用户名: 密码: 验证码:
室内配电房及变压器结构传声治理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染与治理一直是国际社会关注的热点问题,而环境振动和噪声污染问题已被国际环境保护组织协会列为第七大污染。本论文基于“×××地区变压器及配电房结构传声治理”课题研究背景,立足于机电类设备所致环境振动和噪声污染问题,对城居区必备的变压器及配电房等供电设施所普遍造成的结构传声问题展开研究,并提出针对性的结构传声治理实用性技术方案,为该类民用机电设施的环境振动与噪声污染治理提供有益参考,这显然极具现实意义。本文主要工作内容如下:
     (1)对室内变压器振动与噪声产生机理、常规减振降噪治理措施、以及经由变压器与配电房所产生的结构传声机制和计算方法等进行了较为系统的阐述。
     (2)通过实地测试,获取了具有代表性的居民小区配电房内及邻近房间内的噪声级、噪声峰值频率范围,得到了变压器本体振动辐射的卓越频率范围和分布规律、以及配电房地面振动传播规律。
     (3)基于室内变压器声辐射与传递路径分析,建立了配电房结构传声的普适模型。并以典型室内变压器为例,对其各声辐射路径所传递的声功率比例进行了有效预测,表明固体传声为主要途径,进而基于固体传声理论针对某一典型配电房结构传至相邻房间(二楼)的固体传声损失量进行了有效预测。
     (4)针对常规单层隔振处理对室内变压器既有高频振动的局限性,注重适用性专门设计出一款双层隔振装置;在某一频率下该装置隔振效率可达到常规单层隔振的10倍以上,且一次固体传声的噪声级大大降低。
     (5)制作了双层隔振装置的动力相似模型,采用共振法对其动力特性与动力响应进行了室内实验。实验表明,该双层隔振模型在变压器卓越频率(100Hz、200Hz、300Hz、400Hz等)激励下,其隔振率和隔声系数均很小,与理论设计相符,证实了隔振装置良好的减振降噪效果。
Environmental pollution and governance has always been the hot issues concerned by the international community, and the environment pollution of vibration and noise problem has been listed as the seventh largest pollution by the international organization(IEPOA). This paper, based on "the structure-borne sound governance of transformer and indoor substation" research background and making a contrary to the environmental pollution of vibration and noise caused by mechanical and electrical equipment, launches the research of the structure-borne sound governance, which is generally caused by the city living transmission transformer and power distribution room of the necessary power supply facilities, and puts forward a practical technical solutions corresponding structure-borne sound governance, which provide a useful reference for the class environment of civil electrical and mechanical facilities vibration and noise pollution control, which is obviously of great realistic significance. The main contents are as follows:
     (1) A comparatively systemic summary is maken according to transformer vibration and noise generation mechanism, vibration and noise reduction measures conventionally, transmission mechanism of structure-borne sound caused by the transformer and power distribution room,and calculation method of it.
     (2) Based on field measurements, it has obtained noise level and the peak frequency range of noise in the residential power distribution room and the adjacent room, gaining the predominant frequency range, distribution law of transformer and vibration propagation law of ground.
     (3) Based on the analysis of the propagation rules and transfer path of transformer noise, the universal model of structure-borne noise for a power distribution house has been established. By taking a typical indoor transformer as an example, every transfer path of the sound power proportion has been predicated in an effective way, which identify that the main route is structure-borne noise, and then forecast real solid-noise loss amount from a typical distribution of the power distribution house to the adjacent room based on acoustic theory.
     (4)Single-layer vibration isolation has the limitation of the high frequency vibration of the indoor transformer, paying attention to the suitability specially and designing a double-layer vibration isolation device. In a certain frequency, vibration isolation efficiency of the device can be up to10times more than the single-layer vibration isolation, and the structure-borne sound level is reduced greatly.
     (5) The dynamic similarity model of double-layer vibration isolation device has been made, applying the resonance method to measure the dynamic characteristics and dynamic response, In transformer predominant frequency(100Hz,200Hz,300Hz and400Hz, etc.), experiments show that the vibration isolation efficiency and the acoustical reduction factor of the double-layer vibration isolation model are small, consistent with theoretical design and confirming that the vibration isolation device is excellent vibration and noise reduction effect.
引文
[1]高兴耀.21世纪初我国电力变压器技术发展展望[J].变压器.2000年1月,第37卷第1期:4-8.
    [2]姚志松,姚磊等.中小型变压器实用全书[M].北京:机械工业出版社,2008:42-92.
    [3]嵇正毓,张华,杨于生等.用空气弹簧降低变压器结构噪声的工程实践[J].污染防治技术.2011,24(1):61-64.
    [4]王勇,嵇正毓.变压器噪声对居民室内噪声影响分析和控制[J].环境监控与预警.2009,1(2):44-45.
    [5]李佐荣.谈噪声的危害及控制的方式与途径[J].安徽农学通报.2008,14:127-129.
    [6]王涛.干式变压器的发展及工程应用[J].内蒙古石油化工.2008年第16期:33.
    [7]王和忠,季小龙,朱如勇等.油浸式电力变压器的噪声源及降噪对策[J].安徽电气工程职业技术学院学报.2008年第十三卷第一期:40.
    [8]刘辉.中国干式变压器技术发展趋势[N].科技咨询导报.2007,NO.11:78.
    [9]王和忠.浅谈低噪声变压器的设计与工艺[J].变压器.2007年6月第44卷第6期:4.
    [10]Power Appar.&Syst. Bibliography on transformer noise [J]. IEEE Trans.1968,87 (2):372-387.
    [11]顾晓安,沈荣瀛,徐基泰.国外变压器噪声研究的动向[J].变压器.2002,39(6):33-38.
    [12]董志刚.变压器的噪声[J].变压器.1995.32(10):32-35:(11):27-37:(12):37-41:1996,33(1):37-40:(2):30-33:(3):30-34.
    [13]周贤士.中小型变压器噪声(下)[J].变压器.2006年12月第43卷第12期:1-6.
    [14]Gordon C G. A method for Prediction the audible noise emissions from large outdoors power transformers [J]. IEEE Trans. Power Appar. & Syst..19 79,98(3):1109-1112.
    [15]Nguyen C T, Beauchemin R. A program for calculating audible noiseleve-ls around power substations[J]. IEEE Compu. Appl. Power,1990(1):25-28.
    [16]Andersen D W. Myles M M. Field of sound radiation by power transform-ers [J]. IEEE Trans Power Appar. & Syst.,1981,100(7):3513-3524.
    [17]王路阳.树脂绝缘干式变压器的噪声分析和降低方法[J].变压器.1999年8月第36卷第8期:21.
    [18]姜益民,何洪军,邵宇鹰等.非晶合金铁心变压器振动噪声分析与研究[J].变压器.2010年10月第47卷第10期:32-36.
    [19]余尤好,陈宝志.大型电力变压器的噪声分析与控制[J].变压器.2007,44(6):23-26.
    [20]虞兴邦,姜在秀,韩涛.非晶合金铁芯组合式变压器噪声的降低[J].噪声和振动控制.2001,45(2).
    [21]邓珺,杨向宇,龙巍.变压器的降噪技术[J].变压器,2009,46(3):34-36.
    [22]Ellingson EF. Transformer noise abatement using tuned sound enclosure panels. Transmission and Distribution Conference and Exposition, IEEE /PES,1979:184-191.
    [23]Shigeyasu K, Kazunobu K. Vibration suppression control of transformer core using control industrial electronics control and instrumentation.Proceedings of the 1995 IEEE IECON 21st International Conference on Volume 2,6-10, Nov.1995,2:902-907.
    [24]Teoh C, Soh K, Zhou R, et al. Active noise control of transformer noise. IEEE Energy Manag. & Power Deliv.1998,2(3-5):747-753.
    [25]马玺越,陈克安.110kV变压器有源噪声控制实验研究[J].声学技术.2011年10月第30卷第5期:85-88.
    [26]祝志祥,林冶,聂京凯等.变电站(换流站)低频噪声吸声材料的研究[J].华东电力.2011年3月第39卷第3期:0357-0360.
    [27]张晓龙.干式变压器隔声罩消声器研制[D].昆明:昆明理工大学,2008.
    [28]陈秋,李振海.变电站噪声防治方案研究[J].电力环境保护.2006,22(3):49-51.
    [29]Zhou Jian-guo, Li Li-Hua, etal. Review on methods of noise reducing for equipment in substations, converter stations and transmission lines. Electric Power.2009,42(3):75-83.
    [30]迟峰,李莉华.变电站(换流站)与输电线路噪声及其治理综述[J].上海电力.2007年第6期:580-586.
    [31]J. Vierengel, ect. Use of active noise control(ANC) technology to quiet power transformers.国际大电网会议.1998,122301论文.127.
    [32]E. REIPL INGER, ect. Study of noise emitted by power transformers based on today's viewpoint.国际大电网会议.1998,12208论文.127.
    [33]汪筝,吕玉恒.上海110kV凤阳变电站噪声治理[J].电力环境保护.2002年12月第18卷第4期:24-25.
    [34]曲友立.南泥沟(慧祥)110KV变电站噪声控制[J].电力环境保护.2008,24(5):61-62.
    [35]关宏,王庭佛,郜树民等.10KV和35KV变配电站的噪声影响和治理[J].噪声与振动控制.2002,(5):38-41.
    [36]周建飞,周年光,阳金纯等.城区变电站噪声控制典型技术[J].噪声与振动控制.2011年10月第5期:173-178.
    [37]赵松龄.噪声的降低和隔离(下)[M].同济大学出版社(第一版).1985,12:183-193.
    [38]刘见华,金咸定.结构声传递数值计算方法的研究进展[J].振动与冲击.2002,第21卷第4期:46-47.
    [39]Lyon R H. Statistics Energy Analysis of Dynamical systems:Theory and Application, M. I. T. Press.1975
    [40]Fahy F J. Statistics Energy Analysis, chapter7 in Noise and Vibration, edited by White, R. G. and Walker, J. G., Ellis Horwood.1982.
    [41]Hodges CH, Woodhouse J. Theories of noise and vibration in complex structures, Reports on Progress in Physics,49,1986,107-170.
    [42]Woodhouse J. An introduction to statistics energy analysis of structure vibrations, Applied Acoustics,14,1981,455-469.
    [43]Burroughs C B, Fischer R W, Kern F R. An introduction to statistics energy analysis. J. Acoust. Soc. Am.,1997,101 (4):1779-1789.
    [44]Gavri L, Pavi G. A Finite Element Method for Computation of Structural Intensity by the Normal Mode Approach. J. Sound Vib.1993,164(1):29-43.
    [45]Wang Weihui. Structure Borne Noise Propagation in Stiffened Plate Using Stress Wave FEM.
    [46]Glaese R M, Miller D W. A Generalized Impedance Matching Method for Determining Structural Acoustic Power Flow Control Laws. J. Sound. Vib.1999,224(2):283-303.
    [47]Hagedorn P. On a New Concept of Active Vibration Damping of Elastic Structures, Proceedings of the 2nd International Symposium on Structural control, Waterloo, Canada,1985,261-277.
    [48]Scheuren J. Active Control of bending Waves in Beams, Proceedings of Internoise 85,1985,591-595.
    [49]Von Flotow A H. Travelling Wave Control for Large Spacecraft Structures, J. Guidance, Control Dyn.9 1986:462-468.
    [50]Von Flotow A H, Sahafer B. Wave Absorbing Controller for Flexible System, J. Guidance, Control, Dyn.9 1986,673-680.
    [51]Von A H. et al, Experimental comparison of wave absorbing and modal based low authority controllers for a flexible beam, AIAA Conference on Guidance and Control,1985.
    [52]Meirovitch L, Bennigh of JK. Modal Control of Travelling Waves in Flexible Structures, J. Sound Vib.1986,111:131-144.
    [53]Mace B R. Active Control of Flexible Vibrations, J. Sound Vib.1987,114:253-270.
    [54]嵇正毓,展漫军.固体声在建筑物内的衰减、反射和透射[J].污染防治技术.2011年6月第24卷第3期:1-5.
    [55]翟国庆,张邦俊.室内箱式变压器结构声污染及对策[J].环境污染与防治.2002,24(1):36-40.
    [56]杜功焕.声学基础(第三版)[M].南京:南京大学出版社,2012.5:337-350.
    [57]贺启环.环境噪声控制工程[M].北京:清华大学出版社,2011:256.
    [58]王庆龙.电力变压器振动监测方法研究[D].西华大学硕士学位论文.2006:58-65.
    [59]马大猷,沈豪.声学手册(修订版)[R].北京:科学出版社,2004,1:617.
    [60]严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社,1985:79-93.
    [61]周世雄,严济宽,周明溥.对称布置的双层隔振系统的振动计算[J].上海建筑学院学报.1992,5(1):73-83.
    [62]孙京平,王开和,卢学军等.水泵的双层隔振设计[J].机械设计与制造.2006年3月第3期:6.
    [63]徐建.隔振设计规范理解与应用[M].北京:中国建筑工业出版社,2009,6:212-214:229-231.
    [64]中国船舶工业总公司第九设计研究所.隔振设计手册[R].北京:中国建筑工业出版社,1986,7:224-226.
    [65]中国中元国际工程公司.GB50463-2008隔振设计规范[S].北京:中国计划出版社,2009.
    [66]成大先.机械设计手册(第四版)(第四卷)[R].北京:化学工业出版社,2004,1:18-71-18-86.
    [67]张阿舟,姚起航等.振动控制工程.北京.航空工业出版社.1989:619-702.
    [68]汪海涛.小区干式变压器振动特性及整体隔振研究[D].西南交通大学硕士学位论文.2012:31-33.
    [69]洪陈玉.小区变压器环境振动传播与隔振研究[D].西南交通大学硕士学位论文.2012:10-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700