用户名: 密码: 验证码:
方向回溯阵列天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着无线通信技术的发展,迫切需要使用低成本、高增益,同时具有自动波束跟踪能力的新型天线。方向回溯阵列天线能够满足这些设计要求,它不需要来波方向的预知信息和复杂的数字信号处理算法来实现方向回溯。相对于传统天线技术和通常的自适应天线技术,方向回溯阵列天线具有快速跟踪的特性和更高的性价比,这些特点使其在现代军用和民用移动通信系统中有广阔的应用前景。
     本论文在综述方向回溯阵列国内外现状的基础上,从理论上对方向回溯阵列的基本概念进行了研究;系统总结了各种方向回溯实现方式的优缺点和方向回溯系统体系结构;并对用于评价方向回溯阵列系统性能优劣的跟踪特性进行了波束指向误差的理论分析,研究了在多径环境下方向回溯阵列的性能,为方向回溯阵列设计提供理论依据。
     基于混频器的相位共轭电路是实现方向回溯功能的主要途径,因此论文首先总结了几种不同结构的混频器在相位共轭电路中的应用形式,并设计了两种相位共轭混频器。对于单边带混频器,论文分析了不同支路的幅度误差和相位误差对边带抑制度的影响,推导了最佳输出的条件;同时根据方向回溯阵的设计要求完成了的输入输出同端口的阻性FET混频器,这两种混频器可应用于方向回溯阵列中。
     具有频偏特性的方向回溯阵可以实现异频通信而且方便测试,为了解决使用宽带入射信号时具有频偏特性的相位共轭电路无法进行相位过滤的问题,提出了一种基于单边带混频器和Van Atta阵列结合的方向回溯阵列结构,设计并制作了工作在S波段的实验模型,测试结果表明这种阵列具有良好的频偏和宽带工作特性。
     针对方向回溯阵在通信系统中的应用,设计了一种工作在C波段的宽带超外差方向回溯阵。采用自定频结构和收发频偏设计,使系统无需预先确定来波频率就可以自动进行方向回溯通信。为了解决相位共轭电路带内较大的杂散,设计了一种采用中频混频的超外差阵,两次变频使得阵列输出具有较纯净的频谱,符合通信系统应用需求。
     目前对方向回溯阵列的研究多集中在单频,对双频阵列研究较少,而双频阵列具有更广泛的应用。论文提出并制作了一种双向双频超外差方向回溯阵列,它可以将接收到的低频问询信号由高频转发出去,而接收到的高频问询信号也可由低频进行转发,在一个相位共轭单元中只采用一个混频器实现双向收发,不仅降低了系统成本,也使系统具有较高的收发隔离度。在此基础上,采用中频混频的相位共轭方式实现了双向双频超外差阵列,使系统可以很容易加入调制解调,完成信息的接收和传送,很好的应用到全双工通信系统中。
     针对射频识别系统的应用,设计并制作了工作在C波段的超外差方向回溯阵列,相位共轭单元采用阻性FET混频器,通过使用90。耦合器增加系统收发隔离度,实现了对射频泄露信号的抑制。
     最后结合实际系统的应用需求,设计了低副瓣方向回溯阵列。采用DEGL算法和不等间距布阵形式设计了工作在C波段的16元不等间距宽带低副瓣天线阵,副瓣电平达到了-20dB。同时设计了可以进行±20。扫描的16元宽带双极化低副瓣天线阵,并设计了相位共轭电路。低副瓣方向回溯阵可以在有电子干扰的环境中更有效的工作,应用于现代通信系统中。
With the development of wireless communication these years, there is a serious need for novel antennas with the features of low cost, high link gain and the capability of adaptive beam tracking. Retrodirective array antenna has the characteristic of retransmitting a wave toward the source without any prior knowledge of the source location and the complex digital signal processing. Compared with traditional antenna technique and adaptive antenna technique, it has the advantages of quickly tracking and low cost. Therefore, it can be widely used in the communication field for both military and commercial applications.
     The concept and feature of retrodirective array are theoretically studied based on the current research status both at home and abroad. The advantages and disadvantages of various kinds of realization methods and the structure characteristics of retrodirective arrays are summarized. The tracking characteristic used for judging the performance of a retrodirective array is evaluated by the analysis of beam pointing error in theory. Then the system performance under multi-path circumstance is analyzed.
     The phase-conjugation technique using mixers is the main approach of realizing a retrodirective arrays. By discussing the various structures of mixers used for phase-conjugation circuits, two kinds of phase-conjugation mixers are designed. In the single sideband mixer design, the sideband suppression influenced by the amplitude and phase error is analyzed and the condition for best outputs is deduced. Simultaneously, a mixer with a shared port for input and output signal using FET is accomplished. These two mixers are fabricated and measured. The measured results show that the mixers have good performance for phase-conjugating circuits.
     Broadband retrodirective array with frequency offset characteristic can be used for different-frenquency communication. In order to realize phased filtering for a broadband signal in the phase-conjugating circuits with frequency offset characteristic, a Van Atta array combined a single sideband mixer is proposed and the array operating at S band is practically designed and manufactured. The measurement results show good coincidence with theoretically results. This array achieves excellent frequency offset and broadband characteristics.
     Two broadband heterodyne retrodirective arrays operating at C band are designed for the communication application. In the array designs, frequency offset technique and frequency autonomous structure are used for more flexible performance, which can assure the array automatically retransmit a wave toward the source direction without any prior information of the source frequency. The design results of heterodyne technique using IF for restraining spurious signals in the phase-conjugation circuit show that this array obtain pure spectrum which can satisfies the communication system requirements.
     Compared with a single frequency retrodirective array, dual-frequency arrays have more widely applications in communication systems. Current researches of retrodirective array focus on single frequency. A bidirectional dual-frequency heterodyne retrodirective array is designed which can make a response signal at a high frequency to a low frequency interrogating signal, and be responsible for the reciprocal process. The phase-conjugation unit with only one mixer to realize bidirectional transceiver not only reduces system cost but also results in high transceiver isolation of the system. The bidirectional dual-frequency retrodirective array using IF mixing allows the system to easily add demodulation, receive and transmit information and can be well applied to the full-duplex communication systems.
     A heterodyne retrodirective array operating at C band for RFID application is designed and fabricated, in which a FET mixer is used in phase-conjugation cell. A90°coupler is introduced to increasing the isolation between receiving and retransmitting signals.
     Finally, for the system application requirements, several arrays with low sidelobe level are optimized by using DEGL algorithm. A16-element broadband unequally spaced array with a sidelobe level less than-20dB is designed. At the same time, a16-element dual-polarized retrodirective array with low sidelobe level characteristic is designed which can achieve±20°beam scanning, and the corresponding phase-conjugation circuit is also designed. The design results show that the low sidelobe retrodirective array can be more effectively applied to modern communication systems in the electronic interference environment.
引文
[1]V. Fusco and N. Buchanan, Dual-mode Retrodirective/Phased Array, Electronics Letters, vol.45, pp.139-141,2009.
    [2]E. Rutz-Philipp, Spherical Retrodirective Array, Antennas and Propagation, IEEE Transactions on [legacy, pre-1988], vol.12, pp.187-194,1964.
    [3]J. Appel-Hansen, Optimization of the Reradiation Pattern of a Van Atta Array, vol.38 (Specia Issue), pp.266-9,1969.
    [4]H. P. Coleman, Circularly Symmetric Retrodirective Antenna System, vol. AP-19, pp.784-5,1971.
    [5]A. Zamora, M. K. Watanabe, J. M. Akagi, T. F. Chun, and W. A. Shiroma, An Inter-Element Phase-Detecting Retrodirective Array for Nonuniform Wavefronts, in Microwave Symposium Digest,2009.MTT'09. IEEE MTT-S International,2009, pp.817-820.
    [6]V. F. Fusco, N. B. Buchanan, and O. Malyuskin, Active Phase Conjugating Lens With Sub-Wavelength Resolution Capability, Antennas and Propagation, IEEE Transactions on, vol.58, pp.798-808,2010.
    [7]P. Sundaralingam and V. Fusco, Simulated Performance of 2.45 GHz Retrodirective Array Under RF Pulse Excitation, in Antennas & Propagation Conference,2009. LAPC 2009. Loughborough, 2009, pp.165-168.
    [8]W. H. Kummer, Birgenheier, R. A., A Hign-Gain Self-Steering Microwave Array, Proc. of IEEE, vol.56, pp.2028-2038,1968.
    [9]S. Gupta and V. F. Fusco, Tracking Antenna Architectures Based on a Planar Two-Port Microstrip Patch Mixer Antenna, IEEE Transactions on Antennas and Propagation, vol.45, pp.1863-1868, 1997.
    [10]S. L. Karode and V. F. Fusco, Self-Tracking Duplex Communication Link using Planar Retrodirective Antennas, IEEE Transactions on Antennas and Propagation, vol.47, pp.993-1000, 1999.
    [11]J. Tuovinen, G. S. Shiroma, W. E. Forsyth, and W. A. Shiroma, Multipath Communications using a Phase-Conjugate Array, Philadelphia, PA, United States,2003, pp.1681-1684.
    [12]T. F. Chun, M. K. Watanabe, A. Zamora, J. M. Akagi, and W. A. Shiroma, Multiple Interrogation of Phase-Conjugating Arrays, in Microwave Symposium Digest,2009. MTT '09. IEEE MTT-S International,2009, pp.1193-1196.
    [13]S. L. Karode and V. F. Fusco, Multiple Target Tracking using Retrodirective Antenna Arrays, IEE Conference Publication, pp.178-181,1999.
    [14]B. Y. Toh and V. F. Fusco, Retrodirective Array Radar Cross-Section Performance Comparisons, IEEE High Frequency Postgraduate Student Colloquium, pp.65-70,2000.
    [15]E. B. Brown and E. R. Brown, Analysis of an X-Band Retrodirective Noise Correlating Radar for Large-Caliber Bullet and Projectile Detection, San Francisco, CA, United States,2006, pp. 102-105.
    [16]K. M. K. H. Leong, Y. Wang, and T. Itoh, A Radar Target Transceiver using a Full Duplex Capable Retrodirective Array System, Philadelphia, PA, United States,2003, pp.1447-1450.
    [17]L. Cabria, J. A. Garcia, A. Tazon, and A. Mediavilla, Taking Advantage of PHEMT Nonlinear Behavior for RFID Applications, in Integrated Nonlinear Microwave and Millimeter-Wave Circuits,2006 International Workshop on,2006, pp.42-45.
    [18]L. Chiu, T. Y. Yum, W. S. Chang, Q. Xue, and C. H. Chan, Retrodirective array for RFID and microwave tracking beacon applications, Microwave and Optical Technology Letters, vol.48, pp. 409-411,2006.
    [19]H. Matsumoto, Research on Solar Power Satellites and Microwave Power Transmission in Japan, Microwave Magazine, IEEE, vol.3, pp.36-45,2002.
    [20]R. Y. Miyamoto and T. Itoh, Retrodirective Arrays for Wireless Communications, IEEE Microwave Magazine, vol.3, pp.71-79,2002.
    [21]R. Y. Miyamoto, Y. Qian, and T. Itoh, Active Retrodirective Array for Remote Tagging and Wireless Sensor Applications, IEEE MTT-S International Microwave Symposium Digest, vol.3, pp. 1431-1434,2000.
    [22]D. Jorgensen, C. Loadman, and Z. D. Chen, Retrodirective Antenna Systems for Wireless Communications, in Communication networks and services research conference,2003, pp.20-23.
    [23]T. Murata and M. Fujita, A Self-Steering Planar Array Antenna for Satellite Broadcast Reception, Broadcasting, IEEE Transactions on, vol.40, pp.1-6,1994.
    [24]J. D. Roque, S. S. Sung, B. T. Murakami, G. S. Shiroma, R. Y. Miyamoto, and W. A. Shiroma, A Coupled-Antenna Interrogator/Receiver for Retrodirective Crosslinks in a Distributed Nanosatellite Network, Honolulu, HI, United States,2005, pp.612-615.
    [25]T. J. Mizuno, J. D. Roque, B. T. Murakami, L. K. Yoneshige, G. S. Shiroma, R. Y. Miyamoto, and W. A. Shiroma, Antennas for Distributed Nanosatellite Networks, Honolulu, HI, United States, 2005, pp.608-611.
    [26]L. C. V. Atta, Electromagnetic Reflector, US:2 908,1959.
    [27]C. Pon, Retrodirective Array using the Heterodyne Technique, Antennas and Propagation, IEEE Transactions on, vol.12, pp.176-180,1964.
    [28]M. K. Watanabe, G. S. Shiroma, B. O. Takase, J. M. Akagi, and W. A. Shiroma, A Retrodirective Array Based on Phase Detection and Frequency Scanning, Honolulu, HI, United States,2007, pp. 1715-1718.
    [29]L. D. DiDomenico and G. M. Rebeiz, Digital Communications using Self-Phased Arrays, IEEE MTT-S International Microwave Symposium Digest, vol.3, pp.1705-1708,2000.
    [30]C. Shyh-Jong and C. Kai, A Retrodirective Microstrip Antenna Array, Antennas and Propagation, IEEE Transactions on, vol.46, pp.1802-1809,1998.
    [31]K. Walther, Model Experiments with Acoustic Van Atta Reflector, The Journal of the Acoustical Society of America, vol.34, pp.665-673,1962.
    [32]R. C. Hansen, Communications Satellites using Arrays, Proceedings of the IRE, vol.49, pp. 1066-1074,1961.
    [33]A. Kurss and W. K. Kahn, A Note on Reflector Arrays, Antennas and Propagation, IEEE Transactions on, vol.15, pp.692-693,1967.
    [34]T. Larsen, Reflector arrays, Antennas and Propagation, IEEE Transactions on, vol.14, pp. 689-693,1966.
    [35]E. D. Sharp and M. A. Diab, Van Atta Reflector Array, IRE Trans. Antennas Propag., vol.8,1960.
    [36]L. H. Bauer, Thechnique for Amplitude Modulating a Van Atta Radar Reflector, Proc. Inst. Radio Electron. Eng., vol.49, pp.634-635,1961.
    [37]E. Nielsen, Square Van Atta Reflector with Conducting Mounting Flame, Antennas and Propagation, IEEE Transactions on, vol.18, pp.48-54,1970.
    [38]K. M. K. H. Leong, R. Y. Miyamoto, S.-S. Jeon, Y. Wang, and T. Itoh, A Frequency Autonomous Retrodirective Array Transponder, Seattle, WA,2002, pp.1349-1352.
    [39]B. Nair and V. F. Fusco, Two-Dimensional Planar Passive Retrodirective Array, Electronics Letters, vol.39, pp.768-769,2003.
    [40]R. Y. Miyamoto, K. M. K. H. Leong, S.-S. Jeon, Y Wang, Y. Qian, and T. Itoh, Digital Wireless Sensor Server using an Adaptive Smart-Antenna/Retrodirective Array, IEEE Transactions on Vehicular Technology, vol.52, pp.1181-1188,2003.
    [41]K. M. K. H. Leong, R. Y. Miyamoto, and T. Itoh, Moving Forward in Retrodirective Antenna Arrays, IEEE Potentials, vol.22, pp.16-21,2003.
    [42]N. B. Buchanan and V. F. Fusco, Triple Mode PLL Antenna Array, Fort Worth, TX, United States, 2004, pp.1691-1694.
    [43]V. Fusco, C. B. Soo, and N. Buchanan, Analysis and Characterization of PLL-Based Retrodirective Array, IEEE Transactions on Microwave Theory and Techniques, vol.53, pp.730-738,2005.
    [44]N. B. Buchanan and V. F. Fusco, Quadrant Switching PLL Phase Conjugator for Retrodirective Antenna Applications, in Microwave Symposium Digest,2008 IEEE MTT-S International,2008, pp.791-794.
    [45]J. W. Andrews and P. S. Hall, Oscillator Stability and Phase Noise Reduction in Phase Locked Active Microstrip Patch Antenna, Electronics Letters, vol.34, pp.833-835,1998.
    [46]C. Loadman and Z. Chen, A Retrodirective Array using Direct Down-Conversion and Fixed Point DSP for Duplex Digital Communications, San Diego, CA, United States,2006, pp.335-338.
    [47]C. T. Rodenbeck and K. Chang, A Limitation on the Small-Scale Demonstration of Retrodirective Microwave Power Transmission from the Solar Power Satellite, IEEE Antennas and Propagation Magazine, vol.47, pp.67-72,2005.
    [48]V. F. Fusco and N. Buchanan, Retrodirective Array Performance in the Presence of Near Field Obstructions, Antennas and Propagation, IEEE Transactions on, vol.58, pp.982-986,2010.
    [49]P. V. Brennan, Investigation into the Multipath Performance of Self-Phased Array, Microwaves, Antennas and Propagation, IEE Proceedings H, vol.136, pp.47-52,1989.
    [50]S. L. Karode and V. F. Fusco, Use of an Active Retrodirective Antenna Array as a Multipath Sensor, IEEE Microwave and Guided Wave Letters, vol.7, pp.399-401,1997.
    [51]V. F. Fusco, Response of Retrodirective Array in the Presence of Multiple Spatially Separated Sources, IEEE Transactions on Antennas and Propagation, vol.54, pp.1352-1354,2006.
    [52]S. L. Karode and V. F. Fusco, Frequency Offset Retrodirective Antenna Array, Electronics Letters, vol.33, pp.1350-1351,1997.
    [53]C. W. Pobanz and T. Itoh, A Microwave Noncontact Identification Transponder using Subharmonic Interrogation, Microwave Theory and Techniques, IEEE Transactions on, vol.43, pp.1673-1679, 1995.
    [54]S.-C. Yen and T.-H. Chu, A Retro-directive Antenna Array with Phase Conjugation Circuit using Subharmonically Injection-Locked Self-Oscillating Mixers, IEEE Transactions on Antennas and Propagation, vol.52, pp.154-164,2004.
    [55]K. W. Wong, L. Chiu, and Q. Xue,2D Phase-Conjugated Retrodirective Array with Information Carrying Capability, Electronics Letters, vol.43, pp.653-654,2007.
    [56]K. W. Wong, L. Chiu, and Q. Xue, A 2-D Van Atta Array using Star-Shaped Antenna Elements, IEEE Transactions on Antennas and Propagation, vol.55, pp.1204-1206,2007.
    [57]B. Feng and Z. Chen, Optimization of Three Dimensional Retro-directive Arrays, Halifa, NS, Canada,2005, pp.80-83.
    [58]D. M. K. A. Yo, W. E. Forsyth, and W. A. Shiroma,360° Rretrodirective Self-Oscillating Mixer Array, IEEE MTT-S International Microwave Symposium Digest, vol.2, pp.813-816,2000.
    [59]J. S. Sun, D. S. Goshi, and T. Itoh, Optimization and Modeling of Sparse Conformal Retrodirective Array, Antennas and Propagation, IEEE Transactions on, vol.58, pp.977-981,2010.
    [60]Y. J. Ren and K. Chang, Bow-Tie Retrodirective Rectenna, Electronics Letters, vol.42, pp. 191-192,2006.
    [61]Y.-J. Ren and K. Chang, New 5.8-GHz Circularly Polarized Retrodirective Rectenna Arrays for Wireless Power Transmission, IEEE Transactions on Microwave Theory and Techniques, vol.54, pp.2970-2976,2006.
    [62]F. J. Cruz-Rodriguez and H. Jardon-Aguilar, Study of Retrodirective Passive Microstrip Antennas and Less Efficient Structures, Veracruz, Mexico,2006, pp.1-4.
    [63]D. S. Goshi, K. M. K. H. Leong, and T. Itoh, A Scheme for Hardware Reduction in Wireless Retrodirective Transponders, San Francisco, CA, United States,2006, pp.626-629.
    [64]K. M. K. H. L. Darren S. Goshi, and Tatsuo Itoh, A Sparsely Designed Retrodirective Transponder, IEEE Antennas and Wireless Propagation Letters, vol.5, pp.339-342,2006.
    [65]X. Chen, Y. Guo, and X. Shi, Design and Analysis of a Doherty Amplifier for Retrodirective Communication System, Guilin, China,2007, p.4266193.
    [66]R. Y. Miyamoto, Y. Qian, and T. Itoh, An Active Integrated Retrodirective Transponder for Remote Information Retrieval-on-Demand, IEEE Transactions on Microwave Theory and Techniques, vol. 49, pp.1658-1662,2001.
    [67]Y. Qian and T. Itoh, Progress in Active Integrated Antennas and Their Applications, IEEE Transactions on Microwave Theory and Techniques, vol.46, pp.1891-1900,1998.
    [68]S. Lim, K. M. K. H. Leong, and T. Itoh, Adaptive Power Controllable Retrodirective Array System for Wireless Sensor Server Applications, IEEE Transactions on Microwave Theory and Techniques, vol.53, pp.3735-3743,2005.
    [69]S. Lim and T. Itoh, A 60 GHz Retrodirective Array System with Efficient Power Management for Wireless Multimedia Sensor Server Applications, Microwaves, Antennas & Propagation, IET, vol. 2, pp.615-625,2008.
    [70]S.-J. Chung, S.-M. Chen, and Y.-C. Lee, A Novel Bi-Directional Amplifier with Applications in Active Van Atta Retrodirective Arrays, Microwave Theory and Techniques, IEEE Transactions on, vol.51, pp.542-547,2003.
    [71]B. T. Murakami, J. D. Roque, S. S. Sung, G. S. Shiroma, R. Y. Miyamoto, and W. A. Shiroma, A Quadruple Subharmonic Phase-Conjugating Array for Secure Picosatellite Crosslinks, Fort Worth, TX, United States,2004, pp.1687-1690.
    [72]S. Lim, K. M. K. H. Leong, and T. Itoh, Adaptive Power Controllable Retrodirective Array System for Portable Battery-Operated Applications, Long Beach, CA, United States,2005, pp.399-402.
    [73]R. C. Chernoff, Large Active Retrodirective Arrays for Space Applications, IEEE Transactions on Antennas and Propagation, vol. AP-27, pp.489-496,1979.
    [74]G. S. Shiroma, R. Y. Miyamoto, and W. A. Shiroma, A Full-Duplex Dual-Frequency Self-Steering Array using Phase Detection and Phase Shifting, IEEE Transactions on Microwave Theory and Techniques, vol.54, pp.128-133,2006.
    [75]R. Y. Miyamoto, Y. Qian, and T. Itoh, A Reconfigurable Active Retrodirective/Direct Conversion Receiver Array for Wireless Sensor Systems, Phoenix, AZ,2001, pp.1119-1122.
    [76]D. S. Goshi, K. M. K. H. Leong, and T. Itoh, A Retrodirective Array with Interference Rejection Capability, Long Beach, CA, United States,2005, pp.395-398.
    [77]D. S. Goshi, K. M. K. H. Leong, and T. Itoh, A Secure High-Speed Retrodirective Communication Link, IEEE Transactions on Microwave Theory and Techniques, vol.53, pp.3548-3556,2005.
    [78]D. S. Goshi, K. M. K. Leong, and T. Itoh, Interleaved Retrodirective Sub-Arrays for Null-Steering Interference Rejection, in Microwave Symposium,2007. IEEE/MTT-S International,2007, pp. 1719-1722.
    [79]S. L. Karode and V. F. Fusco, Retrodirective Beam Formation using Switched Amplifiers, Manchester, UK,1996, pp.73-76.
    [80]C. W. Pobanz and T. Itoh, A Conformal Retrodirective Array for Radar Applications using a Heterodyne Phased Scattering Element, Orlando, FL, USA,1995, pp.905-908.
    [81]R. Y. Miyamoto, Y. Qian, and T. Itoh, A Retrodirective Array using Balanced Quasi-Optical FET Mixers with Conversion Gain, IEEE MTT-S International Microwave Symposium Digest, vol.2, pp. 655-658,1999.
    [82]W. E. Forsyth and W. A. Shiroma, A Retrodirective Antenna Array using a Spatially Fed Local Oscillator, IEEE Transactions on Antennas and Propagation, vol.50, pp.638-640,2002.
    [83]G. S. Shiroma, C. Song, R. Y. Miyamoto, and W. A. Shiroma, An Active Self-Steering Array using Self-Oscillating Mixers, Philadelphia, PA, United States,2003, pp.1685-1688.
    [84]N. B. Buchanan, T. Brabetz, and V. F. Fusco, A 62/66 GHz Frequency Offset Retrodirective Array, Seattle, WA,2002, pp.315-318.
    [85]P. V. Brennan, An Experimental and Theoretical Study of Self-Phased Arrays in Mobile Satellite Communications, Antennas and Propagation, IEEE Transactions on, vol.37, pp.1370-1376, 1989.
    [86]L. D. DiDomenico and G. M. Rebeiz, Digital Communications using Self-Phased Arrays, IEEE Transactions on Microwave Theory and Techniques, vol.49, pp.677-684,2001.
    [87]K. M. K. H. Leong and T. Itoh, Mutually Exclusive Data Encoding for Realization of a Full Duplexing Self-Steering Wireless Link using a Retrodirective Array Transceiver, IEEE Transactions on Microwave Theory and Techniques, vol.53, pp.3687-3696,2005.
    [88]郭胜刚.方向回溯天线研究.电子科技大学,2006.
    [89]M. Fujita and S. Nakamura, A 48-Element Polarization-Rotating Van Atta Array Reflector with Suppressed Scattered Field, IEICE Transactions on Communications, vol. E87-B, pp.3753-3758, 2004.
    [90]D. D. K. M. I. Skolnik, Self-Phasing Array Antennas, Antennas and Propagation, IEEE Transactions on, vol. march, pp.142-149,1961.
    [91]T. Brabetz, V. F. Fusco, and S. Karode, Balanced Subharmonic Mixers for Retrodirective-Array Applications, IEEE Transactions on Microwave Theory and Techniques, vol.49, pp.465-469, 2001.
    [92]K. M. K. H. Leong, Y. Wang, and T. Itoh, A Full Duplex Capable Retrodirective Array System for High-Speed Beam Tracking and Pointing Applications, IEEE Transactions on Microwave Theory and Techniques, vol.52, pp.1479-1489,2004.
    [93]郭玉春.方向回溯天线阵研究.西安电子科技大学,2009.
    [94]B. Y. Toh, V. F. Fusco, and N. B. Buchanan, Assessment of Performance Limitations of PON Retrodirective Arrays, Antennas and Propagation, IEEE Transactions on, vol.50, pp.1425-1432, 2002.
    [95]B. Y. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation. Berlin, Springer-Verlag,1985.
    [96]L. B. Rowan Gilmore,杨芳,翁木云等译,现代无线系统射频电路实用设计,电子工业出版社,2006.
    [97]S. L. Ian Robertson,文光俊,谢甫珍,李家胤译,单片射频微波集成电路技术与设计,电子工业出版社,2007.
    [98]W. B. Daniel Marco Treyer, Investigation of a Self-Calibrating SSB Modulator, Microwave Theory and Techniques, IEEE Transactions on, vol.53, pp.3806-3816,2005.
    [99]S. A. MAAS, A GaAs MESFET Mixer with Very Low Intermodulation, IEEE Transactions on Microwave Theory and Techniques, vol.35, pp.425-429,1987.
    [100]C. Leung, X. Quan, and C. Chi Hou, A Wideband Circularly-Polarized Active Van Atta Retrodirective Transponder with Information Carrying Ability, in Microwave Conference,2006. APMC 2006. Asia-Pacific,2006, pp.231-234.
    [101]A. Y. Butrym, O. V. Kazanskiy, and N. N. Kolchigin, Van Atta's Array Consist of Tapered Slot Antennas for Wideband Pulse Signals, Kyiv, Ukraine,2005, pp.221-223.
    [102]Y.-J. Ren and K. Chang, A New Millimeter-Wave Broadband Retrodirective Antenna Array, Honolulu, HI, United States,2007, pp.1711-1714.
    [103]S. C. Gao and S. S. Zhong, Dual-Polarized Microstrip Antenna Array with High Isolation Fed by Coplanar Network, Microwave and Optical Technology Letters, vol.19, pp.213-214,1998.
    [104]R. S. and G. M. Rebeiz, Single-and Dual-Polarized Millimeter-Wave Slot-Ring Antennas, Antennas and Propagation, IEEE Transactions on, vol.44, pp.1438-1444,1996.
    [105]S. Gao, L. W. Li, M. S. Leong, and T. S. Yeo, A Broad-Band Dual-Polarized Microstrip Patch Antenna with Aperture Coupling, Antennas and Propagation, IEEE Transactions on, vol.51, pp. 898-899,2003.
    [106]K.-h. Won, H. C. Tung, and T. W. Chiou, Broadband Dual Polarized Aperture Coupled Patch Antenna with Modied H-Shaped Coupling Slots, Antennas and Propagation, IEEE Transactions on, vol.50, pp.188-191,2002.
    [107]G. R., Microstrip Antenna Design Handbook. Boston, MA:Artech House,2001.
    [108]X. Q. C. H. R. Cheng, L. Chen, and X. W. Shi, Design of a Dual-Polarized Aperture Coupled Microstrip Antenna, Progress In Electromagnetic Research Letters, vol.9, pp.175-181,2009.
    [109]M. L. C. Rodenbeck, and K. Chang, A Phased-Array Architecture for Retrodirective Microwave Power Transmission From the Space Solar Power Satellite, IEEE MTT-S International Microwave Symposium Digest, vol.3, pp.1679-1682,2004.
    [110]梁昌洪,谢拥军,and官伯然,简明微波.西安,高等教育出版社,2006.
    [111]Z. N. Chen and M. Y. W. Chia, Broadband Planar Antennas, John Wiley & Sons, Ltd,2005.
    [112]P. K. Agrawal and M. Bailey, An analysis technique for microstrip antennas, in Antennas and Propagation Society International Symposium,1976,1976, pp.395-398.
    [113]S. Liang, The elliptical microstrip antenna with circular polarization, Antennas and Propagation, IEEE Transactions on, vol.29, pp.90-94,1981.
    [114]P. K. Agrawal and M. Bailey, An analysis technique for microstrip antennas, Antennas and Propagation, IEEE Transactions on, vol.25, pp.756-759,1977.
    [115]K. L. Lau, K. M. Luk, and K. F. Lee, A Patch Antenna With a Rectangular-Loop Feed, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol.51, pp.2464-2468,2003.
    [116]G. Dubost, M. Nicolas, and H. Havot, Theory and Applications of Broadband Microstrip Antennas, in European Microwave Conference,1976.6th,1976, pp.275-279.
    [117]W. Kin-Lu and C. Tzung-Wern, Finite ground plane effects on broad-band dual polarized patch antenna properties, Antennas and Propagation, IEEE Transactions on, vol.51, pp.903-904,2003.
    [118]钟顺时,微带天线理论与应用.陕西西安,西安电子科技大学出版社,1991.
    [119]W. F. Richards, Y. T. Lo, and D. D. Harrison, Improved theory for microstrip antennas, Electronics Letters, vol.15, pp.42-44,1979.
    [120]W. Richards and Y. Lo, An improved theory for microstrip antennas and applications, in Antennas and Propagation Society International Symposium,1979,1979,pp.113-116.
    [121]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Willey & Sons, Inc.,2001.
    [122]T. Chih-Ming, Sheng-Yuan, L.,Chin-Chuan, T., Performance of a Planar Filter Using a Zero-Deg Feed Structure, IEEE Transactions on Microwave Theory and Techniques, vol.50, pp.2362-2367, 2002.
    [123]C. H. C. Nguyen, and D. W. Ball, Millimeter Wave Printed Circuited Spurline Filter, IEEE MTT-S International Microwave Symposium Digest, pp.98-100,1983.
    [124]H. L. L. Li, B. Teng Z. Shi, W. Li, X. Li et al., Novel Microstrip Lowpass Filter using Stepped Impedance Resonator and Spurline Resonator, Microwave and Optical Technology Letters, vol.51, pp.196-197,2009.
    [125]C. S. A. Y. Sung, and Y. S. Kim,, Parallel-Coupled Microstrip Bandpass Filters with a Wide Stopband using Spur lines, Microwave and Optical Technology Letters, vol.43, pp.9-11,2004.
    [126]M.J. Withers, An Active Van Atta Array, Proc. Inst. Electron. Eng, vol. 111, pp.982-984,1964.
    [127]T. Glynn, Pattern of an Active Van Atta Array Employing Mismatched Bilateral Amplifiers, Antennas and Propagation, IEEE Transactions on, vol.17, pp.355-356,1969.
    [128]V. F. Fusco and S. L. Karode, Self-phasing antenna array techniques for mobile communications applications, Electronics and Communication Engineering Journal, vol.11, pp.279-286,1999.
    [129]T.-J. Hong and S.-J. Chung,24 GHz Active Retrodirective Antenna Array, Electronics Letters, vol. 35, pp.1785-1786,1999.
    [130]C. Luxey and J. M. Laheurte, A Retrodirective Transponder with Polarization Duplexing for Dedicated Short-Range Communications, Microwave Theory and Techniques, IEEE Transactions on, vol.47, pp.1910-1915,1999.
    [131]R. Y. Miyamoto, Y. Qian, and T. Itoh, An Active Integrated Retrodirective Transponder for Remote Information Retrieval, Salt Lake, UT, USA,2000, pp.194-197.
    [132]许汉来.低副瓣差波瓣优化设计研究.南京电子工程研究中心,1995.
    [133]任盛海,吴志忠,遗传算法在阵列天线方向图综合设计中的应用,电波科学学报,vol.11,pp.62-67,1996.
    [134]M. Shimizu, Determining the Excitaion Coefficients of an Array using Genetic Algorithms, in IEEE Antennas and Propagation Society, AP-S International Symposium Seattle,1994, pp. 530-533.
    [135]D. G. H. Kurup, M.; Rydberg, A., Synthesis of Uniform Amplitude Unequally Spaced Antenna Arrays Using the Differential Evolution Algorithm, Antennas and Propagation, IEEE Transactions on, vol.51, pp.2010-2017,2003.
    [136]D. M. Pazar and D. H. Schaubert, Microstrip Antennas-The Analysisi and Design of Microstrip Antennas and Arrays. New York, IEEE Press,1995.
    [137]J. F. DeFord and O. P. Gandhi, Phase-Only Synthesis of Minimum Peak Sidelobe Patterns for Linear and Planar Arrays, Antennas and Propagation, IEEE Transactions on, vol.36, pp.191-201, 1988.
    [138]N. Goto and Y. Tsunoda, Sidelobe Reduction of Circular Arrays with a Constant Excitation Amplitude, Antennas and Propagation, IEEE Transactions on, vol.25, pp.896-898,1977.
    [139]F. Marvasti, Nonuniform Sampling Theorems for Bandpass Signals at or Below the Nyquist Density, Signal Processing, IEEE Transactions on, vol.44, pp.572-576,1996.
    [140]M. J. Wysota, K.; Walkowiak, M., Sidelobe Suppression in Unequally Spaced Antenna Arrays, Information Technology, pp.1-4,2008.
    [141]Y.-b. H. Zhao, Jing-fang; Zhang, Zhao-yang, Synthesis of Unequally Spaced Array by Genetic Algorithm and Convex Optimization, in Radar Conference,2009, pp.1-4.
    [142]H. Unz, Linear Arrays with Arbitrarily Distributed Elements, Antennas and Propagation, IEEE Transactions on, vol.8, pp.222-223,1960.
    [143]A. Ishimaru, Theory of Unequally Spaced Arrays, Antennas and Propagation, IEEE Transactions on, vol.11, pp.691-702,1962.
    [144]V. Murino, A. Trucco, and C. S. Regazzoni, Synthesis of Unequally Spaced Arrays by Simulated Annealing, Signal Processing, IEEE Transactions on vol.44, pp.322-325,1996.
    [145]B. P. K. Kumar and G. R. Branner, Synthesis of Unequally Spaced Arrays using Legendre Series Expansion, IEEE Antennas and Propagation Soc. Int. Symp. Dig, vol.4, pp.2236-2239,1997.
    [146]R. Storn and K. Price, Minimising The Real Functions of the ICEC'96 Contest by Differential Evolution, in Proc. IEEE Conf. Evolutionary Computations Nagoya,1996, pp.842-844.
    [147]R. Storn, System Design by Constrained Adaptation and Differential Evolution, IEEE Trans. Evol. Comput., vol.3, pp.22-34,1999.
    [148]王玉峰.基于免疫算法的阵列天线方向图综合.哈尔滨工程大学,2007.
    [149]Y. Rahmat-Samii and E. E. Michielssen, Electromagnetic Optimisation by Genetic Algorithms. New York, Wiley-Interscience,1999.
    [150]K.-K. Yan and Y. Lu, Sidelobe Reduction in Array-Pattern Synthesis Using Genetic Algorithm, Antennas and Propagation, IEEE Transactions on, vol.45, pp.1117-1122,1997.
    [151]F. J. Ares-Pena, J. A. Roriguez-Gonzalez, E. Villanueva-Lopez, and S. R. Rengarajan, Genetic Algorithms in the Design and Optimisation of Antenna Array Patterns, Antennas and Propagation, IEEE Transactions on, vol.47, pp.506-519,1999.
    [152]D. S.Weile and E. Michielssen, The Control of Adaptive Antenna Arrays with Genetic Algorithm using Dominance and Diploity, Antennas and Propagation, IEEE Transactions on, vol.49, pp. 1424-1433,2001.
    [153]韩荣仓.基于遗传算法的阵列天线综合.电子科技大学,2006.
    [154]陈客松,韩春林,何子述,一种有阵元间距约束的稀布阵天线综合方法,电波科学学报,vol. 22,pp.27-32,2007.
    [155]J.-L. Guo and J.-Y. Li, Pattern Synthesis of Conformal Array Antenna in the Presence of Platform Using Differential Evolution Algorithm, Antennas and Propagation, IEEE Transactions on, vol.57, 2009.
    [156]S. Das, A. Abraham, and A. Konar, Adaptive Clustering using Improved Differential Evolution Algorithm, IEEE Trans. Syst., Man, Cybern. A, vol.38, pp.218-237,2008.
    [157]R. Storn, K. V. Price, and J. Lampinen, Differential Evolution-A Practical Approach to Global Optimization. Berlin, Germany Springer-Verlag,2005.
    [158]袁俊刚,孙治国,曲广吉,差异演化算法的数值模拟研究,系统仿真学报,vol.19,pp.4646--4648(4784),2007.
    [159]A. A. Swagatam Das, Uday K. Chakraborty, and Amit Konar, Differential Evolution Using a Neighborhood-Based Mutation Operator, IEEE Transactions on Evolutionary Computation, vol. 13, pp.526-553,2009.
    [160]R. Stom, System Design by Constrained Adaptation and Differential Evolution, IEEE Trans. Evol. Comput., vol.3,1999.
    [161]J. K. a. R. Eberhart, Particle Swarm Optimization, in IEEE Int. Conf. Neural Netw.,1995, pp. 1942-1948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700