-1799.
    [172]F. Wu, M. Wang, Y. Su, L. Bao, S. Chen, Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2-coating [J]. Electrochimica Acta,2009,54 (27):6803-6807.
    [173]F. Wu, M. Wang, Y. Su, S. Chen, Surface modification of LiCo1/3Ni1/3Mn1/3O2 with Y2O3 for lithium-ion battery [J]. Journal of Power Sources,2009,189 (1):743-747.
    [174]R. Guo, P. Shi, X. Cheng, L. Sun, Effect of ZnO modification on the performance of LiNi0.5Co0.25Mn0.25O2 cathode material [J]. Electrochimica Acta,2009,54 (24):5796-5803.
    [175]G Singh, R. Thomas, A. Kumar, R.S. Katiyar, A. Manivannan, Electrochemical and structural investigations on ZnO treated 0.5Li2Mn03-0.5LiMno.5Nio.502 layered composite cathode material for lithium ion battery [J]. Journal of the Electrochemical Society,2012, 159(4):A470-A478.
    [176]Y. Huang, J. Chen, J. Ni, H. Zhou, X. Zhang, A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 [J]. Journal of Power Sources,2009, 188 (2):538-545.
    [177]T. Liu, S.-X. Zhao, K. Wang, C.-W. Nan, CuO-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material with improved cycling performance at high rates [J]. Electrochimica Acta,2012,85: 605-611.
    [178]H.J. Lee, K.-S. Park, Y.J. Park, Surface modification of Li[Ni0.3Co0.4Mn0.3]O2 cathode by Li-La-Ti-O coating [J]. Journal of Power Sources,2010,195 (18):6122-6129.
    [179]W. Hong, C. Ming-Cai, Modification of LiCoO2 by Surface Coating with MgO/TiO2/SiO2 for High-Performance Lithium-Ion Battery [J]. Electrochemical and Solid-State Letters, 2006,9 (2):A82-A85.
    [180]K. Jung, H.-G Kim, K. Kim, Y. Park, Surface modification effects of [Li,La]TiO3 on the electrochemical performance of Li[Ni0.35Co0.3Mn0.35]O2 cathode material for lithium-ion batteries [J]. Journal of Applied Electrochemistry,2011,41 (5):551-559.
    [181]Z. Wang, L. Liu, L. Chen, X. Huang, Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries [J]. Solid State Ionics,2002, 148 (3-4):335-342.
    [182]Y. Iriyama, H. Kurita, I. Yamada, T. Abe, Z. Ogumi, Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode [J]. Journal of Power Sources,2004,137 (1):111-116.
    [183]L. Liu, L. Chen, X. Huang, X.-Q. Yang, W.-S. Yoon, H.S. Lee, J. McBreen, Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material [J]. Journal of the Electrochemical Society,2004,151 (9):A1344-A1351.
    [184]J. Cho, Y.J. Kim, B. Park, LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase [J]. Journal of the Electrochemical Society,2001, 148(10):A1110-A1115.
    [185]J. Cho, Y.J. Kim, B. Park, Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell [J]. Chemistry of Materials,2000,12 (12):3788-3791.
    [186]H.-J. Kweon, J. Park, J. Seo, G. Kim, B. Jung, H.S. Lim, Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoO2 in a Li-ion cell [J]. Journal of Power Sources,2004,126 (1-2):156-162.
    [187]GT.-K. Fey, H.-Z. Yang, T. Prem Kumar, S.P. Naik, A.S.T. Chiang, D.-C. Lee, J.-R. Lin, A simple mechano-thermal coating process for improved lithium battery cathode materials [J]. Journal of Power Sources,2004,132 (1-2):172-180.
    [188]H.-Y. Wang, A.-D. Tang, K.-1. Huang, S.-Q. Liu, Uniform A1F3 thin layer to improve rate capability of LiNi1/3Co1/3Mn1/3O2 material for Li-ion batteries [J]. Transactions of Nonferrous Metals Society of China,2010,20 (5):803-808.
    [189]H. Lin, J. Zheng, Y. Yang, The effects of quenching treatment and AlF3 coating on LiNi0.5Mn0.5O2 cathode materials for lithium-ion battery [J]. Materials Chemistry and Physics,2010,119 (3):519-523.
    [190]H.B. Kim, B.C. Park, S.T. Myung, K. Amine, J. Prakash, Y.K. Sun, Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells [J]. Journal of Power Sources,2008,179 (1):347-350.
    [191]S.-H. Lee, C.S. Yoon, K. Amine, Y.-K. Sun, Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.15]O2 by AlF3 coating [J]. Journal of Power Sources,2013,234: 201-207.
    [192]M. Menetrier, J. Bains, L. Croguennec, A. Flambard, E. Bekaert, C. Jordy, P. Biensan, C. Delmas, NMR evidence of LiF coating rather than fluorine substitution in Li(Ni0.425Mn0.425Co0.15)O2 [J]. Journal of Solid State Chemistry,2008,181 (12):3303-3307.
    [193]S.H. Yun, K.-S. Park, Y.J. Park, The electrochemical property of ZrFx-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material [J]. Journal of Power Sources,2010,195 (18): 6108-6115.
    [194]K. Xu, Z. Jie, R. Li, Z. Chen, S. Wu, J. Gu, J. Chen, Synthesis and electrochemical properties of CaF2-coated for long-cycling Li[Mn1/3Co1/3Ni1/3]O2 cathode materials [J]. Electrochimica Acta,2012,60:130-133.
    [195]H.G. Song, J.Y. Kim, K.T. Kim, Y.J. Park, Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials [J]. Journal of Power Sources,2011,196 (16):6847-6855.
    [196]B. Liu, Q. Zhang, S. He, Y. Sato, J. Zheng, D. Li, Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4 [J]. Electrochimica Acta, 2011,56 (19):6748-6751.
    [197]S.-W. Cho, G.-O. Kim, K.-S. Ryu, Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries [J]. Solid State Ionics,2012,206:84-90.
    [198]X. Ma, C. Wang, X. Han, J. Sun, Effect of AlPO4 coating on the electrochemical properties of LiNi0.8Co0.2O2 cathode material [J]. Journal of Alloys and Compounds,2008,453 (1-2): 352-355.
    [199]S.H. Lee, B.K. Koo, J.-C. Kim, K.M. Kim, Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries [J]. Journal of Power Sources,2008,184 (1):276-283.
    [200]W.S. Kim, S.B. Kim, I.C. Jang, H.H. Lim, Y.S. Lee, Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 [J]. Journal of Alloys and Compounds,2010, 492 (1-2):L87-L90.
    [201]C. Wu, X. Fang, X. Guo, Y. Mao, J. Ma, C. Zhao, Z. Wang, L. Chen, Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole [J]. Journal of Power Sources, 2013,231:44-49.
    [202]W.C. West, J. Soler, M.C. Smart, B.V. Ratnakumar, S. Firdosy, V. Ravi, M.S. Anderson, J. Hrbacek, E.S. Lee, A. Manthiram, Electrochemical behavior of layered solid solution Li2MnO3-LiMO2 (M= Ni, Mn, Co) Li-ion cathodes with and without alumina coatings [J]. Journal of the Electrochemical Society,2011,158 (8):A883-A889.
    [203]M. Bettge, Y. Li, B. Sankaran, N.D. Rago, T. Spila, R.T. Haasch, I. Petrov, D.P. Abraham, Improving high-capacity Li1.2Mo0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina [J]. Journal of Power Sources,2013,233:346-357.
    [204]J. Liu, B. Reeja-Jayan, A. Manthiram, Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes [J]. Journal of Physical Chemistry C,2010,114 (20):9528-9533.
    [205]M.M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, Li2Mn03-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries [J]. Journal of Materials Chemistry,2007,17 (30):3112-3125.
    [206]Y. Xiang, Z. Yin, Y. Zhang, X. Li, Effects of synthesis conditions on the structural and electrochemical properties of the Li-rich material Li[Li0.2Ni0.17Co0.16Mn0.47]O2 via the solid-state method [J]. Electrochimica Acta,2013,91:214-218.
    [207]T. Wang, Z.-H. Liu, L. Fan, Y. Han, X. Tang, Synthesis optimization of Lii+x[Mno.45Coo.4oNio.i5]02 with different spherical sizes via co-precipitation [J]. Powder Technology,2008,187 (2):124-129.
    [208]J.-H. Jeong, B.-S. Jin, W.-S. Kim, G. Wang, H.-S. Kim, The influence of compositional change of 0.3Li2Mn03-0.7LiMn1-xNiyCoo.102 (0.2    [209]Y. Chen, G. Xu, J. Li, Y. Zhang, Z. Chen, F. Kang, High capacity 0.5Li2MnO3·0.5LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method [J]. Electrochimica Acta,2013,87:686-692.
    [210]J.T. Son, H.J. Jeon, J.B. Lim, Synthesis and electrochemical characterization of Li2MnO3-LiNixCOyMnzO2 cathode for lithium battery using co-precipitation method [J]. Advanced Powder Technology,2013,24 (1):270-274.
    [211]G.-Y. Kim, S.-B. Yi, Y.J. Park, H.-G. Kim, Electrochemical behaviors of Li[Li(1-x)/3Mn(2-X)/3Nix/3Cox/3]O2 cathode series (0< x< 1) synthesized by sucrose combustion process for high capacity lithium ion batteries [J]. Materials Research Bulletin,2008,43 (12):3543-3552.
    [212]Z. Zhong, N. Ye, H. Wang, Z. Ma, Low temperature combustion synthesis and performance of spherical 0.5Li2MnO3-LiNi0.5Mn0.5O2 cathode material for Li-ion batteries [J]. Chemical Engineering Journal,2011,175:579-584.
    [213]Y.J. Park, Y.-S. Hong, X. Wu, K.S. Ryu, S.H. Chang, Structural investigation and electrochemical behaviour of Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 compounds by a simple combustion method [J]. Journal of Power Sources,2004,129 (2):288-295.
    [214]Y.-S. Hong, Y.J. Park, K.S. Ryu, S.H. Chang, M.G Kim, Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1-2x)3Mn(2-x)/3]O2 prepared by a simple combustion method [J]. Journal of Materials Chemistry,2004,14 (9):1424-1429.
    [215]J. Li, R. Klopsch, M.C. Stan, S. Nowak, M. Kunze, M. Winter, S. Passerini, Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.o8]O2 with improved rate capability [J]. Journal of Power Sources, 2011,196 (10):4821-4825.
    [216]C.J. Jafta, K.I. Ozoemena, M.K. Mathe, W.D. Roos, Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery [J]. Electrochimica Acta,2012,85:411-422.
    [217]G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, Electrochemical behavior of Cr-doped composite Li2MnO3-LiMn0.5Ni0.5O2 cathode materials [J]. Journal of the Electrochemical Society,2012,159 (4):A410-A420.
    [218]D. Wang, Y. Huang, Z. Huo, L. Chen, Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material [J]. Electrochimica Acta, 2013,107:461-466.
    [219]Y.K. Sun, M.G. Kim, S.H. Kang, K. Amine, Electrochemical performance of layered Li[Li0.15Ni0.275-xMgxMn0.575]O2 cathode materials for lithium secondary batteries [J]. Journal of Materials Chemistry,2003,13 (2):319-322.
    [220]Z. He, Z. Wang, H. Guo, X. Li, W. Xianwen, P. Yue, J. Wang, A simple method of preparing graphene-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium-ion batteries [J]. Materials Letters, 2013,91:261-264.
    [221]J.-H. Ju, S.-W. Cho, S.-G Hwang, S.-R. Yun, Y. Lee, H.M. Jeong, M.-J. Hwang, K.M. Kim, K-S. Ryu, Electrochemical performance of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 modified by carbons as cathode materials [J]. Electrochimica Acta,2011,56 (24):8791-8796.
    [222]S.K Martha, J. Nanda, Y. Kim, R.R. Unocic, S. Pannala, N.J. Dudney, Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2 [J]. Journal of Materials Chemistry A,2013,1 (18):5587-5595.
    [223]Y. Wu, A. Manthiram, Effect of surface modifications on the layered solid solution cathodes (1-z)Li[Li1/3Mn2/3]O2-(z)Li[Mn0.5-Ni0.5-yCo2y]O2 [J]. Solid State Ionics,2009,180(1): 50-56.
    [224]Y. Liu, S. Liu, Y. Wang, L. Chen, X. Chen, Effect of MnO2 modification on electrochemical performance of LiNio.2Lio.2Mno.6O2 layered solid solution cathode [J]. Journal of Power Sources,2013,222:455-460.
    [225]S.-X. Liao, Y.-J. Zhong, B.-H. Zhong, H. Liu, X. Guo, Effective enhancement of electrochemical performance for low-cost cathode material Li1.23iMn0.615Ni0.154O2 via a novel facile hydrothermal modification [J]. Journal of Power Sources,2014,246:569-573.
    [226]J.M. Zheng, Z.R. Zhang, X.B. Wu, Z.X. Dong, Z. Zhu, Y. Yang, The effects of A1F3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery [J]. Journal of the Electrochemical Society,2008,155 (10):A775-A782.
    [227]J.-H. Kim, M.-S. Park, J.-H. Song, D.-J. Byun, Y.-J. Kim, J.-S. Kim, Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material [J]. Journal of Alloys and Compounds,2012,517:20-25.
    [228]J.W. Min, J. Gim, J. Song, W.-H. Ryu, J.-W. Lee, Y.-I. Kim, J. Kim, W.B. Im, Simple, robust metal fluoride coating on layered Li1.23Ni0.13Co0.14Mn0.56O2 and its effects on enhanced electrochemical properties [J]. Electrochimica Acta,2013,100:10-17.
    [229]S.-H. Kang, C.S. Johnson, J.T. Vaughey, K. Amine, M.M. Thackeray, The effects of acid treatment on the electrochemical properties of 0.5Li2Mn03·0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells [J]. Journal of the Electrochemical Society,2006,153 (6): A1186-A1192.
    [230]Y.Q. Qiao, J.P. Tu, J.Y. Xiang, X.L. Wang, Y.J. Mai, D. Zhang, W.L. Liu, Effects of synthetic route on structure and electrochemical performance of Li3V2(PO4)3/C cathode materials [J]. Electrochimica Acta,2011,56 (11):4139-4145.
    [231]Y.Q. Qiao, J.P. Tu, X.L. Wang, D. Zhang, J.Y. Xiang, Y.J. Mai, C.D. Gu, Synthesis and improved electrochemical performances of porous Li3V2(PO4)3/C spheres as cathode material for lithium-ion batteries [J]. Journal of Power Sources,2011,196 (18):7715-7720.
    [232]X.-W. Gao, J.-Z. Wang, S.-L. Chou, H.-K. Liu, Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery [J]. Journal of Power Sources,2012,220:47-53.
    [233]Y.-C. Si, L.-F. Jiao, H.-T. Yuan, H.-X. Li, Y.-M. Wang, Structural and electrochemical properties of LiV3O8 prepared by combustion synthesis [J]. Journal of Alloys and Compounds,2009,486 (1-2):400-405.
    [234]S.S. Zhang, D. Foster, J. Read, A high energy density lithium/sulfur-oxygen hybrid battery [J]. Journal of Power Sources,2010,195 (11):3684-3688.
    [235]P.G. Bruce, Energy storage beyond the horizon:Rechargeable lithium batteries [J]. Solid State Ionics,2008,179 (21-26):752-760.
    [236]C. Barchasz, J.-C. Lepretre, F. Alloin, S. Patoux, New insights into the limiting parameters of the Li/S rechargeable cell [J]. Journal of Power Sources,2012,199:322-330.
    [237]Y. Jung, S. Kim, New approaches to improve cycle life characteristics of lithium-sulfur cells [J]. Electrochemistry Communications,2007,9 (2):249-254.
    [238]S.-E. Cheon, K.-S. Ko, J.-H. Cho, S.-W. Kim, E.-Y. Chin, H.-T. Kim, Rechargeable lithium sulfur battery:Ⅱ. rate capability and cycle characteristics [J]. Journal of the Electrochemical Society,2003,150 (6):A800-A805.
    [239]Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the Li/S battery system [J]. Journal of the Electrochemical Society,2004,151 (11):A1969-A1976.
    [240]H.S. Ryu, Z. Guo, H.J. Ahn, GB. Cho, H. Liu, Investigation of discharge reaction mechanism of lithium|liquid electrolyte|sulfur battery [J]. Journal of Power Sources,2009, 189 (2):1179-1183.
    [241]X. Liang, Y. Liu, Z. Wen, L. Huang, X. Wang, H. Zhang, A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries [J]. Journal of Power Sources, 2011,196 (16):6951-6955.
    [242]S.-R. Chen, Y.-P. Zhai, G-L. Xu, Y.-X. Jiang, D.-Y. Zhao, J.-T. Li, L. Huang, S.-G Sun, Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for nmium-sulfur battery [J]. Electrochimica Acta,2011,56 (26):9549-9555.
    [243]B. Zhang, C. Lai, Z. Zhou, X.P. Gao, Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials [J]. Electrochimica Acta,2009,54 (14):3708-3713.
    [244]L. Ji, M. Rao, S. Aloni, L. Wang, E.J. Cairns, Y. Zhang, Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells [J]. Energy & Environmental Science,2011,4 (12):5053-5059.
    [245]Y.-J. Choi, K.-W. Kim, H.-J. Ahn, J.-H. Ahn, Improvement of cycle property of sulfur electrode for lithium/sulfur battery [J]. Journal of Alloys and Compounds,2008,449 (1-2): 313-316.
    [246]J. Guo, Y. Xu, C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries [J]. Nano Letters,2011,11 (10):4288-4294.
    [247]J. Li, J.M. Zheng, Y. Yang, Studies on storage characteristics of LiNio.4Coo.2Mno.4O2 as cathode materials in lithium-ion batteries [J]. Journal of the Electrochemical Society,2007, 154(5):A427-A432.
    [248]S.K. Martha, H. Sclar, Z. Szmuk Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky, D. Aurbach, A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2 and LiNi0.40Mn0.40Co0.20O2 layered compounds [J]. Journal of Power Sources,2009,189 (1): 248-255.
    [249]M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, S.A. Hackney, Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M=Mn, Ni, Co) for lithium batteries [J]. Electrochemistry Communications,2006,8 (9):1531-1538.
    [250]S.-K. Hu, G.-H. Cheng, M.-Y. Cheng, B.-J. Hwang, R. Santhanam, Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries [J]. Journal of Power Sources,2009,188 (2):564-569.
    [251]D.H. Jang, Y.J. Shin, S.M. Oh, Dissolution of spinel oxides and capacity losses in 4V Li/LixMn204 cells [J]. Journal of the Electrochemical Society,1996,143 (7):2204-2211.
    [252]F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2 [J]. Journal of Power Sources,2009,191 (2):628-632.
    [253]J. Li, L. Wang, Q. Zhang, X. He, Electrochemical performance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries [J]. Journal of Power Sources, 2009,190 (1):149-153.
    [254]J. Liu, A. Manthiram, Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode [J]. Journal of Materials Chemistry,2010,20 (19): 3961-3967.
    [255]M. Wohlfahrt-Mehrens, C. Vogler, J. Garche, Aging mechanisms of lithium cathode materials [J]. Journal of Power Sources,2004,127 (1-2):58-64.
    [256]D.Y.W. Yu, K. Yanagida, Y. Kato, H. Nakamura, Electrochemical activities in Li2MnO3 [J]. Journal of the Electrochemical Society,2009,156 (6):A417-A424.
    [257]Z. Li, F. Du, X. Bie, D. Zhang, Y. Cai, X. Cui, C. Wang, G Chen, Y. Wei, Electrochemical Kinetics of the Li[Li0.23Co0.3Mn0.47]O2 Cathode Material Studied by GITT and EIS [J]. The Journal of Physical Chemistry C,2010,114 (51):22751-22757.
    [258]A.M.A. Hashem, A.E. Abdel-Ghany, A.E. Eid, J. Trottier, K. Zaghib, A. Mauger, CM. Julien, Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery [J]. Journal of Power Sources,2011,196 (20):8632-8637.
    [259]F. Nobili, F. Croce, B. Scrosati, R. Marassi, Electronic and electrochemical properties of LixNi1-yCoyO2 cathodes studied by impedance spectroscopy [J]. Chemistry of Materials, 2001,13 (5):1642-1646.
    [260]J.Y. Xiang, J.P. Tu, Y.Q. Qiao, X.L. Wang, J. Zhong, D. Zhang, C.D. Gu, Electrochemical impedance analysis of a hierarchical CuO electrode composed of self-assembled nanoplates [J]. Journal of Physical Chemistry C,2011,115 (5):2505-2513.
    [261]Y. Cui, X. Zhao, R. Guo, Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process [J]. Electrochimica Acta, 2010,55 (3):922-926.
    [262]W. Weppner, R.A. Huggins, Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb [J]. Journal of the Electrochemical Society, 1977,124(10):1569-1578.
    [263]M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, A review of conduction phenomena in Li-ion batteries [J]. Journal of Power Sources,2010,195 (24):7904-7929.
    [264]K.M. Shaju, GV. Subba Rao, B.V.R. Chowdari, Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2 [J]. Journal of the Electrochemical Society, 2004,151 (9):A1324-A1332.
    [265]M. Ma, N.A. Chernova, B.H. Toby, P.Y. Zavalij, M.S. Whittingham, Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2 [J]. Journal of Power Sources,2007,165 (2):517-534.
    [266]L.A. Riley, S. Van Atta, A.S. Cavanagh, Y. Yan, S.M. George, P. Liu, A.C. Dillon, S.-H. Lee, Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material [J]. Journal of Power Sources,2011,196 (6):3317-3324.
    [267]S.-W. Oh, S.-H. Park, J.-H. Kim, Y.C. Bae, Y.-K. Sun, Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution [J]. Journal of Power Sources,2006,157 (1):464-470.
    [268]Z. Chen, J.R. Dahn, Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V [J]. Electrochimica Acta,2004,49 (7):1079-1090.
    [269]C.S. Johnson, N. Li, C. Lefief, J.T. Vaughey, M.M. Thackeray, Synthesis, Characterization and electrochemistry of lithium battery electrodes:xLi2MnO3-(1-x) LiMn0.333Ni0.333Co0.333O2 (0≤ x≤ 0.7) [J]. Chemistry of Materials,2008,20 (19):6095-6106.
    [270]H.H. Li, N. Yabuuchi, Y.S. Meng, S. Kumar, J. Breger, C.P. Grey, Y. Shao-Horn, Changes in the cation ordering of layered O3 LixNi0.5Mn0.5O2 during electrochemical cycling to high voltages:an electron diffraction study [J]. Chemistry of Materials,2007,19 (10): 2551-2565.
    [271]N.N. Sinha, N. Munichandraiah, High rate capability of porous LiNi1/3Co1/3Mn1/3O2 synthesized by polymer template route [J]. Journal of the Electrochemical Society,2010, 157(6):A647-A653.
    [272]J.-S. Kim, C.S. Johnson, J.T. Vaughey, M.M. Thackeray, S.A. Hackney, W. Yoon, C.P. Grey, Electrochemical and structural properties of xLi2M'O3·(1-x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M'=Ti, Mn, Zr; 0≤x≤0.3) [J]. Chemistry of Materials,2004,16 (10): 1996-2006.
    [273]W.-S. Yoon, S. Iannopollo, C.P. Grey, D. Carlier, J. Gorman, J. Reed, G. Ceder, Local structure and cation ordering in 03 lithium nickel manganese oxides with stoichiometry Li[NixMn(2-x)/3Li(1-2x)/3]O2:NMR studies and first principles calculations [J]. Electrochemical and Solid-State Letters,2004,7 (7):A167-A171.
    [274]L. Xi, C. Cao, R. Ma, Y. Wang, S. Yang, J. Deng, M. Gao, F. Lian, Z. Lu, C.Y. Chung, Layered Li2MnO3-3LiNi0.5-xMn0.5-xCo2xO2 microspheres with Mn-rich cores as high performance cathode materials for lithium ion batteries [J]. Physical Chemistry Chemical Physics,2013,15 (39):16579-16585.
    [275]J.-Z. Kong, H.-F. Zhai, C. Ren, M.-Y. Gao, X. Zhang, H. Li, J.-X. Li, Z. Tang, F. Zhou, Synthesis and electrochemical performance of macroporous LiNio.5Coo.2Mno.3O2 by a modified sol-gel method [J]. Journal of Alloys and Compounds,2013,577:507-510.
    [276]Y. Hu, Y. Zhou, J. Wang, Z. Shao, Preparation and characterization of macroporous LiNi1/3Co1/3Mn1/3O2 using carbon sphere as template [J]. Materials Chemistry and Physics, 2011,129 (1-2):296-300.
    [277]M.-H. Lee, J.-Y. Kim, H.-K. Song, A hollow sphere secondary structure of LiFePO4 nanoparticles [J]. Chemical Communications,2010,46 (36):6795-6797.
    [278]C. Yang, J. Huang, L. Huang, G Wang, Electrochemical performance of LiNi1/3Co1/3Mn1/3O2 hollow spheres as cathode material for lithium ion batteries [J]. Journal of Power Sources, 2013,226:219-222.
    [279]Y. Jiang, Z. Yang, W. Luo, X. Hu, Y. Huang, Hollow 0.3Li2Mn03-0.7LiNio.5Mno.502 microspheres as a high-performance cathode material for lithium-ion batteries [J]. Physical Chemistry Chemical Physics,2013,15 (8):2954-2960.
    [280]H. Liu, W. Yang, Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior [J]. Energy & Environmental Science,2011,4 (10):4000-4008.
    [281]D.H. Park, S.T. Lim, S.J. Hwang, C.S. Yoon, Y.K. Sun, J.H. Choy, Low-temperature synthesis of LixMn0.67Ni0.33O2 (0.2< x< 0.33) nanowires with a hexagonal layered structure [J]. Advanced Materials,2005,17 (23):2834-2837.
    [282]E. Hosono, T. Saito, J. Hoshino, Y. Mizuno, M. Okubo, D. Asakura, K. Kagesawa, D. Nishio-Hamane, T. Kudo, H. Zhou, Synthesis of LiNi0.5Mn1.5O4 and 0.5Li2MnO3-0.5LiNi1/3Co1/3Mn1/3O2 hollow nanowires by electrospinning [J]. CrystEngComm,2013,15 (14):2592-2597.
    [283]X. Zhao, Y. Cui, L. Xiao, H. Liang, H. Liu, Molten salt synthesis of Li1+x (Ni0.5Mn0.5)1-xO2 as cathode material for Li-ion batteries [J]. Solid State Ionics,2011,192 (1):321-325.
    [284]J. Li, S. Xiong, X. Li, Y. Qian, A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties [J]. Nanoscale,2013,5 (5):2045-2054.
    [285]L. Zhou, D. Zhao, X.W. Lou, Double-shelled CoMn2O4 hollow microcubes as high-Capacity anodes for lithium-ion batteries [J]. Advanced Materials,2012,24 (6):745-748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700