用户名: 密码: 验证码:
氧化锌和银基电子材料的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了适应整流二极管和光电转换器件等电子元器件轻薄化、柔性化等发展趋势,电子材料的研制成为材料领域研究的热点之一。基于材料的物理和化学特性,辅以功能实现方式和器件结构的设计,是构建新型电子元器件的基本思路,可解决其目前面临的问题以满足未来的发展要求。以此为主题,本论文分为两部分,第一部分利用两种液相法设计并制备了具有不同禁带宽度的氧化锌材料,用于组装异质结整流二极管。第二部分制备了银基电解质材料,利用电解质中银碘离子对的电化学和沉淀特性,在PEG环境中实现了整流性能,使离子二极管的构建和运行过程摆脱了水体系电解液,实现了该类器件的全固态化和柔性化。进一步将银碘体系材料的电化学性质扩展到碘化银光电器件的设计,提高了该类器件的运行时间。
     氧化锌是一种重要的半导体材料,其电学性能与禁带宽度密切相关。不同的生长环境可以使氧化锌具有不同的杂质或缺陷状态,造成禁带宽度间的差异。乳化液膜法和液相直接沉淀法是同属于沉淀反应机理的两种液相制备方法,但乳化液膜法因油水界面的存在,不同于液相直接沉淀法。论文根据乳液界面对晶核生长过程的控制作用,制备了禁带宽度为2.93eV的氧化锌颗粒,利用SEM和XRD研究了颗粒在内水相液滴中的生长过程,证明油水界面的存在限制了颗粒的尺寸,且内水相液滴从3μm增大到5gm时,颗粒形貌由棒状转变成片状。利用XRD和界面张力测试证实油水界面上的表面活性剂会吸附于颗粒的表面,使制得的氧化锌颗粒存在杂质或缺陷。该氧化锌颗粒和液相直接沉淀法制备的氧化锌颗粒具有相近的晶体结构,但禁带宽度相差0.13eV,可形成异质结,将其组装成三明治结构的二极管,具有整流能力。
     无机半导体二极管的发展已经接近其物理极限,因此以离子二极管作为其替换或补充的下一代整流器件具有极大的研究价值。但离子二极管强烈依赖水体系电解液,水的易挥发性和高温不稳定性限制了其应用范围。为解决此问题,选用具有解离能力和离子传导能力且物化性质稳定的聚乙二醇(PEG400)为电解质溶剂,提出利用易电解且相互沉淀的离子对实现整流功能的新方法,将AgN03电解质和LiI电解质分置于多孔分隔膜两侧组装成三明治结构离子二极管。在正向偏压下,两侧的银离子和碘离子相背运动到各自相邻电极上发生电解反应产生电流,器件实现导通。电场方向反转后,银离子和碘离子将转换为相向运动,因在接触界面处发生沉淀反应而无法到达对电极发生对称的电解反应,而电极上惰性的NO3-和Li+在低电压下难以电解,此时器件中无电流产生。囚此,器件实现整流功能,开启电压为0.3V,击穿电压为-2.7V,偏压为1.5V时的整流比为40,高于目前大部分离子整流器件,连续运行300个周期后仍具有整流能力。这种利用液态电解质实现整流功能的方法可用于多种无机化合物或者有机化合物的组合。
     PEG的固液状态可根据其分子量大小进行调节,利用这种性质,可以实现电解质的固态化。高分子量PEG强度较差,难以自支撑,利用纸纤维为支撑材料可以解决这一问题,实现电解质材料的柔性化。基于此,论文利用PEG20000为电解质环境、纸纤维为支撑材料制备出AgN03和KI的柔性固态电解质材料,并组装成离子二极管。这种二极管在±1V下的整流比为46,可承受大幅弯曲(弯曲半径15mm),且耐受800次以上的连续弯曲。电解质材料的固态化可以减弱离子的扩散,使器件的静置寿命达32天。
     银-碘材料间的电化学性质可以扩展到光电转换功能的实现。针对该器件因碘化银的光化学反应不可逆而造成的运行寿命短(数分钟)的问题,结合银碘化学电池和染料敏化太阳能电池结构的设计方法,以沉积了碘化银膜的导电玻璃为光电极,铂电极为对电极,I-/13-的碳酸丙烯酯溶液为电解液,在两电极间加入遮光板构建了碘化银光电转换器件。利用碘化银在光照下生成单质银的能力,使器件转变成银碘化学电池体系输出电流,实现光电转换,同时单质银在碘离子的存在下被氧化,实现碘化银的再生。理论上器件在运行过程中不存在反应物的消耗。使用氙灯在100mW/cm2的光强度下照射,器件在长达47小时的连续运行过程中光电效应始终存在,对光开关的阶跃响应时间约1.2秒,光电流密度约0.7μA/cm2。遮光板防止了游离的碘化银颗粒在对电极上发生光化学反应而造成的内部短路,相比于未使用遮光板的器件,光电流可提高17倍。铂对电极对I3-反应具有催化能力,使光电流为氧化钢锡(ITO)对电极器件的7倍,而光开关响应时间仅为其1/6。器件输出的光电流大小与入射光强和波长相关,具有制作光检测器的潜力。
Design and preparation of novel electronic materials have attracted great interest to meet the demands of flexibility and miniaturization of rectifier diodes and photoelectric devices. It can be achieved through designing the structure of devices based on the physical and chemical properties of materials. This thesis was separated into two parts for fabricating novel rectifier and photoelectric devices. In the first part, ZnO particles with different band gap were prepared via two kinds of liquid phase methods (LP) and further fabricated into heterojunction diode. In the second part, silver-based electrolyte materials were prepared and fabricated into non-water ionic diode. Based on the electrochemical properties and precipitation reaction of Ag-I system, rectification behavior was achieved in the PEG electrolyte. At last, the electrochemical properties of Ag-I system were employed to design AgI photoelectric devices with a long-time running.
     ZnO is a kind of important semiconductor for preparing electric components, of which the electric property strongly depends on the band gap. Emulsion liquid membrane (ELM) method and direct precipitation method (DP) are similar LP methods based on precipitation reaction but some difference due to the influence of W/O interface of the emulsion. Herein, ZnO particles with band gap of2.93eV were prepared by ELM method where the nucleation process and the morphology and property of the particles are controlled by the nature of W/O interface of the emulsion. The effect of W/O interface properties on the morphology and size of the ZnO particles were proved by investigating the growth mechanism of the particles with SEM and XRD. The morphology of the particles varied from rod-like to sheet-like when the size of internal water droplets was increased from3to5μm. It was further demonstrated that the surfactant tended to be absorpted on the particles by XRD and interfacial tensiometer studies, which could induce the impurities and defects into the material. The ZnO particles prepared by ELM method exhibit a similar crystal structure to those synthesized by DP method but a different band gap of0.13eV, which fits the requirement of heterojunction formation. Therefore, a ZnO heterojunction diode with a sandwich structure was fabricated with the ZnO prepared by the two methods and exhibited rectifying behavior.
     The performance of inorganic semiconductor diode is approaching the limits of the physical peroperty of materials. Ionic diodes as the next generation rectifier are expected to replace or extend the function of inorganic semiconductor diode, and have attracted a great deal of attention. Ionic diodes strongly depend on water-based electrolyte which is volatile and instable at high temperature. Therefore, non-water ionic diodes need to be studied for application. In this work, PEG400was chosen as electrolyte host due to its stable property and the ability of ionic dissociation and transport. But its high viscosity caused all reported methods based on nanofluidic channels etc. can not be employed to prepare ionic diode. Therefore, a novel method was demonstrated using Ag+-I-ion pair which had a low electrolysis voltage and could precipitate with each other. The ionic diode was fabricated into sandwich structure, in which AgNO3/PEG and LiI/PEG electrolyte were separated by porous membrane. Under forward bias voltage, Ag+and I-moved to the electrode on their side respectively, and electrolytic reaction occurred to generate current. In this case, the device was conductive. Under backward bias voltage, Ag+and I-moved to their counter electrode and were blocked due to precipitation. Meanwhile, the electrolytic reaction of NO3-and Li+counter ions pair could not happen because they needed a very high applied voltage. The device was unconductive at that time. Therefore, the ionic diode exhibited recitification function. The open-circuit voltage is0.3V. Breakdown voltage is-2.7V. And recitification ratio is40under AC voltage between±1.5V, which is higher than most of reported ionic diode. The device could work more than300cycles. The principle of this study is general and can be extended to the fabrication of ionic diodes with different inorganic or organic salt.
     The appearance of PEG from liquid to solid state could be achieved through increasing their molecular weight. That could be employed to prepare solid state ionic diode. Herein, flexible solid state electrolyte material was prepared using PEG20000as electrolyte host and paper fibers as supporter because PEG20000had poor strength for self-supporting. The flexible paper-based solid state ionic diode was fabricated by AgNO3and KI electrolyte materials. Its recitification ratio is46under AC voltage between±1V. The devices exhibited good flexibility and showed stable rectifying behavior after more than800bending cycles. Its standing stabilitytime was32days. Adding10wt%PC as plasticizer could increase the forward current by3times but decreased the standing stabilitytime to less than4days. The results showed that there was a trade-off between rectifying performance and stability.
     The electrochemical properties of Ag-I system could be extended to prepare AgI photoelectric device for improving its stability (several minutes reported). A novel method was demonstrated to prepare long-time running AgI photoelectric device. The structure of dye-sensitived solar cell and Ag-I2chemical battery enlightened us to fabricate the device to be sandwich structure using ITO glass deposited with AgI film as photoelectrode, Pt as counter electrode and I/I3-/PC solution as electrolyte. A light shield was added between two electrodes for avoiding incident light arriving at the counter electrode. Photochemical reaction could decomposite Agl to be element Ag and I2on the photoelectrode under illumination. Oxidation of element Ag with I and reduction of I2occurred to make the device to be Ag-I chemical battery and outputed current. Agl regenerated due to the oxidation reaction in this process. Theoretically, the device could be operated for a long time without reactants consumption. The prepared device could output0.7μA/cm2current density with a rapid photoelectric response (1.2s) and kept the performance after47hours continuous illumination. Light shield avoided short-circuit caused by photochemical reaction of AgI at the counter electrode. Comparing the device without light shield, the current was higher by17times. Pt counter electrode could increase the current by7times and accelerate the photoelectric response rate due to its catalytic property. The device could generate different current density under various wavelength or intensity of incident light. Therefore, it exhibits the potential to prepare photodetector.
引文
[1]BIE Y, LIAO Z, ZHANG H, et al. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions [J]. Advanced Materials,2011,23(5): 649-653.
    [2]MANEKKATHODI A, LU M-Y, WANG C W, et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics [J]. Advanced Materials,2010,22(36): 4059-4063.
    [3]NA J H, KITAMURA M, ARITA M, et al. Hybrid p-n junction light-emitting diodes based on sputtered ZnO and organic semiconductors [J]. Applied Physics Letters,2009,95(25): 253303-253303.
    [4]LIN H, LIU H, QIAN X, et al. Constructing a blue light photodetector on inorganic/organic p-n heterojunction nanowire arrays [J]. Inorganic Chemistry,2011,50(16):7749-7753.
    [5]NADARAJAH A, WORD R C, MEISS J, et al. Flexible Inorganic Nanowire Light-Emitting Diode [J]. Nano Letters,2008,8(2):534-537.
    [6]LI Y, GONG J, MCCUNE M, et al. I-V characteristics of the p-n junction between vertically aligned ZnO nanorods and polyaniline thin film [J]. Synthetic Metals,2010,160(5-6):499-503.
    [7]GONG J, LI Y, HU Z, et al. Ultrasensitive NH3 Gas Sensor from Polyaniline Nanograin Enchased TiO2 Fibers [J]. The Journal of Physical Chemistry C,2010,114(21):9970-9974.
    [8]HOFFMAN R L, WAGER J F, JAYARAJ M K, et al. Electrical characterization of transparent p-i-n heterojunction diodes [J]. Journal of Applied Physics,2001,90(11):5763-5767.
    [9]WU C-C, YANG C-F. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate [J]. ACS Applied Materials& Interfaces,2013,5(11):4996-5001.
    [10]TSAI S-Y, HON M-H, LU Y-M. Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors [J]. Solid-State Electronics,2011,63(1):37-41.
    [11]FANG Y, QINGLIANG L, YUNHUA H, et al. Self-powered ultraviolet photodetector based on a single ZnO tetrapod/PEDOTPSS heterostructure [J]. Semiconductor Science and Technology,2013, 28(10):105023.
    [12]NI P-N, SHAN C-X, WANG S-P, et al. Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays [J]. Journal of Materials Chemistry C,2013,1(29): 4445.4449.
    [13]HATCH S M, BRISCOE J, DUNN S. A Self-Powered ZnO-Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response [J]. Advanced Materials,2013,25(6):867-871.
    [14]程纲,氧化物半导体纳米线肖特基势垒的传输特性及其控制方法研究[D].吉林大学,2008.
    [15]黄昆,谢希德.半导体物理[M].北京:科学出版社,1958,280-283.
    [16]MANOHARA H M, WONG E W, SCHLECHT E, et al. Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications [J]. Nano Letters,2005,5(7): 1469-1474.
    [17]LAO C S, LIU J, GAO P, et al. ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes [J]. Nano Letters,2006,6(2):263-266.
    [18]LAO C, LI Y, WONG C P, et al. Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization [J]. Nano Letters,2007,7(5):1323-1328.
    [19]WEI T, YEH P-H, LU S-Y, et al. Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor [J]. Journal of the American Chemical Society,2009,131(48):17690-17695.
    [20]尹名,基于小分子掺杂的高分子有机半导体光伏器件性能研究[D].北京:北京工业大学,2012.
    [21]黄维,密保秀,高志强.有机电子学[M].北京:科学出版社,2011,41-56.
    [22]AVIRAM A, RATNER M A. Molecular rectifiers [J]. Chem. Phys. Lett.,1974,29(2):277-283.
    [23]METZGER R M, XU T, PETERSON I R. Electrical Rectification by a Monolayer of Hexadecylquinolinium Tricyanoquinodimethanide Measured between Macroscopic Gold Electrodes [J]. The Journal of Physical Chemistry B,2001,105(30); 7280-7290.
    [24]METZGER R M, CHEN B, H PFNER U, et al. Unimolecular Electrical Rectification in Hexadecylquinolinium Tricyanoquinodimethanide [J]. Journal of American Chemical Society,1997, 119(43):10455-10466.
    [25]FUJIHIRA M, YAMADA H. Molecular photodiodes consisting of unidirectionally oriented amphipathic acceptor-sensitizer-donor triads [J]. Thin Solid Films,1988,160(1-2):125-132.
    [26]METZGER R M, BALDWIN J W, SHUMATE W J, et al. Electrical Rectification in a Langmuir-Blodgett Monolayer of Dimethyanilinoazafullerene Sandwiched between Gold Electrodes [J]. The Journal of Physical Chemistry B,2003,107(4):1021-1027.
    [27]CAI Y, ZHANG A, FENG Y P, et al. Switching and rectification of a single light-sensitive diarylethene molecule sandwiched between graphene nanoribbons [J]. Journal of Chemical Physics, 2011,135(18):184703-184706.
    [28]NEWTON L, SLATER T, CLARK N, et al. Self assembled monolayers (SAMs) on metallic surfaces (gold and graphene) for electronic applications [J]. Journal of Materials Chemistry C,2013, 1(3):376-393.
    [29]WANG C, XU J, CHEN H, et al. Mass transport in nanofluidic devices [J]. Science China Chemistry,2012,55(4):453-468.
    [30]CHEN X, CAO G, HAN A, et al. Nanoscale fluid transport:size and rate effects [J]. Nano Letters, 2008,8(9):2988-2992.
    [31]CERVERA J, SCHIEDT B, NEUMANN R, et al. Ionic conduction, rectification, and selectivity in single conical nanopores [J]. The Journal of Chemical Physics,2006,124(10):104706-104709.
    [32]PERRY J M, ZHOU K, HARMS Z D, et al. Ion transport in nanofluidic funnels [J]. ACS Nano, 2010,4(7):3897-3902.
    [33]SIWY Z S. Ion-current rectification in nanopores and nanotubes with broken symmetry [J]. Advanced Functional Materials,2006,16(6):735-746.
    [34]SIWY Z, GU Y, SPOHR H A, et al. Rectification and voltage gating of ion currents in a nanofabricated pore [J]. Europhysics Letters,2002,60(3):349-355.
    [35]朱晓蕊,王卫东,秦广雍,et a1.单锥形纳米孔的制备和离子传导特性研究[J].物理学报,2013(07):431-434.
    [36]KOVARIK M L, ZHOU K, JACOBSON S C. Effect of conical nanopore diameter on ion current rectification [J]. The Journal of Physical Chemistry B,2009,113(49):15960-15966.
    [37]SIWY Z, APEL P, BAUR D, et al. Preparation of synthetic nanopores with transport properties analogous to biological channels [J]. Surface Science,2003,532-535:1061-1066.
    [38]CERVERA J, SCHIEDT B, RAM REZ P. A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores [J]. Europhysics Letters,2005,71(1):35.
    [39]WOERMANN D. Electrochemical transport properties of a cone-shaped nanopore:high and low electrical conductivity states depending on the sign of an applied electrical potential difference [J]. Physical Chemistry Chemical Physics,2003,5(9):1853-1858.
    [40]SIWY Z, KOSINSKA I D, FULINSKI A, et al. Asymmetric diffusion through synthetic nanopores [J]. Physical Review Letters,2005,94(4):048102-048106.
    [41]STEIN D, KRUITHOF M, DEKKER C. Surface-charge-governed ion transport in nanofluidic channels [J]. Physical Review Letters,2004,93(3):035901-035905.
    [42]CHENG L, GUO L J. Rectified ion transport through concentration gradient in homogeneous silica nanochannels [J]. Nano Letters,2007,7(10):3165-3171.
    [43]MIEDEMA H, VROUENRAETS M, WIERENGA J, et al. A biological porin engineered into a molecular, nanofluidic diode [J]. Nano Letters,2007,7(9):2886-2891.
    [44]KELLY K C, MILLER S A, TIMPERMAN A T. Investigation of zone migration in a current rectifying nanofluidic/microfluidic analyte concentrator [J]. Analytical Chemistry,2008,81(2): 732-738.
    [45]DAIGUJI H, OKA Y, SHIRONO K. Nanofluidic diode and bipolar transistor [J]. Nano Letters, 2005,5(11):2274-2280.
    [46]KARNIK R, CASTELINO K, DUAN C, et al. Diffusion-limited patterning of molecules in nanofluidic channels [J]. Nano Letters,2006,6(8):1735-1740.
    [47]VLASS1OUK I, SIWY Z S. Nanofluidic diode [J]. Nano Letters,2007,7(3):552-556.
    [48]SINGH K P, KUMARI K, KUMAR M. Ion current rectification in a fluidic bipolar nanochannel with smooth junction [J]. Applied Physics Letters,2011,99(11):113103-113106.
    [49]CHENG L, GUO L J. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices [J]. ACS Nano,2009,3(3):575-584.
    [50]ZASLAVSCHI I, SHEMER H, HASSON D, et al. Electrochemical CaCO3 scale removal with a bipolar membrane system [J]. Journal of Membrane Science,2013,445:88-95.
    [51]IIZUKA A, YAMASHITA Y, NAGASAWA H, et al. Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation [J]. Separation and Purification Technology,2013,113:33-41.
    [52]XU T W. Ion exchange membranes:State of their development and perspective [J]. Journal of Membrane Science,2005,263(1-2):1-29.
    [53]LOVRECEK B, DESPIC A, BOCKRIS J O M. Electrolytic junctions with rectifying properties [J]. The Journal of Physical Chemistry,1959,63(5):750-751.
    [54]SOKIRKO A V, RAM REZ P, MANZANARES J A, et al. Modeling of forward and reverse bias conditions in bipolar membranes [J]. Berichte der Bunsengesellschaft fur physikalische Chemie, 1993,97(8):1040-1048.
    [55]HURWITZ H D, DIBIANI R. Experimental and theoretical investigations of steady and transient states in systems of ion exchange bipolar membranes [J]. Journal of Membrane Science,2004, 228(1):17-43.
    [56]卫艳新,双极膜电渗析法处理典型化工废水研究[D].中国科学技术大学,2012.
    [57]CAYRE O J, CHANG S T, VELEV O D. Polyelectrolyte diode:Nonlinear current response of a junction between aqueous ionic gels [J]. Journal of the American Chemical Society,2007,129(35): 10801-10806.
    [58]ZHANG W, ZHANG X, LU C, et al. Flexible and transparent paper-based ionic diode fabricated from oppositely charged microfibrillated cellulose [J]. The Journal of Physical Chemistry C,2012, 116(16):9227-9234.
    [59]KOO H J, CHANG S T, VELEV O D. Ion-current diode with aqueous gel/SiO2 nanofilm interfaces [J]. Small,2010,6(13):1393-1397.
    [60]BAXTER J B, SCHMUTTENMAER C A. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy [J]. The Journal of Physical Chemistry B,2006, 110(50):25229-25239.
    [61]LIU F J, HU Z F, SUN J, et al. Ultraviolet photoresistors based on ZnO thin films grown by P-MBE [J]. Solid-State Electronics,2012,68(0):90-92.
    [62]LIU F J, HU Z F, ZHU L, et al. Solar-blind photoresistors based on Mg0.48Zn0.52O thin films grown on g-Al2O3 substrates by radio-frequency plasma-assisted molecular beam epitaxy [J]. Electron Devices,2012,59(7):1970-1973.
    [63]GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 41) [J]. Progress in Photovoltaics:Research and Applications,2013,21(1):1-11.
    [64]WILLIAMS R. Becquerel photovoltaic effect in binary compounds [J]. The Journal of Chemical Physics,1960,32(5):1505-1514.
    [65]COPELAND A W, BLACK O D, GARRETT A B. The photovoltaic effect [J]. Chemical Reviews, 1942,31(1):177-226.
    [66]GRATZEL M. Photoelectrochemical cells [J]. Nature,2001,414(6861):338-344.
    [67]FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38.
    [68]HAGFELDT A, BOSCHLOO G, SUN L, et al. Dye-sensitized solar cells [J]. Chemical Reviews, 2010,110(11):6595-6663.
    [69]PICHOT F, PITTS J R, GREGG B A. Low-temperature sintering of TiO2 colloids:application to flexible dye-sensitized solar cells [J]. Langmuir,2000,16(13):5626-5630.
    [70]YAMAGUCHI T, TOBE N, MATSUMOTO D, et al. Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes [J]. Chemical Communications,2007(45):4767-4769.
    [71]JUNG H, PARK J, YOO E S, et al. Functionalization of nanomaterials by non-thermal large area atmospheric pressure plasmas:application to flexible dye-sensitized solar cells [J]. Nanoscale,2013, 5(17):7825-7830.
    [72]KING S L, GARDENIERS J G E, BOYD I W. Pulsed-laser deposited ZnO for device applications [J]. Applied Surface Science,1996,96-98:811-818.
    [73]FAy S, SHAH A, Zinc Oxide Grown by CVD Process as Transparent Contact for Thin Film Solar Cell Applications, in Transparent Conductive Zinc Oxide, Ellmer K, Klein A, Rech B, Editors.2008, Springer Berlin Heidelberg, p.235-302.
    [74]ZHU Y, ZHOU Y. Preparation of pure ZnO nanoparticles by a simple solid-state reaction method [J]. Applied Physics A,2008,92(2):275-278.
    [75]LIU B, ZENG H C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm [J]. Journal of American Chemistry Society,2003,125(15):4430-4431.
    [76]ZHANG C-L, ZHOU W-N, HANG Y, et al. Hydrothermal growth and characterization of ZnO crystals [J]. Journal of Crystal Growth,2008,310(7-9):1819-1822.
    [77]LI X C, HE G H, XIAO G K, et al. Synthesis and morphology control of ZnO nanostructures in microemulsions [J]. Journal of Colloid and Interface Science,2009,333(2):465-473.
    [78]AHMAD T, VAIDYA S, SARKAR N, et al. Zinc oxalate nanorods:a convenient precursor to uniform nanoparticles of ZnO [J]. Nanotechnology,2006,17(5):1236-1240.
    [79]CHEN C, LIU P, LU C. Synthesis and characterization of nano-sized ZnO powders by direct precipitation method [J]. Chemical Engineering Journal,2008,144(3):509-513.
    [80]RODRiGUEZ-PA Z J E, CABALLERO A C, VILLEGAS M, et al. Controlled precipitation methods:formation mechanism of ZnO nanoparticles [J]. Journal of the European Ceramic Society, 2001,21(7):925-930.
    [81]LI M, HARI B, LV X, et al. Direct synthesis of monodispersed ZnO nanoparticles in an aqueous solution [J]. Materials Letters,2007,61(3):690-693.
    [82]LU L, QINGSHENG W, YAPING D, et al. Morphologies of barium chromate controlled by carriers in an emulsion liquid membrane system [J]. Crystal Research and Technology,2006,41(1): 27-3131.
    [83]KRALJ D, BRECEVIC, L. Precipitation of Some Slightly Soluble Salts Using Emulsion Liquid Membranes [J]. Croatica Chemica Acta,1998,71(4):1049-1060.
    [84]HIRAI T, OKAMOTO N, KOMASAWA I. Preparation of spherical oxalate particles of rare earths in emulsion liquid membrane system [J]. AIChE J.,1998,44(1):197-206.
    [85]SENGUPTA B, TAMBOLI C A, SENGUPTA R. Synthesis of nickel oxalate particles in the confined internal droplets of W/O emulsions and in systems without space confinement [J]. Chemical Engineering Journal,2011,169(1-3):379-389.
    [86]HIRAI T, KAWAMURA Y, KOMASAWA I. Preparation of Y2O3 nanoparticulate thin films using an emulsion liquid membrane system [J]. Journal of Colloid and Interface Science,2004,275(2): 508-513.
    [87]郑鑫,贺高红,李祥村,et a1.乳化液膜法制备草酸锌微细颗粒[J].化工进展,2007(08):1159-1165.
    [88]HIRAI T, HODONO M, KOMASAWA I. The preparation of spherical calcium phosphate fine particles using an emulsion liquid membrane system [J]. Langmuir,2000,16(3):955-960.
    [89]HIRAI T, HARIGUCHI S, KOMASAWA I, et al. Biomimetic synthesis of calcium carbonate particles in a pseudovesicular double emulsion [J]. Langmuir,1997,13(25):6650-6653.
    [90]SUN Q H, DENG Y L. Synthesis of micrometer to nanometer CaCO3 particles via mass restriction method in an emulsion liquid membrane process [J]. Journal of Colloid and Interface Science,2004, 278(2):376-382.
    [91]HIRAI T, ORIKOSHI T. Preparation of Gd2O3:Yb,Er and Gd2O2S:Yb,Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system [J]. Journal of Colloid and Interface Science,2004,269(1):103-108.
    [92]HIRAI T, KAWAMURA Y. Preparation of Sr2CeO4 blue phosphor particles and rare earth (Eu, Ho, Tm, or Er)-doped Sr2CeO4 phosphor particles, using an emulsion liquid membrane system [J]. Journal of Physical Chemistry B,2004,108(34):12763-12769.
    [93]HIRAI T, ORIKOSHI T, KOMASAWA I. Preparation of Y2O3:Yb,Er infrared-to-visible conversion phosphor fine particles using an emulsion liquid membrane system [J]. Chemistry of Materials,2002,14(8):3576-3583.
    [94]HIRAI T, KOBAYASHI J, KOMASAWA I. Preparation of Acicular Ferrite Fine Particles Using an Emulsion Liquid Membrane System [J]. Langmuir,1999,15(19):6291-6298.
    [95]郑鑫,乳化液膜法制备草酸锌微细颗粒的研究[D].大连:大连理工大学,2007.
    [96]徐彭寿,孙玉明,施朝淑,et al.ZnO及其缺陷的电子结构[J].中国科学(A辑),2001(04):358-365.
    [97]ASSUN O V, FORTUNATO E, MARQUES A, et al. Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by sputtering at room temperature [J]. Thin Solid Films,2003,427(1-2):401-405.
    [98]KIM D-H, LEE S-H, LEE G-H, et al. Effects of deposition temperature on the effectiveness of hydrogen doping in Ga-doped ZnO thin films [J]. Journal of Applied Physics,2010,108(2): 023520-023525.
    [99]PRADIPTA K N, JIHOON Y, JINWOO K, et al. Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes [J]. Journal of Physics D:Applied Physics, 2009,42(3):035102-035108.
    [100]GIRTAN M, SOCOL M, PATTIER B, et al. On the structural, morphological, optical and electrical properties of sol-gel deposited ZnO:In films [J]. Thin Solid Films,2010,519(2):573-577.
    [101]CHANG K-M, HUANG S-H, WU C-J, et al. Transparent conductive indium-doped zinc oxide films prepared by atmospheric pressure plasma jet [J]. Thin Solid Films,2011,519(15):5114-5117.
    [102]CHANG J F, WANG H L, HON M H. Studying of transparent conductive ZnO:Al thin films by RF reactive magnetron sputtering [J]. Journal of Crystal Growth,2000,211(1-4):93-97.
    [103]DASGUPTA N P, NEUBERT S, LEE W, et al. Atomic layer deposition of Al-doped ZnO films: effect of grain orientation on conductivity [J]. Chemistry of Materials,2010,22(16):4769-4775.
    [104]OH B-Y, JEONG M-C, LEE W, et al. Properties of transparent conductive ZnO:Al films prepared by co-sputtering [J]. Journal of Crystal Growth,2005,274(3-4):453-457.
    [105]KUMAR M, MEHRA R M, WAKAHARA A, et al. Pulsed laser deposition of epitaxial Al-doped ZnO film on sapphire with GaN buffer layer [J]. Thin Solid Films,2005,484(1-2):174-183.
    [106]KIM K, LEE H S. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper [J]. Journal of Physical Chemistry B,2005,109(40):18929-18934.
    [107]VON WENCKSTERN H, KAIDASHEV E M, LORENZ M, et al. Lateral homogeneity of Schottky contacts on n-type ZnO [J]. Applied Physics Letters,2004,84(1):79-81.
    [108]POLYAKOV A Y, SMIRNOV N B, KOZHUKHOVA E A, et al. Electrical characteristics of Au and Ag Schottky contacts on n-ZnO [J]. Applied Physics Letters,2003,83(8):1575-1577.
    [109]YE Z-Z, LU J-G, CHEN H-H, et al. Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering [J]. Journal of Crystal Growth,2003,253(1-4):258-264.
    [110]DING R, ZHU H, ZENG Q. Fabrication of p-type ZnO thin films via magnetron sputtering and phosphorus diffusion [J]. Vacuum,2008,82(5):510-513.
    [111]WANG Z L, SONG J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science,2006,312(5771):242-246.
    [112]WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves [J]. Science,2007,316(5821):102-105.
    [113]ZHU G, YANG R, WANG S, et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array [J]. Nano Letters,2010,10(8):3151-3155.
    [114]HU Y, ZHANG Y, XU C, et al. Self-powered system with wireless data transmission [J]. Nano Letters,2011,11(6):2572-2577.
    [115]XU S, QIN Y, XU C, et al. Self-powered nanowire devices [J]. Nature Nanotechnology,2010,5(5): 366-373.
    [116]VES S, GL TZEL D, CARDONA M, et al. Pressure dependence of the optical properties and the band structure of the copper and silver halides [J]. Physical Review B,1981,24(6):3073-3085.
    [117]KUMAR P S, DAYAL P B, SUNANDANA C S. On the formation mechanism of γ-AgI thin films [J]. Thin Solid Films,1999,357(2):111-118.
    [118]PATNAIK J R G, SUNANDANA C S. Studies on gamma silver iodide [J]. Journal of Physics and Chemistry of Solids,1998,59(6-7):1059-1069.
    [119]KONDO S, ITOH T, SAITO T. Strongly enhanced optical absorption in quench-deposited amorphous Agl films [J]. Physical Review B-Condensed Matter and Materials Physics,1998, 57(20):13235-13240.
    [120]MELLANDER B E. Electrical conductivity and activation volume of the solid electrolyte phase a-Agl and the high-pressure phase fee AgI [J]. Physical Review B,1982,26(10):5886-5896.
    [121]MEGLA G K. Optical properties and applications of photochromic glass [J]. Appl. Opt.,1966,5(6): 945-960.
    [122]BINKS B P, DESFORGES A, DUFF D G. Synergistic Stabilization of Emulsions by a Mixture of Surface-Active Nanoparticles and Surfactant [J]. Langmuir,2006,23(3):1098-1106.
    [123]HASSAN S A. Microscopic mechanism of nanocrystal formation from solution by cluster aggregation and coalescence [J]. Journal of Chemical Physics,2011,134(11):114508-114507.
    [124]丁绪淮.工业结晶[M].北京:化学工业出版社,1985,74-79.
    [125]BRAGA D, GREPIONI F. From molecule to molecular aggregation:clusters and crystals of clusters [J]. Accounts of Chemical Research,1994,27(2):51-56.
    [126]JOHN B, Structures and thermal behavior of some monooxalato and dioxalato metal complexes [D], Grahamstown:Rhodes University,1995.
    [127]KONDRASHEV Y D, BOGDANOV V S, GOLUBEV S N, et al. Crystal structure of the ordered phase of zinc oxalate and the structure of anhydrous Fe2+, Co2+, Ni2+, Cu2+, and Zn2+oxalates [J]. Journal of Structural Chemistry,1985,26(1):74-77.
    [128]KADAM S S, KULKARNI S A, COLOMA RIBERA R, et al. A new view on the metastable zone width during cooling crystallization [J]. Chemical Engineering Science,2012,72:10-19.
    [129]KUBOTA N. Effect of sample volume on metastable zone width and induction time [J]. Journal of Crystal Growth,2012,345(1):27-33.
    [130]张效岩,王英,张亚非.液相法制备纳米粒子的粒径控制研究[J].功能材料,2004,35(z1):2699-2703.
    [131]HIRAI T, OKAMOTO N, KOMASAWA I. Preparation of rare-earth-metal oxalate spherical particles in emulsion liquid membrane system using alkylphosphinic acid as cation carrier [J]. Langmuir,1998,14(23):6648-6653.
    [132]BINKS B P, RODRIGUES J A. Double Inversion of Emulsions By Using Nanoparticles and a Di-Chain Surfactant [J]. Angewandte Chemie,2007,119(28):5485-5488.
    [133]BINKS B P, RODRIGUES J A, FRITH W J. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant [J]. Langmuir,2007,23(7):3626-3636.
    [134]LAN Q, YANG F, ZHANG S, et al. Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions [J]. Colloids Surface A,2007,302(1-3): 126-135.
    [135]HUNTER T N, PUGH R J, FRANKS G V, et al. The role of particles in stabilising foams and emulsions [J]. Advances in Colloid and Interface Science,2008,137(2):57-81.
    [136]MAESTRO A, GUZMAN E, SANTINI E, et al. Wettability of silica nanoparticle-surfactant nanocomposite interfacial layers [J]. Soft Matter,2012,8(3):837-843.
    [137]BINKS B P. Particles as surfactants-similarities and differences [J]. Current Opinion in Colloid & Interface Science,2002,7(1-2):21-41.
    [138]NI L, WANG L, SHAO B, et al. Synthesis of Flower-like Zinc Oxalate Microspheres in Ether-water Bilayer Refluxing Systems and Their Conversion to Zinc Oxide Microspheres [J]. Journal of Materials Science & Technology,2011,27(6):563-569.
    [139]AUFFR DIC J P, BOULTIF A, LANGFORD J I, et al. Early Stages of Crystallite Growth of ZnO Obtained from an Oxalate Precursor [J]. Journal of the American Ceramic Society,1995,78(2): 323-328.
    [140]AUDEBRAND N, AUFFR DIC J P, LOU R D. X-ray Diffraction Study of the Early Stages of the Growth of Nanoscale Zinc Oxide Crystallites Obtained from Thermal Decomposition of Four Precursors. General Concepts on Precursor-Dependent Microstructural Properties [J]. Chemistry of Materials,1998,10(9):2450-2461.
    [141]SOARE L C, BOWEN P, LEMAITRE J, et al. Precipitation of Nanostructured Copper Oxalate: Substructure and Growth Mechanism [J]. Journal of Physical Chemistry B,2006,110(36): 17763-17771.
    [142]GUO L, JI Y, XU H, et al. Synthesis and evolution of rod-like nano-scaled ZnC2O42H2O whiskers to ZnO nanoparticles [J]. Journal of Materials Chemistry,2003,13(4):754-757.
    [143]VAN DE WALLE C G, JANOTTI A, Advances in Electronic Structure Methods for Defects and Impurities in Solids, in Advanced Calculations for Defects in Materials, Alkauskas A, Deak P, Neugebauer J et al., Editors.2011, Wiley-VCH. p.1-16.
    [144]MONDAL S, KANTA K P, MITRA P. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO [J]. Materials Research,2013,16:94-99.
    [145]AL-HENITI S, UMAR A, BADRAN R I, et al. n-ZnO based nanostructure/p-silicon substrate based efficient p-n heterojunction diode [J]. Science of Advanced Materials,2013,5(3):301-307.
    [146]江剑平,孙成城.异质结原理与器件[M].北京:电子工业出版社,2010,10-26.
    [147]BASSIGNANA I C, REISS H. Ion transport and water dissociation in bipolar ion exchange membranes [J]. Journal of Membrane Science,1983,15(1):27-41.
    [148]RAMIREZ P, RAPP H J, REICHLE S, et al. Current-voltage curves of bipolar membranes [J]. Journal of Applied Physics,1992,72(1):259-264.
    [149]KOO H J, CHANG S T, SLOCIK J M, et al. Aqueous soft matter based photovoltaic devices [J]. Journal of Materials Chemistry,2011,21(1):72-79.
    [150]HEGEDUS L, KIRSCHNER N, WITTMANN M, et al. Nonlinear effects of electrolyte diodes and transistors in a polymer gel medium [J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 1999,9(2):283-297.
    [151]CHOI B K, KIM Y W, SHIN H K. Ionic conduction in PEO-PAN blend polymer electrolytes [J]. Electrochimica Acta,2000,45(8-9):1371-1374.
    [152]BARIL D, MICHOT C, ARMAND M. Electrochemistry of liquids vs. solids:Polymer electrolytes [J]. Solid State Ionics,1997,94(1-4):35-47.
    [153]ARMAND M. Charge-transfer at polymer electrolytes [J]. Faraday Discussions,1989,88:65-76.
    [154]ARMAND M B. Polymer electrolytes [J]. Annual Review of Materials Science,1986,16:245-261.
    [155]KALAIGN AN G P, KANG M-S, KANG Y S. Effects of compositions on properties of PEO-KI-I2 salts polymer electrolytes for DSSC [J]. Solid State Ionics,2006,177(11-12):1091-1097.
    [156]RAO S S, RAO K V S, SHAREEFUDDIN M, et al. Ionic-conductuvity and battery characteristic studies on PEO+AgNO3 polymer electrolyte [J]. Solid State Ionics,1994,67(3-4):331-334.
    [157]FAUTEUX D, LUPIEN M D, ROBITAILLE C D. Phase-diagram, conductivity, and transference number of PEO-NaI electrolytes [J]. Journal of The Electrochemical Society,1987,134(11): 2761-2767.
    [158]JAIPAL REDDY M, SIVA KUMAR J, SUBBA RAO U V, et al. Structural and ionic conductivity of PEO blend PEG solid polymer electrolyte [J]. Solid State Ionics,2006,177(3-4):253-256.
    [159]AIHARA Y, APPETECCHI G B, SCROSATI B, et al. Investigation of the ionic conduction mechanism of composite poly(ethyleneoxide) PEO-based polymer gel electrolytes including nano-size SiO2 [J]. Physical Chemistry Chemical Physics,2002,4(14):3443-3447.
    [160]ROSSI N A A, WEST R. Silicon-containing liquid polymer electrolytes for application in lithium ion batteries [J]. Polymer International,2009,58(3):267-272.
    [161]GUO W, TIAN Y, JIANG L. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores [J]. Accounts of Chemical Research,2013.
    [162]KONG Y, FAN X, ZHANG M, et al. Nanofluidic diode based on branched alumina nanochannels with tunable ionic rectification [J]. ACS Applied Materials & Interfaces,2013,5(16):7931-7936.
    [163]CHENG L, GUO L J. Nanofluidic diodes [J]. Chemical Society Reviews,2010,39(3):923-938.
    [164]GUAN W H, FAN R, REED M A. Field-effect reconfigurable nanofluidic ionic diodes [J]. Nature Communications,2011,2:506-510.
    [165]DIDDENS D, HEUER A, BORODIN O. Understanding the lithium transport within a rouse-based model for a PEO/LiTFSI polymer electrolyte [J]. Macromolecules,2010,43(4):2028-2036.
    [166]SHRIVER D F, PAPKE B L, RATNER M A, et al. Structure and ion transport in polymer-salt complexes [J]. Solid State Ionics,1981,5:83-88.
    [167]GADJOUROVA Z, ANDREEV Y G, TUNSTALL D P, et al. Ionic conductivity in crystalline polymer electrolytes [J]. Nature,2001,412(6846):520-523.
    [168]RATNER M A, SHRIVER D F. Ion transport in solvent-free polymers [J]. Chemical Reviews,1988, 88(1):109-124.
    [169]CHATANI Y, OKAMURA S. Crystal structure of polyethylene oxide)-sodium iodide complex [J]. Polymer,1987,28(11):1815-1820.
    [170]KUMAR B, SCANLON L, MARSH R, et al. Structural evolution and conductivity of PEO:LiBF4-MgO composite electrolytes [J]. Electrochimica Acta,2001,46(10-11):1515-1521.
    [171]CHENG H, ZHU C, HUANG B, et al. Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids [J]. Electrochimica Acta,2007,52(19): 5789-5794.
    [172]PEREIRA A G B, GOUVEIA R F, DE CARVALHO G M, et al. Polymer blends based on PEO and starch:Miscibility and spherulite growth rate evaluated through DSC and optical microscopy [J]. Materials Science and Engineering:C,2009,29(2):499-504.
    [173]ANDREEV Y G, BRUCE P G. Polymer electrolyte structure and its implications [J]. Electrochimica Acta,2000,45(8-9):1417-1423.
    [174]JAIPAL REDDY M, CHU P P. Effect of Mg2+on PEO morphology and conductivity [J]. Solid State Ionics,2002,149(1-2):115-123.
    [175]ROBITAILLE C D, FAUTEUX D. Phase-diagrams and conductivity characterization of some PEO-LiX electrolytes [J]. Journal of The Electrochemical Society,1986,133(2):315-325.
    [176]FRECH R, CHINTAPALLI S. Effect of propylene carbonate as a plasticizer in high molecular weight PEO-LiCF3SO3 electrolytes [J]. Solid State Ionics,1996,85(1-4):61-66.
    [177]KUMAR M, SEKHON S S. Role of plasticizer's dielectric constant on conductivity modification of PEO-NH4F polymer electrolytes [J]. European Polymer Journal,2002,38(7):1297-1304.
    [178]KHAN M S, SHAKOOR A, NISAR J. Conductance study of polyethylene oxide)- and poly(propylene oxide)-based polyelectrolytes [J]. Ionics,2010,16(6):539-542.
    [179]VANSELOW W, SHEPPARD S E. Photo-voltaic cells with silver-silver bromide electrodes. Part 1 [J]. The Journal of Physical Chemistry,1928,33(3):331-353.
    [180]VENKATESWARLU M, SATYANARAYANA N. Fabrication and characterization of silver-based solid-state primary batteries [J]. Journal of Power Sources,1996,62(1):15-19.
    [181]OWENS B B, PATEL B K, SKARSTAD P M, et al. Performance of Ag/RbAg4I5/I2 solid electrolyte batteries after ten years storage [J]. Solid State Ionics,1983,9-10, Part 2:1241-1245.
    [182]SCROSATI B. Recent advances in lithium solid state batteries [J]. Journal of Applied Electrochemistry,1972,2(3):231-238.
    [183]B NI RE F, BOILS D, C NEPA H, et al. Polyacetylene solid-state batteries [J]. Journal of The Electrochemical Society,1985,132(9):2100-2108.
    [184]AROF A K, SEMAN K C, HASHIM A N, et al. A new silver ion conductor for battery applications [J]. Materials Science and Engineering:B,1995,31(3):249-254.
    [185]WEERASINGHE H C, HUANG F, CHENG Y-B. Fabrication of flexible dye sensitized solar cells on plastic substrates [J]. Nano Energy,2013,2(2):174-189.
    [186]ARJUNAN T V, SENTHIL T S. Review:Dye sensitised solar cells [J]. Materials Technology: Advanced Performance Materials,2013,28(1-2):9-14.
    [187]GONG J, SUMATHY K, LIANG J. Polymer electrolyte based on polyethylene glycol for quasi-solid state dye sensitized solar cells [J]. Renewable Energy,2012,39(1):419-423.
    [188]HANSON K J, TOBIAS C W. Electrochemistry of iodide in propylene carbonate.1. Cyclic voltammetry monitored by optical spectroscopy [J]. Journal of the Electrochemical Society,1987, 134(9):2204-2210.
    [189]CHEN K L, LIU R, WANG H, et al. Room temperature electrodeposition of oriented AgI crystals [J]. Journal of the Electrochemical Society,2011,158(4):D200-D203.
    [190]VALIDZIC I L, JANKOVIC I A, MITRIC M, et al. Growth and quantum confinement in AgI nanowires [J]. Materials Letters,2007,61(16):3522-3525.
    [191]KUMAR P S, SUNANDANA C S. Gamma-Agl films by iodization at ambient temperature [J]. Thin Solid Films,1998,323(1-2):110-114.
    [192]MURAKAMI T N, GR TZEL M. Counter electrodes for DSC:Application of functional materials as catalysts [J]. Inorganica Chimica Acta,2008,361(3):572-580.
    [193]FU D, HUANG P, BACH U. Platinum coated counter electrodes for dye-sensitized solar cells fabricated by pulsed electrodeposition-Correlation of nanostructure, catalytic activity and optical properties [J]. Electrochimica Acta,2012,77:121-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700