用户名: 密码: 验证码:
基于捷联惯导的管道地理坐标内检测关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道运输是经济的血脉,管道的安全对经济的发展至关重要。定期进行管道安全的检测与维护是防止重大事故,保证管道安全的主要方法。管道内检测是一种国际通行的检测方法,基于内检测的管道地理坐标测量可以检测整个管道的地理位置信息,并为检出的管道缺陷提供具体位置,对管道检测具有重要意义。为实现该技术,论文对若干关键技术问题进行研究,进行了以下工作并得出相关的结论:
     分析了内检测条件下各种定位方法的可行性,将捷联惯导系统(Strapdown Inertial Navigation System, SINS)应用到管道地理坐标测量中,实现了在封闭环境下对整个管道地理坐标的测量。根据测量条件,选择微机电系统(Micro-Electro-Mechanical Systems, MEMS)型器件作为惯性测量单元(Inertial Measurement Unit, IMU)。分析了IMU输出信号的误差源,建立了输出信号的误差模型。动态信号误差远大于静态信号,标准差为静态信号的9倍多,研究信号预处理算法解决动态信号的噪声问题,利用五点三次平滑算法去除动态信号的高频误差,利用阈值去噪法去除动态信号的脉冲噪声。实验结果表明,利用预处理算法可以将动态信号的标准差降低为原来的十分之一,不影响其中的有用信号成分。
     分析了捷联惯导算法的计算原理,利用里程轮速度校正kalman滤波估计方法解决算法的误差发散问题。采用矩阵分解方法保证kalman滤波方差矩阵的非负定性,最终解决迭代计算引起的发散问题。设计了模拟地理坐标测量系统的实验平台。实验结果表明,里程校正的kalman滤波方法解决了惯导算法的误差发散问题,在使用较低精度的惯性测量器件,且测量环境比较恶劣的情况下,每100m距离间隔的管道测量的绝对误差为5m。论文设计的方法对测量系统具有一定的实用性。
     分析了惯性测量单元的初始对准原理,针对对准角度过大引起的非线性问题,采用先进行粗对准,再进行精对准的方法,将精对准的误差角限定为小角度范围;在精对准中,利用Unscented粒子滤波算法(Unsented particle filter,UPF)方法解决非线性模型的滤波问题。仿真计算结果表明,采用论文的初始对准方法进行方位对准的误差角可以达到33角秒,对准精度高于Unsented kalman滤波(Unsented kalman filter, UKF)和扩展kalman滤波(Extended Kalman Filter, EKF),计算时间略长于这两种算法。
     针对计算的管道轨迹在终止点上偏离实际位置的问题,选择前后双向kalman滑动滤波的终止点校正算法,对所有测量信息进行平滑估计,将实际的终止点位置引入定位计算中。实验结果表明,经终止点校正后,计算的终止点与实际重合,提高定位精度到每100m相对误差1.8%,该方法具有一定的实用性。
Pipeline transportation is the vein of the economy, and the safety of the pipeline is vital to economic development. Periodic testing and maintenance of the pipeline safety is the main method to prevent major accidents and ensure pipeline safety. Inner inspection is an internationally accepted method, pipeline geographic coordinate measurement based on inner inspection can provide the specific location of the pipeline, complete the test information of the pipeline, which has great importance to pipeline's testing. To realize the technology, this paper study some key technical problems, it performs the following work and receives relevant conclusions:
     After the detailed analysis on the feasibility of various positioning methods at the inner inspected condition, it applies the SINS technique to the pipeline's geographic measurement, and it realizes the whole pipeline geographic coordinate measurement in a closed environment. It selects the MEMS devices as the IMU according to the measurement conditions. It establishes the error model after the analysis on the error source of the IMU's output signal. Dynamic signal error is much larger than the static signal, and its standard deviation is9times more than the static signal's. Study the signal preprocessing algorithm to solve the dynamic signal noise problem. It utilizes the five points three times smoothing algorithm to remove high-frequency dynamic signal error, and the threshold method to remove impulse noise dynamic signal. Experimental results show that through the preprocessing algorithm the standard deviation of the dynamic signal is reduced to one-tenth of the original, and it does not affect one of the useful signal components.
     After analysis on the calculation principle of SINS algorithm, it utilizes the odometer speed correction kalman filtering estimation method to solve the algorithm's calculated error accumulating problem. After analysis the algorithm of the kalman filtering, it utilizes the matrix factorization method to ensure the covariance matrix of non-negative qualitative, and finally solves the divergence problem caused by the iterative calculating. The paper designs the experimental platform simulated geographic coordinate measurement system. The experimental results show that the odometer correction kalman filtering method resolves the SINS error accumulated problem. In the case of using the lower precision inertial measurement devices and the measurement of the environment is relatively harsh, the measuring absolute error is5m every100meters distance of the pipeline. Paper design of the measurement system has a certain practicality.
     After analysis on the initial alignment principle of the inertial measurement unit, the paper utilizes the method that first process the coarse alignment then the fine alignment, it resolve the nonlinear problem caused by the too large alignment angle, as the fine alignment error angle is limited to a small range of angle; it utilizes the UPF to resolve the nonlinear model filtering problem in the fine alignment. The simulation results show that the alignment error angle of orientation can reach33second of arc through the method mentioned above. Alignment accuracy is higher than the UKF and the EKF, and the computation time is slightly longer than the two algorithms.
     The paper selects the before and after-two directions kalman smooth filtering termination point correction algorithm, that utilizes the offline features of the positioning calculation to resolve the calculated trajectory of the pipeline on the termination point deviating from the actual location problem. The algorithm smoothed estimates of all the measurement information, the actual termination point position is introduced into the positioning calculation. Experimental results show that the termination calculation point is coincident with the actual point after the algorithm. It improves positioning accuracy to a relative error of1.8%per100m, and the method has a certain practicality.
引文
[1]王功礼,王莉.油气管道技术现状与发展趋势.石油规划设计,2004,15(4):1-7.
    [2]黄志潜.管道完整性及管理.焊管,2004,27(3):1-9.
    [3]宋艾玲,梁光川,王文耀.世界油气管道现状与发展趋势.油气储运,2006,25(10):1-6.
    [4]周燕等油气管道内检测技术的发展石油机械2011 39 3 74 77.
    [5]梅云新.中国管道运输的发展与建设.交通运输系统工程与信息,2005,5(2):108-111.
    [6]李世荣,宋艾玲等.我国油气管道现状与发展趋势,油气田地面上程,2006,25(6):7-8.
    [7]余洋.中国油气管道发展现状及前景展望,国际石油经济,2007,3:27-29.
    [8]余洋.2007年中国油气管道发展综述,国际石油经济,2008,3:45-51.
    [9]高福庆.管道内检测技术应用与发展,石油规划设计,2000,11(1):40~41.
    [10]郭新庆.关于石油天然气管道安全问题,国家安监总局调查研究2006,17:1~11.
    [11]路民旭,白真权,赵新伟.油气采集储运中的腐蚀现状及典型案例,腐蚀与防护,2002,23(3):105-113.
    [12]杨筱蘅,严大凡.逐步实施我国油气管道的完整性管理,天然气工业,2004,24(11):120-123.
    [13]中国石油天然气总公司.SY6186-1996石油天然气管道安全规程.北京:石油工业出版社,2004.
    [14]杨理践.管道漏磁在线检测技术.沈阳工业大学学报,2005,27(5):522~525.
    [15]刘海峰,胡剑,杨俊.国内油气长输管道检测技术的现状与发展趋势.天然气工业,2004,24(11):147~150.
    [16]任魁杰,鲁岑等.油气管道在线检测技术研究综述.中国石油和化工标准与质量,2012,32(1):8-9.
    [17]宋生奎等.油气管道内检测技术研究进展.石油工程建设,2005,31(2):10-14.
    [18]罗建军等.组合导航原理及应用.西北工业大学出版社,2012:5~11.
    [19]陈哲.捷联惯导系统原理.宇航出版社,1986年12月.
    [20]David H, John L捷联惯性导航技术.国防工业出版社2010年3月.
    [21]导航与位置服务科技发展”十二五”专项规划.中国卫星导航系统管理办公室,2012年9月.
    [22]Bennamoun, M. The development of an integrated GPS/TNS/sonar navigation system for autonomous underwater vehicle navigation. Autonomous Underwater Vehicle Technology, Proceedings of the 1996:256-261.
    [23]Isaac Skog, Peter H "andel. A low-cost GPS aided inertial navigation system for vehiclk application. Master of Science Thesis Stockholm, Sweden 2005.
    [24]严恭敏,秦永元,马建萍.惯导/里程仪组合导航系统算法研究.计算机测量与控制,2006,14(8):1087-1089.
    [25]R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering,82 (Series D):35-45.
    [26]边信黔,周佳加,严浙平等.基于EKF的无人潜航器航位推算算法,华中科技大学学报,201139(3):100-104.
    [27]Julier S, Uhlmann J K, et al. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. A. C,2000,45 (3):477-482.
    [28]肖进丽,黄声享,蓝蔚.UKF滤波技术在车载GPS/INS组合定位系统中的应用研究.工程勘察,2008,第6期:60-63.
    [29]Gordon N J, Salmond D J. Novel approach to nonlinear/non-gaussion Bayesian state estimation. Radar and signal processing,140(2):107-113.
    [30]刘保余.输气管道内检测器设计及理论研究:(博士学位论文).中国石油大学,2010.
    [31]Jaroslaw A. Czyz, John R. Adams. Computation of pipeline-bending strains based on GEOPIG measurements. Pipeline pigging and Integrity monitoring,1994.
    [32]Mario B. Apparatus and method for accurate pipeline surveying. United States patent.2004, us6768959B2.
    [33]Jaejong Yu. An off-line navigation of a geometry PIG using a modified nonlinear fixed-interval smoothing filter. Control Engineering Practice,13(2005):1403-1411.
    [34]Eun H S, Naser E S. Navigation Kalman filter design for pipeline pigging. The jurnal of navigation, 2005,58:283-289.
    [35]Sadovnychiy S, Ponomaryov, Sadovnychyy A. Correction methods and algorithms for navigation system working inside of pipelines.Fourth congress of electronics, robotics and automotive mechanics.2007,34:625-630.
    [36]王洪生,肖德仁,刘丽.全球定位系统(GPS)管道测量.2003,21(2):50~53.
    [37]靳世久,刘华军,张萍.新型地下管道位置检测仪研究.电子测量与仪器学报,1996,10(1):51~55.
    [38]徐云等.低频电磁波在管道内检测外定位的应用.北京石油化工学院学报,2010,18(2):35-40.
    [39]沈跃.利用加速度计实现管道缺陷定位的研究.管道技术与设备.2007,1(6):13-15.
    [40]王黎,李著信,石进.基于多源信息融合的管道机器人定位技术研究.科技信息(学术研究),2007.31:612-618.
    [41]齐海铭.管内移动机器人示踪定位技术的研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2010.
    [42]杨理践,李振, 高松巍.管道检测中管道定位系统的研究.无损探伤,2007,1(3):27-29.
    [43]刘保余,綦耀光,杨洋.卡尔曼滤波在管道地理坐标定位系统中的应用.沈阳工业大学学报,2010,32(5):564-568.
    [44]杨理践,李瑞强,高松巍,杨洋.管道内检测导航定位技术.沈阳工业大学学报,2012,34(4):427-432.
    [45]杨理践,尹增亮,高松巍.组合导航系统在管道地理位置测量中的应用.沈阳工业大学学报,2006,28(4):414~417.
    [46]以光衢,惯性导航原理.航空工业出版社.1987:52-70.
    [47]Paul G. Savage. Strapdown Inertial Navigation Integration Algorithm Design Part 1:Attitude Algorithms. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS,1998,21(1):19-28.
    [48]Paul G. Savage. Strapdown Inertial Navigation Integration Algorithm Design Part 2:Velocity and Position Algorithms. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS,1998,21(2): 208-221.
    [49]Bernard FriedLand. Analysis Strapdown Navigation Using Quaternions. IEEE transactions on aerospace and electronic systems,1978, AES-14(5):764-768.
    [50]Hyung keun lee, Jang Gu Lee. Modeling Quaternion Errors in SDINS:Computer Frame Approach. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS,1998, 34(1):289-299.
    [51]王玲玲,富立,陈三.基于低成本IMU的捷联航姿系统软件设计与实现.中国惯性技术学报2009,17(4):379~382.
    [52]Chao YuHung, Sou ChenLee. A Calibration Method for Six-Accelerometer INS. International Journal of Control, Automation, and Systems,2006,14(5):615-623.
    [53]Seong Yun Cho, Chan Gook Park. A calibration technique for a redundant IMU containing low-grade inertial sensors. ETRI Journal,2005,27(4):418-426.
    [54]杨常松,徐晓苏.捷联惯导系统加速度计标度因数和安装误差的试验标定.测控技术,2005,24(12):57~59.
    [55]纽瑞萍,蔡伯根.一种加速度计误差修正方法的研究.传感器技术,2001,21(4):4-6.
    [56]J. J. Ford, M. E.Evans. Online estimation of Allan variance parameters. Defence science and technology organization,1999.
    [57]刘海涛.MEMS陀螺仪随机误差的Allan分析.遥测遥控,2007,28增刊:158-162.
    [58]李颖,陈兴林,宋申民.光纤陀螺漂移误差动态Allan方差分析.光电子·激光,2008,19(2):183~186.
    [59]金光明,张国良,陈林鹏.MEMS陀螺仪静态漂移模型与滤波方法研究.传感器与微系统,2007,26(11):48~50.
    [60]翁海泉,任春华,张敬栋等.基于最小分辨率的MEMS陀螺漂移抑制方法研究.仪器仪表学报,2011,32(10):2371~2375.
    [61]张海鹏,房建成.MEMS陀螺仪短时漂移特性实验研究.中国惯性技术学报,2007,15(1):100-104.
    [62]潘鸿飞,杨柏军,王立强.陀螺仪随机漂移的测量及其数学模型的建立.上海航天,2003(3):20-23.
    [63]宋志东,靳世久,李一博等.管道内检测器里程轮信号优选算法的设计与实现.管道技术与设备,2006,3:12~13.
    [64]Zhao Changshan,Qin yongyuan,Yan gongmin. On the move alignment for strap-down inertial navigation system. International conference on information and automation.2008,1428-1432.
    [65]肖立波,任建亭,杨海峰.振动信号预处理方法研究及其MATLAB实现.计算机仿真,2010,27(8):330~337.
    [66]D GoshenMeskin. Unified Approach to Inertial Navigation System Error Modeling. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS.1992,15(3):648-653.
    [67]Dohyoung Chung. Strapdown INS Error model for multiposition alignment. Ieee transactions on aerospace and electronic systems,1996,32(4):1362-1366.
    [68]张贤达著.现代信号处理.清华大学出版社,2002:177-223.
    [69]Lonnie C.Ludeman.随机过程-滤波、估计与检测.电子工业出版社,2005:284-304.
    [70]刘豹.现代控制理论.机械工业出版社,2000:51-105.
    [71]Paul D G. Principles of GNSS, Inertial, and Multisensor integrated navigation systems. Artech house,2008:100-118.
    [72]Dah J J. Remarks on the kalman filtering simulation and verification. Applied mathematics and computation,2007:159-174.
    [73]Jamshaid Ali, Muhammad Ushaq. A consistent and robust kalman filter design for in-motion alignment of inertial navigation system. Measurement,2008:577-582.
    [74]Gerasimos G. Nonlinear kalman filters and particle filters for integrated navigation of unmanned aerial vehicles. Robotics and autonomous systems,2010:978-995.
    [75]Jamshaid Ali, Fang Jiancheng. SINS/ANS integration for augmented performance navigation solution using unscented kalman filtering,2006:233-238.
    [76]Mohinder S. Application of kalman filtering to the calibration and alignment of inertial navigation system. IEEE transactions on automatic control,1991,36(1):4-13.
    [77]Greg Welch, Gary Bishop. An Introduction to the Kalman Filter. SIGGRAPH,2001, Course 8.
    [78]Mohinder S, Angus P. Kalman filtering: theory and practice-using matlab. wiley-inter science publication,2001:116-155.
    [79]付梦印,邓志红,闫丽萍.kalman滤波理论及其在导航系统中的应用.科学出版社,2010:12-81.
    [80]何超,徐洪.船用导航雷达收发机测试系统的研究与设计.电子测量仪器学报,2009,23(1):112-115.
    [81]C. Goodall, Z. Syed, N. El-Sheimy. Improving INS/GPS Navigation Accuracy through Compensation of Kalman Filter Errors. Vehicular Technology Conference2006 IEEE 64th,1-5.
    [82]He Xiufeng, Chen Yongqi. A fast kalman filter for integrated GPS/INS based on U-D factorization, Transactions of Nanjing University of Aeronautics&Astronautics,1998,15(2):159-164.
    [83]肖垣,王清哲,付梦印.里程计辅助陆用惯导行进间对准方法.中国惯性技术学报,2012,20(2):140-145.
    [84]聂浩翔,关劲,卞鸿巍.模糊自适应kalman滤波在INS/GPS组合导航系统中的应用.舰船电子工程,2011,31(1):67-70.
    [85]王惠南,吴智博.采用kalman滤波器的GPS/INS姿态组合系统的研究.中国惯性技术学报,2000,8(3):1~7.
    [86]Mohinder S, Grewa, Vinson D Henderson. Application of Kalman Filtering to the Calibration and Alignment of Inertial Navigation Systems. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,1991,36(1):4-13.
    [87]孙伟,孙枫.基于惯导解算的舰船升沉测量技术.仪器仪表学报,2012,33(1):167-172.
    [88]李杰,张文栋,刘俊.基于时间序列分析的Kalman滤波方法在MEMS陀螺仪随机漂移误差补偿中的应用研究.传感技术学报,2006,19(5):2215~2219.
    [89]曹娟娟,房建成,盛蔚.大失准角下MIMU空中快速对准技术.航空学报,2007,28(6):1395-1400.
    [90]夏家和,秦永元,赵长山.适用于低精度惯导的非线性对准方法研究.仪器仪表学报,2009,30(8):1618~1622.
    [91]张卫明等.蒙特卡罗粒子滤波算法应用研究.微计算机信息,2007,239(1):295~297.
    [92]丁扬斌,申功勋.Unscented粒子滤波在静基座捷联惯导系统大方位失准角初始对准中的应用研究.航空学报,2007,28(2):397~401.
    [93]MIAO Lingjuan, SHEN Jun. Initial Alignment Technique for SINS of Vehicles in the Moving State. Journal of Beijing Institute of Technology,2002,11(3):234-239.
    [94]Xinlong WANG,Gongxun SHEN. A fast and accurate initial alignment method forstrapdown inertial navigation system on stationary base.Journal of control theory and applications,2005,2: 145-149.
    [95]吴铮,孙立,汪亚明.基于隐马尔可夫模型的火焰检测.计算机工程,2008,34(20):13~21
    [96]Grace A, Clark. Angular and Linear Velocity Estimation for a Re-Entry Vehicle Using Six Distributed Accelerometers:Theory, Simulation and Feasibility. University of California Lawrence Livermore National Laboratory Technical Information Department Livermore, CA 94551,2003.
    [97]Rufus Fraanje, Ali H Sayed, Michel Verhaegen. A Fast-Array Kalman Filter Solution to Active Noise Control. International Journal of Adaptive Control and Signal Processing,2005,15(1): 125-152.
    [98]周卫东,乔相伟,任蕾等.QUKF算法及其SINS初始对准中的应用.仪器仪表学报,2010,31(2):264~268.
    [99]刘国海,李沁雪,施维等.动态卡尔曼滤波在导航实验状态估计中的应用.仪器仪表学报,2009,30(2):396~400.
    [100]Stefano M. Unscented kalman filtering for nonlinear structural dynamics. Nonlinear Dyn, 2007(49):131-150.
    [101]Bruno O.S., Leonardo A.B.. Flight path reconstruction-A comparison of nonlinear kalman filter and smoother algorithms. Aerospace science and technology,2011:60-71.
    [102]孙枫,唐李军.基于CKF的SINS大方位失准角初始对准.仪器仪表学报.2012,33(2):327-333.
    [103]Rauch, Tung, Striebel. Maximum likehood estimates of linear dynamic systems. AIAA,1965, 3(8):1445-1450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700