用户名: 密码: 验证码:
多孔无机膜的制备及其作为锂离子电池隔膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隔膜是锂离子电池的重要组成部分,锂离子电池的安全性能很大程度上取决于隔膜的性能,而目前商业化的锂离子电池广泛使用聚合物隔膜,而聚合物隔膜容易被锂枝晶刺穿、在过热时发生形变等引起电池内部短路,从而导致电池损坏甚至短路起火等。另外,由于聚合物隔膜自身的疏水性能,导致其对电解液的浸润和保存性能差,限制了电池大倍率性能,从而影响了锂离子电池在电动汽车上的应用。人们开发了有机-无机复合隔膜、聚合物电解质隔膜等,但是这些隔膜材料仍然存在热稳定性差、离子电导率差等问题。
     多孔无机膜由于其具有良好的绝缘性能、热稳定性、电解液浸润和保存性能等,被考虑用作锂离子电池隔膜。本论文针对锂离子电池体系,以提高电池的安全性能、倍率性能和低温性能为目的制备了Al_2O_3隔膜、SiO_2隔膜和AAO膜等,并设计基于自支撑隔膜的一体化电池,利用SEM对隔膜的形貌进行分析、采用恒流充放电测试、交流阻抗法等手段对其电化学性能进行了深入系统的研究。
     首先,通过二次高温烧结纳米Al_2O_3、微米Al_2O_3和造孔剂EDTA制备多孔Al_2O_3膜,对其微观结构、孔隙率、电解液的浸润性能进行了研究,结果表明:相对于聚合物隔膜,多孔Al_2O_3膜具有较高的孔隙率、电解液保存性能;浸润电解液的Al_2O_3膜具有优异的电导率,使用Al_2O_3隔膜的LiFePO_4/石墨电池具有很好的循环性能、倍率性能和低温性能等。因此,多孔Al_2O_3可以用作锂离子电池隔膜
     其次,通过高温烧结廉价易得的商业化SiO_2粉制备多孔SiO_2膜,并将其用作LiMn_2O_4/Li电池隔膜。多孔SiO_2膜具有良好的机械性和孔隙率,并且具有很好的电解液浸润和保存性能。由于SiO_2的亲水性和能与电解液中微量的HF反应,从而提高了LiMn_2O_4/Li电池的循环性能、倍率性能和低温性能,并且在一定程度上减缓了LiMn_2O_4的在高温时的容量衰减。这种廉价易得、性能优异的SiO_2隔膜,对锂离子电池性能的提高、价格的降低都有很大作用,为无机隔膜在锂离子电池上的应用提供了有益的选择。
     再次,利用自制的简单的装置通过二次阳极氧化的方法高效环保地制备了通孔阳极氧化铝膜(AnodicAluminum Oxide,AAO),该通孔AAO膜厚度降至60μm、孔隙率高达72%仍保持足够的机械强度。AAO膜表现出很好的对电解液的吸附和保持性能,同时非水电解液对亲水性的AAO膜的浸润性能优于聚合物隔膜。与聚合物隔膜相比,使用AAO膜作为隔膜的LiFePO_4/石墨电池表现出更好的循环性能、倍率性能和低温性能等。同时利用交流阻抗测试(EIS)分析AAO隔膜对电池性能的影响。实验结果表明,AAO隔膜具有很好的应用前景。
     最后,通过将电极材料涂覆于二次烧结制备的多孔Al_2O_3膜两侧,制备自支撑的一体化电池,这种自支撑的一体化电池具有良好的电化学性能,简化了电池的制备工艺,省去了将电极材料与隔膜贴合在一起的支撑体和外界压力,同时能够避免电池在运输和撞击过程中隔膜的错位导致的电池内部短路等。更重要的是,这种自支撑的一体化电池可用于设计可插入式的电池堆栈,这种结构的电池易于设计、管理和维护,为大型电池的设计提供有益的参考。
Separator is an important part in lithiumion battery, and the safety performanceof the lithium ion battery largely depends on the property of the separator. Up to now,polymer separator are widely used in the commercialized lithium-ion batteries, butsuch separatoror is easy to punctured by lithium dendrites or undergo obviousdimensional changes at elevated temperatures, causing internal short-circuit of thebattery and resulting in the battery damage even firing. Moreover, owning to theintrinsically hydrophobic properties of the polymer separator, it is hard for thepolymer separator to infiltrate and hold the non-aqueous electrolyte, which limits therate performance of the battery, thus adversely affecting the application of thelithium-ion battery for the electric vehicle and hybrid-electric vehicle. Theorganic-inorganic composite separator has been developed, but there are still issues ofthe poor thermal stability, poor ionic conductivity.
     Because of its insulating property, good thermal stability and excellentelectrolyte retention capacity, the porous inorganic membrane has been taken intoaccount as lithium-ion battery separator for the first time. This dissertation is focuseson lithium-ion battery system, and aim at improving the safety performance and ratecapability of the battery. The porous Al_2O_3, SiO_2and AAO separators have beenprepared. The technique of SEM is adopted to characterize the microstructure andmorphology of the as-prepared membranes. The electrochemical methods includinggalvanostatically charged and discharged test, cyclic voltammetry, and impedancemeasurement were used to systematically investigate their electrochemicalperformances.
     Firstly, porous Al_2O_3separator has been prepared through twicehigh-temperature sintering of nano-Al_2O_3, micron-sized Al_2O_3and the pore-formingagent of EDTA. The microstructure, porosity and electrolyte-infiltration performancesof porous Al_2O_3separator have been studied. The results demonstrate that: comparingwith the polymer separator, Al_2O_3separator possesses higher porosity and excellentelectrolyte retention performance; after infiltrated with electrolyte of1M LiPF6/EC+DEC (1:1, w/w), the Al_2O_3separator exhibits an excellent ion conductivity. TheLiFePO_4/graphite cell using the inorganic separator shows higher discharge capacity,rate capability, and better low-temperature performance than that using thecommercialized polymer separator. The LiFePO_4/graphite battery possesses better cycle performance, rate performance, and low temperature performance. Thus, theporous Al_2O_3can be used as a lithium ion battery separator. All the evidences indicatethat the inorganic separator is very promising to be applied in the large-sizedlithium-ion batteries, especially for the long-term energy storage systems.
     Secondly, the porous SiO_2separator with good mechanical strength has beenprepared by sintering the commercialized raw materials of SiO_2which is cheap andeasy to get. The electrolyte-infltrated SiO_2separator exhibits excellent ionicconductivity even at as low as-20°C and much better electrolyte retentionperformance than polymer at50°C. The LiMn_2O_4/Li cell using the SiO_2separatorshows higher discharge capacity, rate capability and better low-temperatureperformance than that using the commercial polymer separator. Furthermore, the SiO_2separator can alleviate LiMn_2O_4/Li capacity fading at high temperature of55°C. Theexcellent electrochemical performance of the SiO_2separator can be attributed to thefollowing reasons:(1) excellent electrolyte infiltration and retention performance ofhydrophilic SiO_2;(2) capillary force of the porous pores in the SiO_2separator;(3)SiO_2can capture the trace amounts of moisture and acidic impurity in the electrolyte.All these results indicate that the SiO_2separator is very promising to be applied in thelithium-ion batteries, especially for the long-term energy storage systems.
     Thirdly, through-hole anodic aluminum oxide (AAO) film has been quickly andefficiently prepared within a simple homemade device. The AAO film has a highporosity of72%and good mechanical strength even as thin as60μm. The AAO filmhas excellent performances in electrolyte uptake and retention, and the wettability ofthe electrolyte to the hydrophilic AAO film is much better than that of thecommercialized polymer separator. Compared with the polymer separator, theLiFePO_4/graphite cell using the AAO separator shows better cycling capacity, ratecapability, and low-temperature performance. The effect of the AAO separator onperformance of LiFePO_4/graphite cell has also been investigated by the EIS. It isdemonstrated that the AAO separator is very promising to be applied in thelithium-ion batteries.
     Finally, an integrative cell with a porous Al_2O_3membrane as both a support anda separator has been fabricated by coating the electrode materiasl on each side of theseparator, while the electrolyte was infltrated inside. The LiFePO_4/graphiteintegrative cells are evaluated in coin-type cells and exhibited good cycle capacity. The self-standing integrative cell is a simple and promising technology to assemblethe battery stacks and meanwhile had an obvious advantage of forming a frmstructure, which could avoid inner short circuit during being moved or crashed. Suchself-standing integrative cell with Al_2O_3porous separator could provide a competitivecandidate to the currently rolling battery assembly, especially for large-sized energystorage device.
引文
[1] Panwar N.L., Kaushik S.C., Kothari S. Role of renewable energy sources in environmentalprotection: A review [J]. Renewable and Sustainable Energy Reviews,2011,15(3):1513-1524
    [2] BP, Statistical Review of world Energy. London: British Petroleum,2009-07
    [3] Goodenough J.B., Kim Y. Challenges for Rechargeable Li Batteries [J]. Chemistry ofMaterials,2010,22(3):587-603
    [4] Tarascon J.M., Armand M. Issues and challenges facing rechargeable lithium batteries [J].Nature,2001,414(6861):359-367
    [5] Chan C.K., Peng H.L., Liu G., et al. High-performance lithium battery anodes usingsilicon nanowires [J]. Nature Nanotechnology,2008,3(1):31-35
    [6] Wakihara M. Recent developments in lithium ion batteries [J]. Materials Science&Engineering R-Reports,2001,33(4):109-134
    [7]王俊喜,马骊歌.电动汽车是中国汽车未来的发展方向[J].企业研究,2010,23:22-26
    [8] Thackeray M.M., David W.I.F., Bruce P.G., et al. Lithium insertion into manganese spinels[J]. Materials Research Bulletin,1983,18(4):461-472
    [9] Yu Y., Gu L., Wang C.L., et al. Encapsulation of Sn@carbon Nanopartieles inBamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-BasedBatteries [J]. Angewandte Chemie International Edition,2009,48(35):6485-6489
    [10] Chen Z.X., Cao Y.L., Qian J.F., et al. Facile synthesis and stable lithium storageperformances of Sn-sandwiched nanoparticles as a high capacity anode material forrechargeable Li batteries [J]. Journal of Materials Chemistry,2010,20(34):7266-7271
    [11] Amatucci G.G., Schmutz C.N., Blyr A. Materials effects on the elevated and roomtemperature performance of C/LiMn2O4Li-ion batteries [J]. Journal of Power Sources,1997,69(1-2):11-25
    [12] Vidu R., Stroeve P. Improvement of the thermal stability of Li-ion batteries by Polymercoating of LiMn2O4[J]. Industrial&Engineering Chemistry Research,2004,43(13):3314-3324
    [13]陈召勇,刘兴泉,高利珍等.尖晶石LiMn2O4高温电化学容量衰减及改进[J].无机材料学报,2001,17(3):325-330
    [14] Sun Y.K., Oh I.H., Kim K.Y. Synthesis of Spinel LiMn2O4by the Sol-Gel Method for aCathode-Active Material in Lithium Secondary Batteries [J]. Industrial&EngineeringChemistry Research,1997,36(11):4839-4846
    [15] Ehlert T.C., Hsia M.M. Thermal decomposition of alkali metal hexafluorophosphates [J].Journal of Chemical and Engineering Data,1972,17(1):18-21
    [16] Xu K., Zhang S.S., Poese B.A., et al. Lithium Bis(oxalato) borate Stabilizes GraphiteAnode in Propylene Carbonate [J]. Electrochemical and Solid state Letters,2002,5(11):A259-A262
    [17] Zhang S.S. An unique lithium salt for the improved electrolyte of Li-ion battery [J].Electrochemistry Communications,2006,8(9):1423-1428
    [18] Arai J., Matsuo A., Fujisaki T., et al. A novel high temperature stable lithium salt(Li2B12F12) for lithium ion batteries [J]. Journal of Power Sources,2009,193(5):851-854
    [19] Xiao L.F., Cao Y.L., Ai X.P., et al. Optimization of EC-based multi-solvent electrolytesfor low temperature applications of lithium-ion batteries [J]. Electrochimica acta,2004,49(27):4857-4863
    [20]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社,2002:1-369
    [21]郭炳昆,徐徽,王友先等.锂离子电池[M].长沙:中南工业大学出版社,2002:1-260
    [22] Ogura S., Kawama I., Sakurai T., et al. Development of oil filled pressure compensatedlithium-ion secondary battery for DSV Shinkai6500[A]. IEEE. Oceans04MTS/IEEETechno-Ocean04, Vols1-2[C]. New York:345E47th ST,2004:1720-1726
    [23] Wang J., Raistrick I.D., Huggins R.A. Behavior of some binary lithium alloys as negativeelectrodes in organic solvent-based electrolytes [J]. Journal of the ElectrochemicalSociety,1986,133(3):457-460
    [24] Besenhard J.O., Yang J., Winter M. Will advanced lithium-alloy anodes have a chance inlithium-ion batteries?[J]. Journal of Power Sources,1997,68(1):87-90
    [25] Aimand M., Murphy D.W. Materials for Advanced Batteries [M]. New York: PlenumPress,1980,32-145
    [26] Nagaura T. Proceedings of the5th International Seminar on Lithium Battery Technologyand Applications [J]. Deerfield Beach, Florida. USA,1990:298-300
    [27] Kazunori O., Yokokawa M.10th International Seminar of Primary and secondary BatteryTechnology Applications [J]. Deerfield Beach, Florida. USA,1993:1-4
    [28] Gozdz A.S., Scllmutz C.N., Tarascon J.M., et al. Polymeric electrolytic cell separatormembrane [P]. US Patent: No.5418091,1995
    [29] Gozdz A.S., Schmutz C.N., Tarascon J.M. Rechargeable lithium intercalation batterywith hybrid polymeric electrolyte [P]. US Patent: No.5296318,1994
    [30] Gozdz A.S., Schxnutz C.N., Tarascon J.M., et al. Method of making an electrolyteactivatable lithium-ion rechargeable battery cell [P]. US Patent: No.5456000,1995
    [31]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践[M].北京:化学工业出版社,2004:1-398
    [32]郭炳馄,李新海,杨青松.化学电源-电池原理及制造技术[M].湖南:中南大学出版社,2009:288-354
    [33]郑洪河.锂离子电池电解质[M].北京:化学工业出版社,2007:1-302
    [34]内田隆裕.电池[M].郭成言译.北京:科学出版社,2004:1-203
    [35] Mizushima K., Jonesa P.C., Wisemana P.J., et al. LixCoO2(0    [36] Nakayama M., Kaneko M., Wakihara M. First-principles study of lithium ion migrationin lithium transition metal oxides with spinel structure.[J]. physical chemistry chemicalphysics,2012,14(40):13963-13970
    [37] Bruee P.G. Solid-state chemistry of lithium Power Sources [J]. ChemicalCommunications,1997,7(19):1817-1824
    [38] Bruee P.G., Armstrong A.R, Gitzendanner R.L. New intercalation compounds for lithiumbatteries: Layered LiMnO2[J]. Journal of Materials Chemistry,1999,9(1):193-198
    [39] Miura K., Ymada A., Tanaka M. Electric states of spinel LixMn2O4as a cathode of therechargeable battery [J]. Electrochimica Acta,1996,41(2):249-256
    [40]张胜利,余仲宝,韩周群.锂离子电池的研究与发展[J].电池工业,1999,4(1):26-28
    [41]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-94
    [42] Joho F., Novaka P., Spahrb M.E. Safety aspects of graphite negative electrode materialsfor lithium-ion batteries [J]. Journal of the Electrochemical Society,2002,149(8):A1020-A1024
    [43] Kock A., Ferg E., Gummow R.J. The effect of multivalent cation dopants on lithiummanganese spinel cathodes [J]. Journal of Power Sources,1998,70(2):247-252
    [44] Zhong Q.M., Sacken U. Crystal structures and electrochemical properties ofLiAlyNi1-yO2solid solution [J]. Journal of Power Sources,1995,54(2):7221-7223
    [45] Lu Y.L., Wei M., Wang Z.Q., et al. Characterization of structure and electrochemicalproperties of lithium manganese oxides for lithium secondary batteries hydrothermallysynthesized from δ-KxMnO2[J]. Electrochinica Acta,2004,49(14):2361-2367
    [46] Yang S., Song Y., Ngala K., et al. Performance of LiFePO4as lithium battery cathodeand comparison with manganese and vanadium oxides [J]. Journal of Power Sources,2003,119-121:239-246.
    [47] Ma Z.F., Yuan X.Z., Li D., et al. Structural and electrochemical characterization ofcarbonaceous mesophase spherule anode material for rechargeable lithium batteries [J].Electrochemistry Communications,2002,4(2):188-192
    [48] Kasavajjula U., Wang C., Appleby A.J. Nano-and bulk-silicon-based insertion anodes forlithium-ion secondary cells [J]. Journal of Power Sources,2007,163:1003-1039
    [49] Winter M., Besenhard J.O. Electrochemical lithiation of tin and tin-based intermetallicsand composites [J]. Electrochimica Acta,1999,45(1-2):31-50
    [50] Xiao L.F., Cao Y.L., Ai X.P., et al. The mechanism of oxygen reduction onMnO2-catalyzed air cathode in alkaline solution [J]. Journal of ElectroanalyticalChemistry,2003,557(15):127-134
    [51] Zhou J., Fedkiw P.S. Cycling of lithium/metal oxide cells using composite electrolytescontaining fumed silicas [J]. Electrochimica Acta,2003,48(18):2571-2582
    [52] Balakrishnan P.G., Ranesh R., Kumar T.P. Safety mechanisms in lithium-ion batteries [J].Journal of Power Sources,2006,155(2):401-414
    [53] Yoshizawa H., Ikoma M. Thermal stabilities of lithium magnesium cobalt oxides for highsafety lithium-ion batteries [J]. Journal of Power Sources,2005,146(1-2):121-124
    [54] Sarre G., Blanchard P., Broussely M. Aging of lithium-ion batteries [J]. Journal of PowerSources,2004,127(1-2):65-71
    [55] Ning G., Haran B., Popov B. N. Capacity fade study of lithium-ion batteries cycled athigh discharge rates [J]. Journal of Power Sources,2003,117(1-2):160-169
    [56] Bates J.B., Dudney N.J., Gruzalski G.R., et al. Fabrication and characterization ofamorphous lithium electrolyte thin films and rechargeable thin-film batteries [J]. Journalof Power Sources,1993,43(1-3):103-110
    [57] Mehrens M.W., Vogler C., Garche J. Aging mechanisms of lithium cathode materials [J].Journal of Power Sources,2004,127(1-2):58-64
    [58] Panitz J.C., Wietelmann U., Wachtler M. et al. Film formation in LiBOB-containingelectrolytes [J]. Journal of Power Sources,2006,153(2):396-401
    [59] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J].Chemical Reviews,2004,104(10):4303-4417
    [60]庄全超,武山,刘文元等.锂离子电池电解质锂盐研究进展[J].化学世界,2002,43(12):667-670
    [61]庄全超,刘文元,武山,陆兆达.锂及锂离子蓄电池有机溶剂研究进展[J].化学研究与应用,2003,15(1):25-30
    [62] Venkatasetty H.V. Lithium Battery Technology [M]. New York: John Wiley&Sons Inc.1984:53-120
    [63] Fenton D.E., Parker J.M., Wright P.V. Complexes of alkali metal ions with poly (ethyleneoxide)[J]. Polymer,1973,14(11):589-589
    [64] Berthier C., Gorecki W., Minier M., et al. Microscopic investigation of ionic conductivityin alkali metal salts-poly (ethylene oxide) adducts [J]. Solid State Ionics,1983,11(1):91-95
    [65] Ward I.M., Hubbard H.V.S.A., Wellings S.C., et al. Separator-free rechargeable lithiumion cells produced by the extrusion lamination of polymer gel electrolytes [J]. Journal ofPower Sources,2006,162(2):818-822
    [66] Aoshima N., Rikukawa M., Sanui K., et al. Electrical Properties of High ion ConductivePolymer Complexes Containing Room Temperature Molten Salt [J]. Materials ResearchSociety,1994,369:511-520
    [67] Feullade G., Perehe P. Ion-conductive macromolecular gels and membranes for solidlithium cells [J]. Journal of Applied Electrochemistry,1975,5(1):63-69
    [68] Killis A., LeNest J.F., Gandini A., et al. Ionic Conductivity of Polyether-PolyurethaneNetworks Containing Alkali Metal Salts: An Analysis of the Concentration Effect [J].Macromolecules,1984,17:63-66
    [69] Singh N., Galande C., Miranda A., et al. Paintable Battery [J]. Journal of Power Sources,1999,81(81-82):804-807
    [70]高海春.锂离子电池[J].盐湖研究,1994,2(4):54-59
    [71]杨军,解晶莹,王久林.化学电源测试原理与技术[M].北京:化学工业出版社,2006:39-321
    [72]汪继强.锂离子电池技术进展及市场[J].电源技术,1996,20(4):147-151
    [73]赖琼钰,卢集政,邹宏如.摇椅锂离子二次电池及其嵌入式电极材料[J].化学研究与应用,1998,10(1):21-26
    [74]崔振宇.聚偏氟乙烯多孔膜结构及其聚合物锂离子电池隔膜的性能[D].浙江:浙江大学博士论文,2008
    [75]陈继伟.湿法无纺布型铿离子电池隔膜材料的研究[D].广东:华南理工大学硕士论文,2009
    [76] Venugopal G., Moore J., Howard J., et al. Characterization of microporous separators forlithium-ion batteries [J]. Journal of Power Sources,1999,77(1):34-41
    [77] Gineste J.L. Polypropylene separator grafted with hydrophilic monomers for lithiumbatteries [J]. Journal of Membrane Science,1995,107:155-164
    [78] Ooms F.G.B., Kelder E.M., Schoonman J., et al. Performance of Solupor (R) separatormaterials in lithium ion batteries [J]. Journal of Power Sources,2001,97-98:598-601
    [79]梁银峥.基于静电纺纤维的先.进锂离子电池隔膜材料的研究[D].上海:东华大学博士论文,2011
    [80] Arora P., Zhang Z. M. Battery Separators [J]. Chemical Reviews,2004,104(10):4419-4462
    [81] Zhang S.S. A review on the separators of liquid electrolyte Li-ion batteries [J]. Journal ofPower Source,2007,164(1):351-364
    [82] Hennige V., Hying C., Horpel G., et al. Separator provided with asymmetrical porestructures for an electrochemical cell [P]. US Patent: No.0078791,2003
    [83]亨尼格V.,许英C.,赫尔佩尔G.具有关闭机制的电隔膜、其生产方法和在锂电池中的使用[P].中国专利: No.200480030002.X,2004
    [84]亨尼格V.,许英C.,赫尔佩尔G.基于聚合物或天然纤维基材的陶瓷膜及其生产和应用[P].中国专利: No.03804665.2,2003
    [85]毛新欣.锂离子电池新型隔膜材料的制备及其性能研究[D].河南:河南师范大学硕士论文,2012
    [86]徐南平.无机膜的发展现状与展望[J].化工进展,2000,19(4):5-9
    [87] Bhave R.R. Inorganic Membranes-Synthesis Characteristics and Applications [M]. NewYork: Van Nostrand Reinhold,1991:1-312
    [88]梁龙,李建保.微孔无肌分离膜用多孔陶瓷支撑体的研制[J].稀有金属材料与工程,2007,36(1):579-582
    [89]李忠宏,仇农学.多孔不锈钢基体上多孔SiO2陶瓷膜的制备[J].农业工程学报,2008,24(5):25-30
    [90] Lim G.T., Jeong H.G. Fabrication of a silica ceramic membrane using the aerosol flamedeposition method for pretreatment focusing on particle control during desalination [J].Desalination.2009,238(3):53-59
    [91] Wang Y.H., Tian T.F., Liu X.Q., et al. Titania Membrane Preparation with ChemicalStability for Very Harsh Environments Application [J]. Journal of Membrane Science,2006,280(1-2):261-269
    [92]张汝冰,张亚非.掺杂纳米二氧化钛陶瓷膜的制备方法[P].中国专利:No.CN1397376,2003
    [93]于方丽,王欢锐.有机添加剂对多孔氮化硅陶瓷挤出成型工艺的影响[J].中国科技论文在线,2009,4(3):193-197
    [94]刘有智,谷磊.碳化硅多孔陶瓷支撑体表面涂层研究[J].膜科学与技术,2007,27(5):51-55
    [95] Aust U., Benfer S., Dietze M., et al. Development of Microporous Ceramic Membranesin the System TiO2/ZrO2[J]. Journal of Membrane Science,2006,281(1-2):463-471
    [96] Liu W., Zhang B.Q., Liu X.F., et al. Thermal Stability of Silica-zirconia Membranes [J].Chinese Journal of Chemical Engineering,2006,14(1):31-36
    [97]张红宇.氧化铝多孔陶瓷无机膜支撑体及涂层研究[D].山西:中北大学硕士论文,2006
    [98]王永红,孟广耀.新型陶瓷分离膜制备科学基础和能研究[D].安徽:中国科技大学博士论文,2006
    [99]侯相林,高荫本,陈诵英.微孔无机膜的制备与改性[J].膜科学与技术,1996,16(4):8-12
    [100]丁贯保,漆虹.粒径分布对氧化铝多孔支撑体孔结构的影响[J].膜科学与技术,2008,28(5):23-27
    [101]秦麟卿,吴伯麟.氧化铝颗粒形貌对其坯体烧结性能的影响[J].武汉理工大学学报,2006,28(2):7-9
    [102]张光明,张本清.干压成型陶瓷气孔成因探析[J].真空电子技术,2007,4(1):85-86
    [103]黄丽芳.注浆成型低温烧结氧化铝陶瓷[D].安徽:合肥工业大学硕士论文,2007
    [104]黄肖容,黄仲涛.溶胶-凝胶法制备不对称氧化铝膜[J].无机材料学报,1998,13(4):534-540
    [105]王学松.膜分离技术及应用[M].北京:科学出版社,1994:102-188
    [106]周明,孟广耀等.无机陶瓷膜[J].膜科学与技术,1992,2(12):1-9
    [107] Anderson, M.A., Gieselmann, M.J., Xu, Q.Y. Titania and Alumina Ceramic Membranes[J]. Journal of Membrane Science,1988,39(3),243-258
    [108] Naito M., Nakahira K., Fukuda Y., et al. Process conditions on the preparation ofsupported microporous SiO2membranes by sol-gel modification techniques [J]. Journalof Membrane Science,1997,129(2):263-269
    [109]孙彩兰.多通道支撑体制备氧化铝无机膜干燥技术探讨[J].中国陶瓷工业,2008,15(1):13-16
    [110] Brevnov D.A., Rao G.V.R., López G.P., et al. Dynamics and temperature dependence ofetching processes of porous and barrier aluminum oxide layers [J]. Electrochimica Acta,2004,49(15):2487-2494
    [112] Li D., Zhao L., Jiang C. et al. Formation of Anodic Aluminum Oxide with SerratedNanochannels [J]. Nano Letters,2010,10(8):2766-2771
    [113] Mehmood M., Rauf A., Rasheed M.A., et al. Preparation of transparent anodic aluminawith ordered nanochannels by through-thickness anodic oxidation of aluminum sheet [J].Materials Chemistry and Physics,2007,104(2):306-311
    [114] Yan S, Maeda H, Kusakabe K, et al. Thin Palladium Films Formed in Support Pores byMetal-organic CVD Method Application to Hydrogen Separation [J]. Industrial&Engineering Chemistry Research,1994,33(3):616-622
    [115]杨全红,唐致远.新型储能材料-石墨烯的储能特性及其前景展望[J].电源技术,2009,33(4):241-244
    [116] Aurbach D., Zinigrad E., Teller H., et al. Factors Which Limit the Cycle Life ofRechargeable Lithium (Metal) Batteries [J]. Journal of the Electrochemical Society,2000,147(4):1274-1279
    [117] Wu C.G., Lu M.I., Tsai C.C., et al. PVDF-HFP/metal oxide nanocomposites: thematrices for high-conducting, low-leakage porous polymer electrolytes [J]. Journal ofPower Sources,2006,159:295-300
    [118] Jeong H.S., Kim D.W., Jeong Y.U., et al. Effect of phase inversion on microporousstructure development of Al2O3/poly(vinylidene fuoride-hexafuoropropylene)-basedceramic composite separators for lithium-ion batteries [J]. Journal of Power Sources,2010,195(18):6116-6121
    [119] Kim M., Han G.Y., Yoon K.J., et al. Preparation of a novel trilayer separator and itsapplication to lithium ion batteries [J]. Journal of Power Sources,2010,195(24):8302-8305
    [120] Liao Y.H., Rao M.M., Li W.S., et al. Fumed silica-doped poly(butylmethacrylate-styrene)-based gel polymer electrolyte for lithium ion battery [J]. Journalof Membrane Science,2010,352(1-2):95-99
    [121] Zhang S.S., Xu K., Jow T.R. An inorganic composite membrane as the separator ofLi-ion batteries [J]. Journal of Power Sources,2005,140(2):361-364
    [122] Takemura D., Aihara S., Hamano K., et al. A Powder particle size effect on ceramicpowder based separator for lithium rechargeable battery [J]. Journal of Power Sources2005,146(1-2):779-783
    [123] Goodenough, J.B. Rechargeable Batteries: Challenges Old and New [J]. Journal ofSolid State Electrochemistry,2012,16:2019-2029
    [124] Fergus J.W. Ceramic and polymeric solid electrolytes for lithium-ion batteries [J].Journal of Power Sources,2010,195(4):4554-4569
    [125] Wu C.G., Lu M.I., Chuang H.J. PVdF-co-HFP/P123hybrid with mesopores: a newmatrix for high-conducting low-leakage porous polymer electrolyte [J]. Polymer,2005,46:5929-5938
    [126]崔闻宇.聚合物锂离子电池隔膜的研究[D].吉林:哈尔滨工业大学硕士论文,2006
    [127]吴人洁主编.现代分析技术--在高聚物中应用[M].上海:上海科学技术出版社,1987:57-112
    [128]刘琳,锂离子电池聚合物凝胶电解质的研究[D].湖南:国防科学技术大学硕士论文,2002
    [129]黄学杰.锂离子电池正极材料磷酸铁锂研究进展[J].电池工业,2004,9(4):176-180
    [130]张静,刘素琴,黄可龙等. LiFePO4:水热合成及性能研究[J].无机化学学报,2005,21(3):433-436
    [131] Shiraishi K. Dokko K, Kanamura K. Formation of impurities on Phospho-olivineLiFePO4during hydrothermal synthesis [J]. Journal of Power Sources,2005,146(1-2):555-558
    [132] Konarova M, Taniguchi I. Preparation of LiFePO4/C composite powders by ultrasonicspray pyrolysis followed by heat treatment and their electrochemical properties [J].Materials Research Bulletin,2008,43(12):3305-3317
    [133] Qiu W.L., Ma X.H., Yang Q.H., et al. Novel preparation of nanocomposite polymerelectrolyte and its application to lithium polymer batteries [J]. Journal of Power Sources,2004,138(1-2):245-252
    [134] He X.M., Shi Q., Zhou X., et al. In situ composite of nano SiO2-P(VDF-HFP) porouspolymer electrolytes for Li-ion batteries [J]. Electrochimica Acta,2005,51(6):1069-1075
    [135] Liao Y.H., Li X.P., Fu C.H. et al. Polypropylene-supported and nano-Al2O3dopedpoly(ethylene oxide)-poly(vinylidene fluoride-hexafluoropropylene)-based gelelectrolyte for lithium ion batteries [J]. Journal of Power Sources,2011,196(4):2115-2121
    [136] Choi J.A., Kim S.H., Kim D.W. Enhancement of thermal stability and cyclingperformance in lithium-ion cells through the use of ceramic-coated separators [J] Journalof Power Sources,2010,195(18):6192-6196
    [137] Lee Y.S., Jeong Y.B., Kim D.W. Cycling performance of lithium-ion batteries assembledwith a hybrid composite membrane prepared by an electrospinning method [J]. Journalof Power Sources,2010,195(18):6197-6201
    [138] Cheng F., Chen J. Metal-air batteries: from oxygen reduction electrochemistry tocathode catalysts [J]. Chemical Society Reviews,2012,41(6):2172-2192
    [139] Johson B.A., White R.E. Characterization of commercial available lithium-ion batteries[J]. Journal of Power Sources,1998,70(1):48-54
    [140] Poizot P., Dolhem F. Clean energy new deal for a sustainable world: from non-CO2generating energy sources to greener electrochemical storage devices [J]. EnergyEnvironmental Science,2011,4(6):2003-2019
    [141] Winter M., Besenhard J.O., Spahr M.E., et al. Insertion electrode materials forrechargeable lithium batteries [J]. Advanced Materials,1998,10(10):725-763
    [142] Brandrup J., Immergut E.H. Polymer Handbook [M], third edition, John Wiley&Sons,NY,1989
    [143] Choi E.S., Lee S.Y. Particle size-dependent, tunable porous structure of aSiO2/poly(vinylidene fuoride-hexafuoropropylene)-coated poly(ethylene terephthalate)nonwoven composite separator for a lithium-ion battery [J]. Journal of MaterialsChemistry2011,21(38):14747-14754
    [144] Das S.K., Mandal S.S., Bhattacharyya A.J. Ionic conductivity, mechanical strength andLi-ion battery performance of mono-functional and bi-functional (Janus) soggysand electrolytes [J]. Energy&Environmental Science,2011,4:1391-1399
    [145] Verhoeven V.W.J., Schepper I.M., Nachtegaal G., et al. Lithium dynamics in LiMn2O4probed directly by two-dimensional Li-7NMR [J]. Physical Review Letters,2001,86(19):4314-4317
    [146] Iguchi E., Tokuda Y., Nakatsugawa H. et al. Electrical transport properties in LiMn2O4,Li0.95Mn2O4and LiMn1.95B0.05O4(B=Al or Ga) around room temperature [J]. Journal ofApplied Physics,2002,91(4):2149-2154
    [147] Xia Y.Y., Yoshio M. An investigation of lithium ion insertion into spinel structureLi-Mn-O compounds [J]. Journal of the Electrochemical Society,1996,143(3):825-833
    [148] Yang X.Q., Sun X., Lee S.J. et al. In situ synchrotron X-ray diffraction studies of thephase transitions in LixMn2O4cathode materials [J]. Electrochemical and Solid StateLetters,1999,2(4):157-160
    [149] Yamada A., Tanaka M., Tanaka K., et al. Jahn-Teller instability in spinel Li-Mn-O [J].Journal of Power Sources,1999,81-82:73-78
    [50] Ostrovskii D., Ronci F., Scrosati B., et al. Reactivity of lithium battery electrodematerials toward nonaqueous electrolytes: spontaneous reactions at theelectrode-electrolyte interface investigated by FTIR [J]. Journal of Power Sources,2001,103(1):10-17
    [151] Hunter J.C. Preparation of a new crystal of managanese dioxide: λ-MnO2[J]. Journal ofSolid State Chemistry,1981,39(2):142-147
    [152] Tarascon J.M., McKinnon W.R., Coowar F., et al. Synthesis Conditions and OxygenStoichiometry Eeffets on Li Insertion into the Spinel LiMn2O4[J]. Journal of theElectrochemical Society,1994,141(6):1421-1432
    [153] Arora P., White R.E., Doyle M. Capacity fade mechanism and side reactions in lithiumion batteries [J]. Journal of the Electrochemical Society,1998,145(10):3647-3667
    [154] Amatucci G.G., Pereira N., Zheng T., et al. Enhancement of the electrochemicalproperties of LiMn2O4through chemical substitution [J]. Journal of Power Sources1999,81-82:39-43
    [155] Zhang S.S., Xu K., Jow T.R. Understanding Formation of Solid Electrolyte InterfaceFilm on LiMn2O4Electrode [J]. Journal of the Electrochemical Society,2002,149:A1521-A1526
    [156] Tsai Y.W., Santhanam R., Hwang B.J. et al. Structure stabilization of LiMn2O4cathodematerial by bimetal dopants [J]. Journal of Power Sources,2003,119-121:701-705
    [157] Im D., Manthiram A. Nanostructured Lithium Manganese Oxide Cathodes Obtained bya Reduction of Lithium Permanganate with Hydrogen [J]. Journal of the ElectrochemicalSociety,2003,150(6): A742-A746
    [158] Cho J. and Thackeray M.M. Structural changes of LiMn2O4spinel electrodes duringelectrochemical cycling [J]. Journal of the Electrochemical Society,1999,146(10):3577-3581
    [159] Li X., Xu Y., Wang C., et al. Suppression of Jahn-Teller distortion of spinel LiMn2O4cathode [J]. Journal of Alloys and Compounds,2009,479(1-2):310-313
    [160] Qiao Y., Li S.R., Yu Y. et al. Synthesis and electrochemical properties of highperformance yolk-structured LiMn2O4microspheres for lithium ion batteries [J]. Journalof Materials Chemistry A,2013,1:860-867
    [161] Xia Y., Yoshio M. Studies on Li-Mn-O spinel system (obtained from melt-impregnationmethod) as a cathode for4V lithium batteries Part IV. High and low temperatureperformance of LiMn2O4[J]. Journal of Power sources,1997,66(1-2):129-133
    [162] Saitoh M., Sano M., Fujita M., et al. Studies of capacity losses in cycles and storagesfor a Li1.1Mn1.9O4positive electrode [J]. Journal of the Electrochemical Society,2004,151(1): A17-A22
    [163] Shen C.H., Gundakamar R., Liu R.S. et al. Absence of phase transformation at lowtemperature in Co-doped LiMn2O4samples [J]. Journal of the Chemical Society-DaltonTransactions,2001,1:37-40
    [164] Iwata E., Takahashi K., Maeda K., et al. Capacity failure on cycling or storage oflithium-ion batteries with Li-Mn-O ternary phases having spinel-framework structureand its possible solution [J]. Journal of Power sources,1999,81-82:430-433
    [165] Gao Y. and Dahn J.R. Synthesize and Characterization of Li1+xMn2-xO4for Li-ionBattery Application [J]. Journal of the Electrochemical Society,1996,143(1):100-114
    [166] Lee Y.S., Kumada N., Yoshio M. Synthesis and characterization of lithiumaluminum-doped spinel (LiAlxMn2-xO4) for lithium secondary battery [J]. Journal ofPower Sources,2001,96(2):376-384
    [167] Yoshio M., Xia Y., Kumada N., et al. Storage and cycling performance of Cr-modifiedspinel at elevated [J]. Journal of Power Sources,2001,101(1):79-85
    [168] Li G.H., Ikuta H., Uchida T., et al. The spinel phases LiMyMn2-yO4(M=Co, Cr, Ni) asthe cathode for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1996,143(1):178-182
    [169] Gao Y., Reimers J.N., Dahn J.R. Changes in the Voltage Pofile Li/Li1+xMn2-xO4cells asa function of x [J]. Physical Review B,1996,54(6):3878-3881
    [170] Xiang H., Chen J., Li Z., et al. An inorganic membrane as a separator for lithium-ionbattery [J]. Journal of Power Sources,2011,196:8651-8655
    [171] Gao Y., Myrtle K., Zhang M., et al. Valence band of LiNixMn2-xO4and its effects on thevoltage profiles of LiNixMn2-xO4/Li electrochemiecal cells [J]. Physical Review B,1996,54(23):16670-16675
    [172] Myung S.T., Komaba S., Kumagai N. Enhanced structural stability and cyclability ofAl-doped LiMn2O4spinel synthesized by the emulsion drying method [J]. Journal of theElectrochemical Society,2001,148(5): A482-A489
    [173] Gnanaraj J.S., Pol V.G., Gedanken A., et al. Improving the high-temperatureperformance of LiMn2O4spinel electrodes by coating the active mass with MgO via asonochemical method [J]. Electrochemistry Communications,2003,5:940-945
    [174] Deng B.H., Nakamura H., Zhang Q., et al. Greatly improved elevated-temperaturecycling behavior of Li1+xMgyMn2-x-yO4+dspinels with controlled oxygen stoichiometry[J]. Electrochimica Acta,2004,49:1823-1830
    [175] Kannna A.M., Manthiram A. Surface/Chemically modified LiMn2O4cathode forlithium-ion batteries [J]. Electrochemical and Solid-State Letters,2002,5(7):A167-A169.
    [176] Sun Y. K., Hong K. J., Prakash J. The Effect of ZnO coating on electrochemical cyclingbehavior of spinel LiMn2O4cathode materials at elevated temperature [J]. Journal of theElectrochemical Society,2003,150(7): A970-A972
    [177] Myung S.T., Izumi K., Komaba S., et al. Role of Alumina Coating on Li-Ni-Co-Mn-OParticles as Positive Electrode Material for Lithium-Ion Batteries [J]. Chemistry ofMaterials,2005,17:3695-3704
    [178] Lee K.S., Myung S.T., Bang H., et al. Effect of protecting metal oxide (Co3O4) layer onelectrochemical properties of spinel Li1.1Mn1.9O4as a cathode material for lithiumbattery applications [J]. Journal of Power Sources,2009,189(1):494-498
    [179] Amatucci G., Du Pasquier A., Blyr A., et al. The elevated temperature performance ofthe LiMn2O4/C system: Failures and solutions [J]. Electrochimica Acta,1999,45:255-271
    [180] Lee S.W., Kim K.S., Moon H.S, et al. Electrochemical characteristics of Al2O3-coatedlithium manganese spinel as a cathode material for lithium secondary battery [J]. Journalof Power Sources,2004,126(1-2):150-155
    [181] Chang W.S., Park C.M., Kim J.H., et al. Quartz (SiO2): a new energy storage anodematerial for Li-ion batteries [J]. Energy&Environment Science,2012,5:6895-6899
    [182] Jiang G.X., Maeda S., Saito Y., et al. Ceramic-Polymer Electrolytes for All-Solid-StateLithium Rechargeable Batteries [J]. Journal of the Electrochemical Society,2005,152(4): A767-A773
    [183] Huang X. Separator technologies for lithium-ion batteries [J]. Journal of Solid StateElectrochemistry,2011,15:649-662
    [184] Zhuang Q.C., Wei T., Du L.L., et al. An Electrochemical Impedance SpectroscopicStudy of the Electronic and Ionic Transport Properties of Spinel LiMn2O4[J]. TheJournal of Physical Chemistry C,2010,114,8614-8621
    [185] Kim W.K., Han D.W., Ryu W.H., et al. Al2O3coating on LiMn2O4by electrostaticattraction forces and its effects on the high temperature cyclic performance [J].Electrochimica Acta,2012,71:17-21
    [186] Wang Y.Z., Shao X., Xu H.Y., et al. Facile synthesis of porous LiMn2O4spheres ascathode materials for high-power lithium ion batteries [J]. Journal of Power Sources,2013,226:140-148
    [187] Scrosati B., Hassoun J, Sun Y.-K. Lithium-ion batteries. A look into the future [J].Energy&Environmental Science,2011,4(9):3287-3295
    [188] Croce F., Focarete M.L., Hassoun J., et al. A safe, high-rate and high-energy polymerlithium-ion battery based on gelled membranes prepared by electrospinning [J]. Energy&Environmental Science,2011,4(3):921-927
    [189] Tarascon J.-M. Armand M., Building better batteries [J]. Nature,2008,451,652-657
    [190] Scrosati B., Garche J. Lithium batteries: Status, prospects and future [J]. Journal ofPower Sources,2010,195(9):2419-2430
    [191] Bansal D., Meyer B., Salomon M. Gelled membranes for Li and Li-ion batteriesprepared by electrospinning [J]. Journal of Power Sources,2008,178(2):848-851
    [192] Kovacic S., Kren H., Krajnc P., et al. The Use of an Emulsion Templated MicrocellularPoly(dicyclopentadiene-co-norbornene) Membrane as a Separator in Lithium-IonBatteries [J]. Macromolecular Rapid Communications,2013,34,581-587
    [193] Liao Y., Sun C., Hu S., et al. Anti-thermal shrinkage nanoparticles/polymer and ionicliquid based gel polymer electrolyte for lithium ion battery [J]. Electrochimica Acta,2013,89:461-468
    [194] Miao Y.E., Zhu G.N., Hou H., et al. Electrospun polyimide nanofber-based nonwovenseparators for lithium-ion batteries [J]. Journal of Power Sources,2013,226:82-86
    [195] Liu Y., Cai Z., L. Tan, Li L. Ion exchange membranes as electrolyte for highperformance Li-ion batteries [J]. Energy&Environmental Science,2012,5(10):9007-9013
    [196] Cho T.H., Sakai T., Tanase S., et al. Electrochemical Performances of PolyacrylonitrileNanofber-Based Nonwoven Separator for Lithium-Ion Battery [J]. Electrochemical andSolid-State Letters,2007,10(7): A159-A162
    [197] Kim K.J., Kim J.-H., Park M.-S., et al. Enhancement of electrochemical and thermalproperties of polyethylene separators coated with polyvinylidenefuoride-hexafuoropropylene co-polymer for Li-ion batteries [J]. Journal of PowerSources,2012,198:298-302
    [198] Lee J.-R., Won J.-H., Kim J.H., et al. Evaporation-induced self-assembled silicacolloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate)nonwoven composite separators for high-safety/high-rate lithium-ion batteries [J].Journal of Power Sources,2012,216:42-47
    [199] Shin W.-K., Kim D.-W. High performance ceramic-coated separators prepared withlithium ion-containing SiO2particles for lithium-ion batteries [J]. Journal of PowerSources,2013,226:54-60
    [200] Jung Y.S., Cavanagh A.S., Gedvilas L., et al. Improved Functionality of Lithium-IonBatteries Enabled by Atomic Layer Deposition on the Porous Microstructure of PolymerSeparators and Coating Electrodes [J]. Advanced Energy Materials,2012,2(8):1022-1027
    [201] Jiang W., Liu Z., Kong Q., et al. A high temperature operating nanofbrous polyimideseparator in Li-ion battery [J]. Solid State Ionics,2013,232:44-48
    [202] Kim M., Park J.H. Inorganic thin layer coated porous separator with high thermalstability for safety reinforced Li-ion battery [J]. Journal of Power Sources,2012,212:22-27
    [203] Shi D., Xia X., Huang X., et al. Modeling stresses in the separator of a pouchlithium-ion cell [J]. Journal of Power Sources,2011,196(19):8129-8139
    [204] Kuribayashi I. Characterization of composite cellulosic separators for rechargeablelithium-ion batteries [J]. Journal of Power Sources,1996,63(1):87-91
    [205] Yang C., Jia Z., Guan Z., et al. Polyvinylidene fuoride membrane by novelelectrospinning system for separator of Li-ion batteries [J]. Journal of Power Sources,2009,189(1):716-720
    [206] Djian D., Alloin F., Martinet S., et al. Macroporous poly(vinylidene fuoride) membraneas a separator for lithium-ion batteries with high charge rate capacity [J]. Journal ofPower Sources,2009,187(2):575-580
    [207] Pu W., He X., Wang L., et al. Preparation of PVDF-HFP microporous membrane forLi-ion batteries by phase inversion [J], Journal of Membran Science,2006,272(1-2):11-14
    [208] Fang J., Kelarakis A., Lin Y.-W., et al. Nanoparticle-coated separators for lithium-ionbatteries with advanced electrochemical performance [J]. Physical Chemistry ChemicalPhysics,2011,13(32):14457-14461
    [209] Thormann A., Teuscher N., Pfannm ller M., et al. Nanoporous Aluminum OxideMembranes for Filtration and Biofunctionalization [J]. Small2007,3(6):1032-1040
    [210] Sulka G.D., Brzózka A., Zaraska L., et al. Through-hole membranes of nanoporousalumina formed by anodizing in oxalic acid and their applications in fabrication ofnanowire arrays [J]. Electrochimica Acta,2010,55(14):4368-4376
    [211] Zhao Y., Chen M., Zhang Y., et al. A facile approach to formation of through-holeporous anodic aluminum oxide film [J]. Materials Letters,2005,59(1):40-43
    [212] Fan J.-Y., Chien M.-C., Wang G.-J. Experimental investigation on the bi-directionalgrowing mechanism of the foils laminate approach in AAO fabrication [J]. NanoscaleResearch Letters,2007,2(1):49-53
    [213] Schwirn K., Lee W., Hillebrand R., et al. Self-Ordered Anodic Aluminum OxideFormed by H2SO4Hard Anodization [J]. ACS NANO,2008,2(2):302-310
    [214] Yuan J.H., Chen W., Hui R.J., et al. Mechanism of one-step voltage pulse detachment ofporous anodic alumina membranes [J]. Electrochimica Acta,2006,51(3):4589-4595
    [215] Chen W., Wu J.-S., Yuan J.-H., et al. An environment-friendly electrochemicaldetachment method for porous anodic alumina [J]. Journal of ElectroanalyticalChemistry,2007,600:257-264
    [216] Peabody C., Arnold C.B. The role of mechanically induced separator creep inlithium-ion battery capacity fade [J]. Journal of Power Sources,2011,196(19):8147-8153
    [217] Ma J.C., Megahed E.S., Stachoviak T.J., et al. Lithium battery with secondary batteryseparator [P]. US Patent No.6444356,2002
    [2218] Ryou M.-H., Lee Y.M., Park J.-K., et al. Mussel-Inspired Polydopamine-TreatedPolyethylene Separators for High-Power Li-Ion Batteries [J]. Advanced Materials,2011,23(27):3066-3070
    [219] Wang H., Li H., Yu L., et al. Synthesis of Porous Al2O3-PVDF Composite Separatorsand Their Application in Lithium-Ion Batteries [J]. Journal of Applied Polymer Science2013130(4):2886-2890
    [220] Striebel K., Shim J., Sierra A., et al. The development of low cost LiFePO4-based highpower lithium-ion batteries [J]. Journal of Power Sources,2005,146(1-2):33-38
    [221] Liu P., Wang J., Garner J.H., et al. Aging Mechanisms of LiFePO4Batteries Deducedby Electrochemical and Structural Analyses [J]. Journal of The Electrochemical Society,2010,157(4) A499-A507
    [222] Mi C.H., Cao Y.X., Zhang X.G., et al. Synthesis and characterization ofLiFePO4/(Ag+C) composite cathodes with nano-carbon webs [J]. Powder Technology,2008,181(3):301-306
    [223] Mulder G., De Ridder F., Six D. Electricity storage for grid-connected householddwellings with PV panels [J]. Solar Energy,2010,84(7):1284-1293
    [224] Divya K.C., stergaard J. Battery energy storage technology for power systems: Anoverview [J]. Electric Power Systems Research,2009,79(4):511-520
    [225] Elhadidy M.A., Shaahid S.M. Optimal sizing of battery storage for hybrid (wind+diesel) power systems [J]. Renew Energy,1999,18:77-86
    [226] Hoff T.E., Perez R., Margolis R.M. Maximizing the value of customer-sited PV systemsusing storage and controls [J]. Solar Energy,2007,81(7):940-945
    [227] Hall P.J., Bain E.J. Energy-storage technologies and electricity generation [J]. EnergyPolicy,2008,36:4352-4355
    [228] Henson W. Optimal Battery/Ultracapacitor Storage Combination [J]. Journal of PowerSources,2008,179(1):417-423
    [229] Du Pasquier A, Amatucci G.G., Culver D., et al. Plastic PVDF-HFP electrolytelaminates prepared by a phase-inversion process [J]. Solid State Ion,2000,135(1-4):249-257
    [230] Lee K.H., Lee Y.G., Park J.K., et al. Effect of silica on the electrochemicalcharacteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA)copolymer [J]. Solid State Ion,2000,133:257-263
    [231] Appetecchi G.B., Romagnoli P., Scrosati B. Composite gel membranes: A new class ofimproved polymer electrolytes for lithium batteries [J]. ElectrochemistryCommunications2001,3:281-284
    [232] Rajendran S, Mahendran O, Kannan R. Ionic conductivity studied in composite solidpolymer electrolytes based on PMMA [J]. Journal of Physics and Chemistry of Solids,2002,63(2):303-307
    [233] Prosini P.P., Villano P., Carewska M. A novel intrinsically porous separator forself-standing lithium-ion batteries [J]. Electrochimica Acta,2002,48:227-233
    [234] Djian D, Alloin F, Martinet S, et al. Lithium-ion batteries with high charge rate capacity:Influence of the porous separator [J]. Journal of Power Sources2007,172:416-421
    [235] Zhang H.P., Zhang P., Li Z.H., et al. Novel composite polymer electrolytes based onpoly(ether-urethane) network polymer and fumed silicas [J]. ElectrochemistryCommunications,2007,9:1700-1703
    [236] Mohamed M, Ishikawa H, Uchida I. In Situ Analysis of High TemperatureCharacteristics of Prismatic Polymer Lithium-Ion Batteries [J]. Journal of AppliedElectrochemistry,2004,34:1103-1112
    [237] Persi L., Croce F., Scrosati B. A LiTi2O4-LiFePO4novel lithium-ion polymer battery[J]. Electrochemistry Communications,2002,4(1):92-95
    [238] Zhang Y, Wang C.Y, Tang X. Cycling degradation of an automotive LiFePO4lithium-ion battery [J]. Journal of Power Sources,2011,196(3):1513-1520
    [239] Takahashi M, Tobishima S, Takei K, et al. Reaction behavior of LiFePO4as a cathodematerial for rechargeable lithium batteries [J]. Solid state ionics,2002,148:283-289
    [240] Shim J., Striebel K.A. Cycling performance of low-cost lithium ion batteries withnatural graphite and LiFePO4[J]. Journal of Power Sources,2003,119-121:955-958
    [241] Chang H.H., Chang C.C., Su C.Y., et al. Effects of TiO2coating on high-temperaturecycle performance of LiFePO4-based lithium ion batteries [J]. Journal of Power Sources,2008,185(1):466-472
    [242] Shin H.C., Cho W.I., Jang H. Electrochemical properties of carbon-coated LiFePO4cathode using graphite, carbon black, and acetylene black [J]. Electrochimica Acta,2006,52(4):1472-1476.
    [243] Feng Y. The preparation and electrochemical performances of LiFePO4-multiwallednanotubes composite cathode materials for lithium ion batteries [J]. Materials Chemistryand Physics,2010,121:302-307
    [244] Yang K.R., Deng Z.H., Suo J.S. Synthesis and characterization of LiFePO4andLiFePO4/C cathode material from lithium carboxylic acid and Fe3+[J]..Journal ofPower Sources,2012,201:274-279
    [245] Wolfenstine J, Allen J.L. Electrical conductivity and charge compensation in Ta dopedLi4Ti5O12[J]. Journal of Power Sources,2008,180:582-585
    [246] Shenouda A.Y., Murali K.R. Electrochemical Properties of Doped Lithium TitanateCompounds and Their Performance in Lithium Rechargeable Batteries [J]. Journal ofPower Sources,2008,176(1):332-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700