用户名: 密码: 验证码:
基于流形学习的滚动轴承故障诊断若干方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚动轴承是机械设备中使用量最多的关键零部件,保证滚动轴承正常运行是设备维护工作的重要内容。但滚动轴承工作状态复杂,转速变化大,承载方式多样,运动形式多变,这些都会对滚动轴承故障诊断产生不利的影响,从而降低各种传统诊断方法的效能。为此,本文以滚动轴承故障振动信号为研究对象,将流形学习方法与现代信号处理理论结合,对滚动轴承故障诊断过程中遇到的降噪、特征提取、故障源分离、性能监测问题进行研究。论文的主要研究内容及结论如下:
     1.论述了开展滚动轴承故障诊断的意义,分析了滚动轴承故障诊断技术不同发展阶段的特点。对滚动轴承故障诊断中遇到的降噪、特征提取、故障源分离、性能监测问题的研究现状进行了综述。在总结滚动轴承故障诊断技术发展趋势的基础上,介绍了非线性流形学习理论及其在故障诊断中的应用。
     2.针对滚动轴承故障信号降噪问题,提出了一种基于最大方差展开(MVU)算法的对偶树复小波(DTCWT)降噪方法。利用MVU提取DTCWT细节信号空间的信号子空间,去除噪声子空间实现降噪。DTCWT具备平移不变性和完全重构性,能克服常规小波变换平移敏感性和非完全重构的缺陷。MVU流形算法能有效提取高维数据空间的非线性结构,克服线性结构的不足。结合二者优势的DTCWT_MVU降噪方法,比传统降噪方法具有更高的信噪比,能更好地提取故障信号的非线性冲击成分,减少降噪后信号波形的失真。仿真和工程实际信号验证了该方法的有效性。
     3.对于滚动轴承故障特征提取问题,提出了一种基于张量流形学习的时频故障特征提取方法。在HHT时频特征的基础上,利用张量流形学习方法提取信号的非线性张量流形时频特征,定义了时频特征参数,将张量流形时频特征参数与概率神经网络相结合,准确实现了轴承故障样本分类。张量流形学习能有效提取高维时频特征组合的内蕴非线性特征,与HHT时频特征参数相比,张量流形时频特征参数能减少特征信息的冗余,更有效地区分不同类型故障样本,降低神经网络的迭代次数,提高故障分类的准确性。
     4.对于滚动轴承故障源分离问题,提出了一种基于流形学习的滚动轴承故障源盲分离方法。利用EMD分解构造了多通道测试信号,估计测试信号的信源数,建立最优测试信号的选择标准,综合利用峭度、稀疏度、互信息标准选择最优测试信号,通过提取最优测试信号的KPCA流形成分作为ICA算法的输入,有效分离出故障源。该方法解决了欠定盲分离过程中最优测试信号的选取问题,利用流形学习增强了ICA的分离能力,使其能从故障信息微弱的单通道信号中分离出冲击特征明显的故障源。
     5.针对滚动轴承性能退化监测问题,提出了一种基于流形学习和模糊聚类的性能监测方法。利用小波包分解确定监测信号的敏感频带,在此基础上提取信号的低维流形特征作为模糊聚类的数据样本,以样本的隶属度值作为性能指标,监测轴承性能退化规律。与基于单特征及线形多特征的监测方法相比,该方法能有效体现滚动轴承全寿命性能退化周期的四个阶段,反映滚动轴承各部件性能退化的统一规律,提前预知轴承早期故障。
     6.使用LabVIEW和MATLAB混合编程的方式开发了基于流形学习的滚动轴承故障分析诊断系统。介绍了系统开发的软硬件环境和结构方案,通过实例演示了系统的基本功能,验证了系统的有效性。
Rolling element bearing is the most commonly used key component of machinery. It is an important part of the equipment maintenance work to ensure the safe and stable operation of rolling element bearing. But the working condition of the rolling element bearing is very complex, and its speed varies greatly, the bearing way is sundry, the movement is uncertain. These factors would adversely affect rolling bearing fault diagnosis, thereby reducing the performance of traditional diagnosis methods. In this paper, the rolling element bearing fault signal is regarded as research object. The manifold learning method is combined with other modern signal processing theory to research a series of questions such as noise reduction, feature extraction, fault source separation, performance monitoring in the process of rolling element bearing fault diagnosis. The main research contents and conclusions are as follows:
     1. The significance of rolling bearing fault diagnosis is discussed. The features of rolling element bearing fault diagnosis technology in different development phases are analysed. Problems such as noise reduction, feature extraction, fault source separation, performance monitoring are encountered in the rolling element bearing fault diagnosis; and the research status of each issue is reviewed. The nonlinear manifold learning theory and its application in fault diagnosis is introduced on the basis of summing up the fault diagnosis technology trends of rolling element bearing.
     2. For rolling element bearing fault signal denoising, the dual tree complex wavelet (DTCWT) denoising method based on maximum variance unfolding (MVU) is proposed. The signal subspace of DTCWT detail signal space is extracted by MVU. The noise reduction is achieved by removing the noise subspace. The defects of conventional wavelet transform such as translational sensitivity and non-perfect reconstruction can be overcomed by the translation invariance and perfect reconstruction of DTCWT. The nonlinear structure of the high-dimensional data space can be effectively extracted by MVU manifold lgorithm; the lack of linear structure is overcomed. The both advantages are combined by DTCWT_MVU denoising method. Not only a higher signal-to-noise ratio can be obtained, but also the nonlinear impact of bearing fault signal can be obtained through DTCWT_MVU denosing method. The denoised waveform distortion is reduced. The effectiveness of this method is vertified by the emulation signal and the engineering signal.
     3. For extracting the fault features of rolling element bearings, the time-frequency fault feature extraction method based on tensor manifold learning is proposed. Based on the time-frequency features of HHT, the signals nonlinear tensor manifold time-frequency features are extracted by tensor manifold learning method. The time-frequency feature parameters are defined. The bearing fault samples are accurately classified by combing the tensor manifold time-frequency feature parameters with the probabilistic neural network. The intrinsic nonlinear features of high-dimensional time-frequency features can be effectively extracted by tensor manifold learning method. Compared with HHT time frequency feature parameters, the tensor manifold time-frequency feature parameters can be used to reduce the redundancy of the feature information, to more effectively classify the different types of fault samples, to reduce the iterations of neural network, to improve the fault classification accuracy.
     4. To separate the rolling element bearing fault source, the fault source blind separation method of rolling element bearing based on manifold learning is proposed. The multi-channel test signals are structured by EMD decomposition. The number of test signal source is estimated. The optimal test signal selection criteria are established. The best test signal is chosen by comprehensivly utilizing the kurtosis, sparsity, mutual information standard. The fault source is effectively separatated by extracting the KPCA manifold composition as the input to ICA algorithm. The optimal test signal selection in underdetermined blind separation process is solved by this method. The separation ability of ICA is enhanced by using manifold learning, so that the fault source with obvious impact feature can be separated from the single-channel signal with weak fault information.
     5. To deal with the performance degradation monitoring of rolling element bearing, the performance monitoring method based on manifold learning and fuzzy clustering is proposed. Sensitive band of the monitoring signal is determined by wavelet packet decomposition. On this basis, the low dimensional manifold features of signal are extracted as data samples of fuzzy clustering. Sample membership can be used as performance indicator to monitor the law of bearing performance degradation. Compared with the monitoring methods based on single feature and linear multi-features, the four stages of rolling element bearing performance degradation in the whole life cycle can be effectively reflected by this method. The uniform performance degradation law of rolling element bearing parts can be reflected. The early bearing fault can be predicted in advance.
     6. Bearing fault analysis and diagnosis system based on manifold learning is developed through LabVIEW and MATLAB mixed programming. The system development environment and structure scheme of hardware and software is introduced. The basic functions of the system are demonstrated. The effectiveness of the system is verified by examples.
引文
[1]陈进.机械设备振动监测与故障诊断[M].上海:上海交通大学出版社,1999.
    [2]刘长奎.基于管理绩效的石油工业设备评价研究[D].哈尔滨工程大学,2008.
    [3]赵文智.提高民航安全性的研究[D].天津大学,2006.
    [4]葛俊旭.兆瓦级垂直轴风力发电机组的关键技术研究[D].浙江大学,2010.
    [5]22年生涯走过28次太空之旅哥伦比亚号在返航途中失事[J].中国航天,2003,03:4-7.
    [6]严新平,周强,萧汉梁.机械系统工况监测与故障诊断[M].武汉:武汉理工大学出版社,2009.
    [7]黄文虎,夏松波,刘瑞岩,等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996.
    [8]丁玉兰,石来德.机械设备故障诊断技术[M].上海:上海科学技术文献出版社,1994.
    [9]沈庆根,郑水英.设备故障诊断[M].北京:化学工业出版社,2007.
    [10]屈衍静.基于DSP的滚动轴承状态监测和故障诊断装置研制[D].哈尔滨工业大学,2011.
    [11]赵祎.用冲击脉冲法诊断滚动轴承故障[J].轴承,2006,5:31-33。
    [12]Olof G. Gustafsson, Tibor Tallian. Detection of damage in assembled rolling elements bearings[J].A S L E Transactions.1962.5(1):197-209.
    [13]刘蕾蕾.基于小波分析的电机故障信号诊断研究[D].哈尔滨理工大学,2007.
    [14]Wheeler P.G.Bearing analysis equipment keeps downtime down[J].Plant Engineering.1968,25:87-89.
    [15]Martin R.Detection of ball bearing malfunctions[J].Instruments and Control Systems.1970, (12):79-82.
    [16]Botoe P A.Detection of bearing damage by shock pulse measurement[J].The Ball Bearing Journal,1972,21(2):1-7
    [17]McFadden PD, Smith JD. The condition monitoring of rolling element bearings by the high frequency resonance technique-a review[J].Tribol Int,1984,17(l):3-10.
    [18]胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120.
    [19]武建军,邓松圣,周爱华,等.基于EMD-灰色关联降噪的泵机组故障诊断[J].化工机械,2010,37(5):563-566.
    [20]Boudraa,A. O.,J. C. Cexus, Z. Saidi.EMD-Based Signal Noise Reduction[J].International Journal of Signal Processing.2004,1(1):33-37.
    [21]A.O. Boudraa and J.C.Cexus."Denoising via empirical mode decomposition" in Proc. IEEE ISCCSP,Marrakech Morocco,2006.
    [22]BruceAG, GaoHong-Ye.Understanding waveshrink:variance and bias estimation [J]. Biometrika, 1996,83(4):727-745.
    [23]赵雯雯,曾兴雯.一种新的EMD去噪方法[J].电子科技,2008,21(5):30-32.
    [24]赵志宏,杨绍普,申永军.一种改进的EMD降噪方法[J].振动与冲击,2009,28(12):35-37.
    [25]刘建军,黄方林,王学敏.基于EMD和ARMA模型桥梁振动信号降噪的处理方法[J].铁道科学与工程学报,2006,3(5):55-59.
    [26]康春玉,章新华.一种基于EMD和ANC技术的自适应降噪方法[J].系统工程与电子技术,2008,30(5):810-812.
    [27]侯丽霞,曾以成,熊民权.EMD与自适应滤波相结合的语音增强法[J].计算机工程与应用,2012,48(9):104-107.
    [28]WAYTH J, KHAN TR. Integrated Savitzky-Golay filter from inverse taylor series approach[EB/OL]. (2007-1015) [2010-10-20]. http://ieeexplore. ieee. org/stamp/stamp. jsp? arnumber=04288597.
    [29]Weaver J B,Yansun,X.Filtering noise from images with wavelet transforms[J].Magnetic Resonance in Medicine,1991,21 (24):288-295.
    [30]Simoncelli E P, William T.Freeman, Edward H.Adelson. Shiftable multiscale transforms.[J].IEEE Trans. Inform. Thoery,1992,38(2):587-607.
    [31]Mallat S,Hwang W L.Singularity detection and processing with wavelet[J].IEEE Transaction Information Theory,1992,38(2):617-643.
    [32]Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994,81(3):425-455.
    [33]Witkin, A. P.Scale-space filtering[C].Proc.8th Int. Joint Conf. Art. Intell Karlsruhe,Germany, 1983:1019-1022.
    [34]Xu, Y., Weaver, J. B., Healy, Jr., D. M.,etal.Wavelet transform domain filters a spatially selective noise filtration technique[J].IEEE Trans Image Processing,1994,3(6)747-758.
    [35]李富才,何正嘉,陈进.小波域相关滤波法及其早期故障预示应用[J].振动工程学报,2005,18(2):145-148.
    [36]曾庆虎,邱静,刘冠军,张勇.基于小波相关滤波法的滚动轴承早期故障诊断方法研究[J].机械科学与技术,2008,27(1):114-118.
    [37]Hansen M,Yu Bin. Wavelet thresholding via MDL for Natural Images[J].Images.IEEE Trans.Inform.Theory,2000,46(5):1778-1788.
    [38]Moulin P,Liu Juan.Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors [J].IEEE trans. Inform. Theory,1999,45(3):909-919.
    [39]Malfait M,Roose D. Wavelet-based image denoising using a Markov random field a priori model [J].IEEE Trans.Image Processing,1997,6(4):774-785.
    [40]Crouse M,Nowak R D,Baraniuk R G. Wave let-based signal processing using hidden Markov models[J]. IEEE trans.Signal Processing,1998,46(4):886-902.
    [41]Banham M R, Katsaggelos A K.Spatially adaptive wavelet-based multiscale image restoration [J].IEEE Trans.Image Processing,1996,5(4):619-634.
    [42]Zhang L,Bao P.Denoising by spatial correlation thresholding[J]. IEEE trans.Circuits and Systems for Video Technology,2003,13(6):535-538.
    [43]Liu Juan, Moulin P.Image denoising based on scale-space mixture modeling of wavelet coefficients. [C]. Proceeding fo IEEE Internaional Conference on Image Processing.Kobe Japan,1999:386-390.
    [44]Mallat S, Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEE trans. Signal process,1993,41 (12):3397-3415.
    [45]王国栋,黎敏,阳建宏,等.基于特征波形稀疏匹配的滚动轴承故障模式识别[J].北京科技大学学报,2010,32(3):390-396.
    [46]彭富强,于德介,罗洁思,等.基于多尺度线调频基稀疏信号分解的轴承故障诊断[J].机械工程学报,2010,46(7):88-95.
    [47]彭富强,于德介,刘坚.一种基于多尺度线调频基的稀疏信号分解方法[J].振动工程学报,2010,23(3):333-338.
    [48]任凌志,于德介,彭富强.基于多尺度线调频基稀疏信号分解的广义解调方法及其在滚动轴承故障诊断中的应用[J].中国电机工程学报,2010,30(11):102-108.
    [49]王国栋,阳建宏,黎敏,等.基于自适应稀疏表示的宽带噪声去除算法[J].仪器仪表学报,2011,32(8):1818-1823.
    [50]H. Kantz andT.Schreiber, Nonlinear Time Series Analysis [M].Cambridge:Cambridge University Press,1997.
    [51]Cao Liangyue.Practical method for determining the minimum embedding dimension of a scalar time series [J].Physica D,1997,9(110):43-45.
    [52]Costa,M,Goldberger,AL,Peng,CK.Multiscale entropy analysis of biological signals[J].Physical Review,2005,71 (2):1-18
    [53]吕志民,张武军,徐金梧,等.基于奇异谱的降噪方法及其在故障诊断技术中的应用[J].机械工程学报,1999,03:86-89.
    [54]Michael T. Johnson,Richard J.Povinelli.Generalized phase space projection for nonlinear noise reduction[J].Physica D:Nonlinear Phenomena,2005,201(3):306-317.
    [55]徐金梧,吕勇,王海峰.局部投影算法及其在非线性时间序列分析中的应用[J].机械工程学报,2003,39(9):146-150.
    [56]郝如江,卢文秀,褚福磊,等.形态滤波在滚动轴承故障声发射信号处理中的应用[J].清华大学学报(自然科学版),2008,48(5):812-815.
    [57]胡爱军,唐贵基,安连锁.振动信号采集中剔除脉冲的新方法[J].振动与冲击,2006,25(1):126-127.
    [58]章立军,杨德斌,徐金梧等.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报,2007,43(2):71-75.
    [59]Jing Wang,Guanghua Xu,Qing Zhang,et al.Application of improved morphological filter to the extraction of impulsive attenuation signals[J].Mechanical Systems and Signal Processing,2009, 23(1):236-245.
    [60]章立军,阳建宏,徐金梧,等.形态非抽样小波及其在冲击信号特征提取中的应用研究[J].振动与冲击,2007,26(10):56-59.
    [61]申大勇,应用峰值能量技术判断滚动轴承故障[J].中国设备工程,2006,1:47-49
    [62]李力,唐茗.滚动轴承故障程度诊断方法研究[J].轴承,2009,04:42-46.
    [63]陈果.滚动轴承早期故障的特征提取与智能诊断[J].航空学报,2009,30(2):362-367.
    [64]陈向东,赵登峰,王国强,等.基于神经网络的滚动轴承故障监测[J].轴承,2003,2:23-26.
    [65]万书亭,吴美玲.基于时域参数趋势分析的滚动轴承故障诊断[J].机械工程与自动化,2010,3:108-110.
    [66]郝如江,卢文秀,褚福磊.声发射检测技术用于滚动轴承故障诊断的研究综述[J].振动与冲击,2008,27(3):75-79.
    [67]秦海勤,徐可君,隋育松,等.基于系统信息融合的滚动轴承故障模式识别[J].振动.测试与诊断,2011,31(3):372-376.
    [68]郭宝良,段志善,郑建校,等.振动机械滚动轴承单点点蚀故障诊断研究[J].振动工程学报,2012,25(5):610-618.
    [69]朱利民,钟秉林,贾民平,等.振动信号短时分析方法及在机械故障诊断中的应用[J].振动工程学报,2000,13(3):80-85.
    [70]郝腾飞,陈果.基于贝叶斯最优核判别分析的机械故障诊断[J].振动与冲击,2012,31(13):26-30.
    [71]马家驹,梁文梅.滚动轴承振动统计特性分析[J].轴承,1994,01:33-378.
    [72]傅勤毅,王峰林,李明章.滚动轴承故障特征信号的提取[J].轴承,997,(3):33-36+45-46.
    [73]朱利民,牛新文,钟秉林,丁汉.振动信号短时功率谱时-频二维特征提取方法及应用[J].振动工程学报,2004,17(4):71-76.
    [74]王小玲,陈进,从飞云.基于时频的频带熵方法在滚动轴承故障识别中的应用[J].振动与冲击,2012,31(18):29-33.
    [75]张晓峰,李功燕.应用小波分析提取故障诊断信号的特定频段[J].振动与冲击,2004,23(4):47-51.
    [76]赵志宏,杨绍普.基于相对小波能量的滚动轴承故障诊断[J].电子测量与仪器学报,2011,25(1):44-49.
    [77]苏文胜,王奉涛,朱泓,郭正刚,张志新,张洪印.基于小波包样本熵的滚动轴承故障特征提取[J].振动.测试与诊断,2011,31(2):162-166.
    [78]陶新民,徐晶,杜宝祥,徐勇.基于小波域广义高斯分布的轴承故障诊断方法[J].机械工程学报,2009,45(10):61-67.
    [79]程军圣,于德介,杨宇.基于SVM和EMD包络谱的滚动轴承故障诊断方法[J].系统工程理论与实践,2005,9:131-136.
    [80]高强,杜小山,范虹,等.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(1):15-18.
    [81]Cheng Junsheng, Yu Dejie, Yang Yu. A fault diagnosis approach for roller bearings based on EMD method and AR model[J].Mechanical Systems and Signal Processing 2006,20(2):350-362.
    [82]蔡艳平,李艾华,王涛,姚良,许平.基于EMD-Wigner-Ville的内燃机振动时频分析[J].振动工程学报,2010,23(4):430-437.
    [83]曹冲锋,杨世锡,杨将新.一种抑制EMD端点效应新方法及其在信号特征提取中的应用[J].振动工程学报,2008,21(6):588-593.
    [84]Wang Huaqing, Li Ke, Sun Hao, et al. Feature Extraction Method Based on Pseudo-Wigner-Ville Distribution for Rotational Machinery in Variable Operating Conditions [J].Chinese Journal of Mechanical Engineering,2011,24(4):661-668.
    [85]李宏坤,张志新,郭正刚,等.时频图像Hough变换在滚动轴承故障诊断中的应用[J].振动测试与诊断,2010,30(6):634-6378.
    [86]Sato T,Sasaki K.Bispectral holography[J].Journal of the Acoustical Society of America,1977,62 (2):404-408.
    [87]A Murray,J Penman.Extracting useful higher order features for condition monitoring using artificial neural networks[J].IEEE Transaction on Signal Processing,1997,45(11):2821-2828.
    [88]刘雪霞,张琦,谭业发.高阶谱分析技术在轴承故障信号特征提取中的应用[J].机床与液压,2008,36(7):155-157.
    [89]I Antoniadis,G Glossiotis.Cyclostationary Analysis of Rolling Element Bearing Vibration Signals[J]. Journal of Sound and Vibration,2001,248(5):829-845.
    [90]陈进,姜鸣.高阶循环统计量理论在机械故障诊断中的应用[J].振动工程学报,2001,14(2):5-14.
    [91]周福昌,陈进,何俊,等.循环平稳信号处理在机械设备故障诊断中的应用综述[J].振动与冲击,2006,25(5):148-152.
    [92]C.Jutten and J.Herault.Blind separation of sources I:An adaptive algorithm based on neuromimetic architecture [J].Signal Processing,1983,24(1):1-10.
    [93]P.Comon.Independent component analysis,a new concept[J]. Signal Processing 1994,36 (3):287-314.
    [94]潘楠,伍星,迟毅林,等.基于频域盲解卷积的机械设备状态监测与故障诊断[J].振动与冲击,2012,31(12):34-41.
    [95]MJ Roan, JG Erling, LH Sibul.A New,Non-Linear Adaptive,Blind Source Separation Aproach to Gear Tooth Failure Detection and Analysis[J].Mechanical Systems and Signal Processing,2002,16(5): 719-740.
    [96]A Widodo,BS Yang,T Han.Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors[J].Expert Systems with Applications, 2007,32(2):299-312.
    [97]黄晋英,毕世华,潘宏侠,杨喜旺.独立分量分析在齿轮箱故障诊断中的应用[J].振动、测试与诊断,2008,28(2):126-130.
    [98]Adel Belouchrani,Moeness G.Amin. Blind source separation based on time-frequeney signal representations.[J]. IEEE Trans, on Signal Processing,1998,46(11):2888-2897.
    [99]Ale Holobar,Cedric Fevotte,Christian Doncarli,et al.Single autoterms selection for blind source separation in time-frequency plane[C].Proc.11thEuropean Signal Processing Conference (EUSIPCO2002).Toulouse, France,2002:565-568.
    [100]陈仲生,杨拥民,沈国际.独立分量分析在直升机齿轮箱故障早期诊断中的应用[J].机械科学与技术,2004,23(4):481-483.
    [101]Jing Lin,Aimin Zhang.Fault feature separation using wavelet-ICA filter[J].NDT&E International, 2005,38(6):421-427.
    [102]Ming J.Zuo,Jing Lin,Xianfen Fan.Feature separation using ICA for a one-dimensional time series and its application in fault detection[J]. Journal of Sound and Vibration.2005,287(3):614-624.
    [103]Hoonbin Honga,Ming Liang.Separation of fault features from a single-channel mechanical signal mixture using wavelet decomposition[J].Mechanical Systems and Signal Processing,2007,21(5): 2025-2040.
    [104]Du Xianfeng, Li Zhijun, Bi Fengrong,et al.Source Separation of Diesel Engine Vibration Based on the Empirical Mode Decomposition and Independent Component Analysis [J].Chinese Journal of Mechanical Engineering,2012,25(3):557-563.
    [105]陈建国,张志新,郭正刚,等.独立分量分析方法在经验模式分解中的应用[J].振动一冲击,2009,28(1):109-111.
    [106]黄艳林,李友荣,肖涵,等.基于相空间重构与独立分量分析的局部独立投影降噪算法[J].振动与冲击,2011,30(1):33-36.
    [107]Toshihisa Tanaka, Andrzej Cichocki.Sub-band decomposition independent component analysis and new performance criteria[C].Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2004),Montreal,Canada,2004:541-544.
    [108]Ivica Kopriva,Damir Sersic.Wavelet packets approach to blind separation of statistically dependent sources[J].Neurocomputing,2008,71 (7-9):1642-1655
    [109]Ivica Kopriva,Damir Sersic.Robust Blind Separation of Statistically Dependent Sources using Dual Tree Wavelets[C]. Image Processing (ICIP 2007), San Antonio, USA,2007:433-436
    [110]Ming J. Zuo Jing Lin, Xianfeng Fan.Feature separation using ICA for a one-dimensional timeseries and its application in fault detection[J] Journal of Sound and Vibration,2005,287(3):614-624.
    [111]Kun Zhang,Lau-Wan Chan.An Adaptive Method for Sub-band Decomposition ICA[J].Neural Computation,2006,18(1):191-223.
    [112]Yongchao Yang,Satish Nagarajaiah.Blind identification of damage in time-varying system using independent component analysis with wavelet transform [J].Mechanical Systems and Signal Processing,2012(In Press).
    [113]Martin,R.Detection of ball bearing malfunctions[J].Instruments and Control Systems,1970 (12): 79-82.
    [114]Antoni J., Randall R.B. Differential Diagnosis of Gear and Bearing Faults[J].Journal of Vibration and Acoustics,2002,124:165-171.
    [115]Olof G.Gustafsson,Tibor Tallian.Detection of damage in assembled rolling bearings[J].Trans.of ASLE.1962,5(1):197-209.
    [116]徐东.球轴承疲劳剩余寿命分析与预测方法研究[D].合肥:国防科学技术大学,2011.
    [117]Li B,Godi G,ChowMY.Detection of Common Motor BearingFaults Using Frequency Domain Vibration Signals and a Neu-ral Network Based Approach.[C].Proc of American Control Conf. 1998:2032-2036.
    [118]Zhu,X.,Y.Zhang.Bearing performance degradation assessment based on the rough support vector data description.[J].Mechanical Systems and Signal Processing,2013,34(1):203-217.
    [119]R.B.W.Heng,M.J.M Nor.Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition[J].Applied Acoustics,1998,52(1-3):211-226.
    [120]Hai Qiu,Jay Lee,Jing Lin, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J].Journal of Sound and Vibration,2006,289(4-5): 1066-1090.
    [121]陶新民,杜宝祥,徐勇.基于Lyapunov指数的一类轴承故障检测研究[C].Proceedings of the 26th Chinese Control Conference, Zhangjiajie Hunan,2007:445-450.
    [122]陶新民,刘福荣.基于AR模型自相关系数熵的轴承故障检测新方法[C].Proceedings of the 29th Chinese Control Conference,Beijing,2010:3947-3051.
    [123]Qiu H., J. Lee.Robust performance degradation assessment methods for enhanced rolling element bearing prognostics [J].Advanced Engineering Informatics,2003,17(3-4):127-140.
    [124]Y. Pan,J. Chen,L. Guo.Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description[J].Mechanical Systems and Signal Processing,2009,23(3):669-681.
    [125]郭磊,陈进,赵发刚,等.小波支持向量机多分类器在轴承性能退化评估中的应用[J].机械强度,2009,31(5):702-706.
    [126]肖文斌,陈进,周宇,等.小波包变换和隐马尔可夫模型在轴承性能退化评估中的应用[J].振动与冲击,2011,30(8):32-35.
    [127]洪杰,韩磊,苗学问,等.基于支持向量机的滚动轴承状态寿命评估[J].北京航空航天大学学报,2010,36(8):896-899.
    [128]陶新民,杜宝祥,徐勇.基于HOS奇异值谱的SVDD轴承故障检测方法[J].振动工程学报,2008,21(2):203-208.
    [129]陶新民,徐晶,杜宝祥,徐勇.基于相空间RVM的轴承故障检测方法[J].振动与冲击,2008,27(10):6-9.
    [130]刘永斌,何清波,孔凡让,等.基于PCA和SVM的内燃机故障诊断[J].振动、测试与诊断,2012,32(2):250-255
    [131]曾庆虎,邱静,刘冠军,等.基于KPCA-HSMM设备退化状态识别与故障预测方法研究[J].仪器仪表学报,2009,30(7):1341-1346.
    [132]Seung H S,Daniel D L.The manifold ways of perception[J].Science,2000,290(5500):2268-2269.
    [133]Tenenbaum J B,de Silva V, Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
    [134]Roweis S T,Lawrance K S.Nonlinear dimensionality reduction by locally linear embedding [J]. Science,2000,290(5500),290:2323-2326.
    [135]S.K. Nayar, S. A. Nene, H. Murase. Subspace methods for robot vision [J].IEEE Transactions on Rbotics and Automation,1996,2(5):750-758.
    [136]C. Bregler,S. M.Omohundro.Nonlinear manifold learning for visual speech recognition[C]. Proceedings of the fifth international conference on computer vision, Cambridge, MA,1995:494-499.
    [137]Mikhail Belkin,Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering[C].Advances in Neural Information Processing Systems 14,Cambridge,MA,2002:585-591.
    [138]M. Belkin, P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation [J].Neural Computation,2003,15(6):1373-1396.
    [139]Z. Y. Zhang, H. Y. Zha. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment [J].SIAM Journal of Scientific Computing,2004,26(1):313-338.
    [140]张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学A辑数学,2005,35(3):372-285.
    [141]Vin de Silva,Joshua B.Tenenbaum. Global versus local methods in nonlinear dimensionality reduction[J].Advances in Neural Information Processing Systems,2003(15):721-728.
    [142]Kokiopoulou E,Saad Y.Orthogonal neighborhood preserving projections:A projection-based dimensionality reduction technique[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(12):2143-2156.
    [143]Xiaofei He, Deng Cai, Shuicheng Yan, et al. Neighborhood preserving embedding[C].Proceedings of the Tenth IEEE International Conference on Computer Vision,2005:1208-1213.
    [144]He X, Niyogi P. Locality preserving projections[C].Advances in Neural Information Processing Systems,2003:154-159.
    [145]Mikhail Belkin,Partha Niyogi,Vikas Sindhwani.Manifold regularization:A geometric framework for learning from labeled and unlabeled examples[J].The Journal of Machine Learning Research, 2006(7):2399-2434.
    [146]David L Donoho,Carrie Grimes. Hessian eigenmaps:Locally linear embedding techniques for high-dimensional data[C].Proceedings of the National Academy of Sciences of the United States of America,2003:5591-5596.
    [147]Weinberger K Q,Saul L K.An introduction to nonlinear dimensionality reduction by maximum variance unfolding[C].Proceedings of the 21st National Conference on Artificial Intelligence,2006: 1683-1686.
    [148]Zhenyue Zhang,Jing Wang,Hongyuan Zha.Adaptive manifold learning[J]. Advances in neural information processing systems,2005(17):1473-1480.
    [149]梁霖,徐光华,栗茂林,等.冲击故障特征提取的非线性流形学习方法[J].西安交通大学学报,2009,43(11):95-99.
    [150]栗茂林,梁霖,王孙安,等.基于连续小波系数非线性流形学习的冲击特征提取方法[J].振动与冲击,2012,31(1):106-111.
    [151]阳建宏,徐金梧,杨德斌,等.基于主流形识别的非线性时间序列降噪方法及其在故障诊断中的应用[J].机械工程学报,2006,42(8):154-158.
    [152]阳建宏,徐金梧,杨德斌,登.基-于相重构和主流形识别的非线性时间序列降噪方法[J].北京科技大学学报,2005,27(5):631-634.
    [153]栗茂林,王孙安,梁霖.利用非线性流形学习的轴承早期故障特征提取方法[J].西安交通大学学报,2010,05(44):45-49.
    [154]张熠卓,徐光华,梁霖,等.利用增量式非线性流形学习的状态监测方法[J].西安交通大学学报,2011,45(1):64-68.
    [155]Qingbo He.Vibration signal classification by wavelet packet energy flow manifold learning[J]. Journal of Sound and Vibration(In Press),2012:1-14.
    [156]黎敏,徐金梧,阳建宏,等.一种基于流形拓扑结构的轴承故障分类方法[J].控制工程,2009,16(3):358-362.
    [157]黎敏,阳建宏,徐金梧,等.基于高维空间流形变化的设备状态趋势分析方法[J].机械工程学报,2009,45(2):213-218.
    [158]Zhixiong Li,Xinping Yan,Zhe Tian, et al. Blind vibration component separation and nonlinear feature extraction applied to the nonstationary vibration signals for the gearbox multi-fault diagnosis [J].Measurement,2013,46(1):259-271.
    [159]Qingbo He.Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis [J].Mechanical Systems and Signal Processing,2013,35(1-2):200-218.
    [160]袁幸,朱永生,洪军,张优云.用盲反卷积和改进谱减法提取轴承微弱特征[J].振动、测试与诊断,2012,32(2):202-207.
    [161]臧玉萍,张德江,王维正,等.基于小波变换技术的发动机异响故障诊断[J].机械工程学报,2009,45(6):239-245.
    [162]秦毅,王家序,毛永芳.基于软阈值和小波模极大值重构的信号降噪[J].振动、测试与诊断,2011,31(5):543-547.
    [163]吴定海,张培林,任国全,等.基于双树复小波包的发动机振动信号特征提取研究[J].振动与冲击,2010,29(4):160-165.
    [164]梁霖,徐光华,侯成刚.基于奇异值分解的连续小波消噪方法[J].西安交通大学学报,2004,38(9):904-908.
    [165]Chendong D, Zhengjia H, Hongkai J.A sliding window feature extraction method for rotating machinery based on the lifting scheme[J].Journal of Sound and Vibration,2007,299(4-5):774-785.
    [166]Li Z, He Z, Zi Y, et al. Rotating machinery fault diagnosis using signal-adapted lifting scheme [J]. Mechanical Systems and Signal Processing,2008,22(3):542-556.
    [167]Wang Y, He Z, Zi Y. Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform [J]. Mechanical Systems and Signal Processing,2010,24(1):119-137.
    [168]李宏坤,赵长生,周帅,等.基于小波包—坐标变换的滚动轴承故障特征增强方法[J].机械工程学报,2011,47(19):74-80.
    [169]Witkin, A.Scale space filtering:[C].8th Int. Joint Conf of Artificial Intell. FRG (1983) 1019-1021.
    [170]Xu Yansun E A.Wavelet transform domain filters:a spatiallly selevtive noise filtration technique[J]. IEEE Trans.Image Processing,1994,3(6):747-748.
    [171]I.W.Selesnick RGBN.The dual-tree complex wavelet transform[J].IEEE Signal Processing Magazine,2005,22(6):123-151.
    [172]N K. A dual-tree complex wavelet transform with improved orthogonally and symmetry properties [C]. Proceedings 2000 International Conference on Image Processing,2000:374-378.
    [173]N K.Complex wavelets for shift invariant analysis and filtering of signals[J].Applied and Computational Harmonic Analysis,2001,10(3):234-244.
    [174]汀家铭.波峰因数早期诊断滚动轴承故障[J].振动与冲击,1992,3:40.
    [175]N.G.Nikolaou,I.A.Antoniadis.Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelet[J].Mechanical Systems and Signal Processing,2002,16(4):677-694.
    [176]Z.K. Peng, Peter W. Tse, F.L.Chu. A comparison study of improved Hilbert-Huang transform and wavelet transform:Application to fault diagnosis for rolling bearing[J].Mechanical Systems and Signal Processing,2005,19(5):974-988.
    [177]Wang Z W, Hu C Y.Shock spectra and damage boundarycurves for nonlinear package cushioning system [Jj.Packa-gingTechnology and Science,1999,12(5):207-217.
    [178]张金玉,张优云,谢友柏.时频分析方法在冲击故障早期诊断中的应用研究[J].振动工程学报,2000,13(2):66-72.
    [179]朱利民,牛新文,钟秉林,丁汉.振动信号短时功率谱时-频二维特征提取方法及应用[J].振动工程学报,2004,17(4):71-76.
    [180]Huang NE, Zhen SHEN, LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nolinear and non-stationary time series analysis[J].Proc.Royal Society Lond,1998, 454(A):903-995.
    [181]Yaguo Lei,Zhengjia He,Yanyang Zi,EEMD method and WNN for fault diagnosis of locomotive roller bearings[J].Expert Systems with Applications,2011,3(6):7334-7341.
    [182]An investigation into machine pattern recognition based on time-frequency image feature extraion using support vector machine[J].Journal of mechanical engineering science,2010,224:981-993.
    [183]李宏坤,周帅,黄文宗.基于时频图像特征提取的状态识别方法研究与应用[J].振动与冲击,2010,29(7):184-188.
    [184]彭畅,柏林,谢小亮.基于EEMD.度量因子和快速峭度图的滚动轴承故障诊断方法[J].振动与冲击.2012,31(20):143-146.
    [185]孟涛.齿轮与滚动轴承故障的振动分析与诊断[D].西安:西北工业大学,2003.
    [186]石庆斌,马建仓.盲源分离在机械振动信号分析中的应用[J].测控技术.2008,27(5):78-80.
    [187]秦海勤,徐可君,欧建平.基于盲源分离技术的航空发动机振动信号分析[J].北京航空航天大学学报,2010,36(11):1307-1310.
    [188]李志农,刘卫兵,易小兵.基于局域均值分解的机械故障欠定盲源分离方法研究[J].机械工程学报,2011,47(7):97-102.
    [189]Hoonbin Hong, Ming Liang. Blind identification of damage in time-varying system using independent component analysis with wavelet transform[J].Mechanical Systems and Signal Processing,2007,21(5):2025-2040.
    [190]詹宇斌,殷建平,刘新旺.局部切空间对齐算法的核主成分分析解释[J].计算机工程与科学,2010,32(6):158-161.
    [191]朱宁,冯志刚,王祁.基于KPCA和SVM的火箭发动机试验台故障诊断方法[J].哈尔滨工业大学学报,2009,41(3):81-84.
    [192]廖广兰,史铁林,来五星,等.基于核函数PCA的齿轮箱状态监测研究[J1.机械强度,2005,27(1):1-5.
    [193]何正嘉,孟庆丰,赵纪元,等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001.
    [194]石博强,申焱华 机械故障诊断的分形方法-理论与实践[M].北京:冶金工业出版社2001:128-129.
    [195]汪慰军,陈进,吴昭同.基于延时嵌入法的大机组故障特征提取技术[J].振动工程学报,2000,13(3):361-367.
    [196]T.Tanaka,A.Cichocki.Sub-band decomposition independent component analysis and new performance criteria[C] Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2004),Montreal,Canada,2004:541-544.
    [197]邱天爽,张旭秀,李小兵,等.统计信号处理:非高斯信号处理及应用[M].北京:电子工业出版社,2004:38-39.
    [198]Belouchrani A,Merain K,Cardoso J F.A blind source separation technique using second order statistics[J].IEEE Trans.On Signal Processing.1997,45(2):434-443.
    [199]J F. Cardoso. Multidimensional independent component analysis[C].IEEE int Conf. on Acoustics, Speech and Signal Processing(ICASSP'98'),Seattle,WA,1998.
    [200]M.Zibulevsky,B-A.Pearlmutter. Blind Source Separation by Sparse Decomposition[J].Neural Computation,2001,13(4):863-882.
    [201]张仲明,姜卫东,陈曾平.基于主分量分析的一维距离雷达目标识别[J].电光与控制,2005,12(5):28-31.
    [202]杨富春,周晓军,张志刚.基于滑动峰态算法的信号弱冲击特征提取及应用[J].振动与冲击,2009,28(4):103-105.
    [203]曾庆虎.机械传动系统关键零部件故障预测技术研究[D].合肥:国防科学技术大学,2010.
    [204]H. Ocak, K.Oparo.A estimation of the running speed and bearing defect frequencies of an induction motor from vibration data [J].Mechanical Systems and Signals Processing,2004,18(3):515-533.
    [205]S.Orhan,N.Akturk,V.Celik. Vibration monitoring for defect diagnosis of rolling element bearings as a predictive maintenance tool:comprehensive case studies[J].NDT&E International,2006,39(4):293-298.
    [206]W.J.Wang,P.D.McFadden.Early detection of gear failure by vibration analysis i.Calculation of the time-frequency distribution[J].Mechanical Systems and Signal Processing,1993,7(3):193-203.
    [207]Jay Lee.Measurement of machine performance degradation using a neural network model[J]. Computers in Industry,1996,30(3):193-209.
    [208]Runqing Huang,Lifeng Xi, Xinglin Li,et al.Residual life predictions for ball bearings based on self-organizing mapand back propagation neural network methods[J].Mechanical Systems and Signal Processing,2007,21(1):193-207.
    [209]Ocak H,Loparo K. A,Discenzo F M.Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling:A method for bearing prognostics[J] Journal of Sound and Vibration,2007,302(5):951-961.
    [210]Pan,J.Chen,L.Guo,Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description[J].Mechanical Systems and Signal Processing 2009,23(3):669-681.
    [211]Jian-Da Wu,Chiu-Hong Liu.An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network[J].Expert Systems with Applications, 2009,36(3):4278-4286.
    [212]Jose A. Costa, Alfred O. Hero III.Manifold learning using Euclidean k-nearest neighbor graphs[C]. IEEE International Conference on Acoustics, Speech and Signal Processing,2004(3):988-991.
    [213]Jose A. Costa, Alfred O.Hero III.Entropic graphs for manifold learning[C].Conference Record of the Thirty-Seventh Asilomar Conference on signals, systems and computers,2004(1):316-320.
    [214]Shahnoor Shanta, Visakan Kadirkamanathan. Parametric polyspectrum density estimation using the bootstrap method [J]. Signal Processing,2007,87(1):177-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700