用户名: 密码: 验证码:
水源水中隐孢子虫和贾第虫灭活方式及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隐孢子虫(Cryptosporidium)和贾第虫(Giardia)(以下简称“两虫”)可感染人类和其它多种动物,引起发烧、腹痛等症状,对免疫力低下或缺乏的患者甚至导致死亡。“两虫”在水中的存活时间相当长,且对环境因素和传统氯灭菌剂具有较强的抗性,城市常规给水处理工艺很难完全去除“两虫”。我国水厂水处理工艺落后,大多只能对物理和微生物污染进行净化处理,因而具有爆发大规模水源性“两虫”感染的可能,严重威胁广大人民群众的身体健康、生命安全和社会和谐稳定发展。
     目前我国对“两虫”的研究仅仅停留在检测方法评估,提高回收率等方面。因此,加大对水中“两虫”杀灭去除的研究已是迫在眉睫,必须尽快解决的大问题。本论文对荧光活性染色法和免疫嘧啶二聚体(TD)荧光检测法进行优化和改进,提高了活性检测的检出率和特异性,考察了水处理杀菌剂和工艺灭活水中“两虫”的效果及相关影响因素,利用扫描电镜(SEM)、蛋白质实验、脂质过氧化氢化反应、聚合酶链式反应(PCR)等技术,对“两虫”灭活机理进行了初步探讨,寻求高效、可行的防控水中“两虫”的方法和工艺,为保障我国城乡饮用水水质质量和居民健康提供强有力的技术支持。
     针对水中“两虫”检测检出率低、无法准确评价“两虫”活性的问题,比较了EPA1623法、体外诱导脱囊、改良抗酸染色和荧光活性染色等方法,考察了“两虫”检出率、所用时间等因素,并对荧光活性染色工序进行改进,获得理想的精密度和准确度,证明其是“两虫”活性检测的可靠方法,为进一步研究的开展奠定了基础;
     采用荧光活性染色法,通过对典型水处理杀菌剂灭活“两虫”效果及影响因素的考察发现:O_3对“两虫”的灭活能力强于ClO_2,而Cl_2的作用效果最差,达到理想灭活效果时,O_3投加量和作用时间分别为:3.0mg/L和7min;相关影响因素的研究表明,浊度和有机物是影响灭活的主要因素,浊度(有机物浓度)越低,灭活效果越佳,低温条件影响“两虫”的灭活,pH值对“两虫”灭活效果影响较小;
     O_3/H_2O_2协同技术具有最佳的灭活“两虫”效果,不仅降低了药剂的初始时浓度(O_3投量2.0mg/L),而且缩短了灭活时间(7.0min),达到理想的“两虫”灭活效果(灭活率99.0%以上)时,H_2O_2/O_3摩尔比为0.8;同时考察了水中常见离子对H_2O_2/O_3灭活效果的影响,低浓度的Ca~(2+),Mg~(2+)和Cu~(2+)等二价金属离子均对灭活起到一定促进作用,一价离子Na~+对灭活无明显的作用,而NO_3~-、HCO_3~-和Cl~-在一定范围内抑制了H_2O_2/O_3对“两虫”的灭活。光催化剂对“两虫”的灭活效果随着催化剂投量的增加,灭活率逐渐增强。当光催化剂为1.0mg/L时,隐孢子虫和贾第虫的灭活率分别为:69.5%和80.0%。随着剂量的增加,灭活率迅速提高,当光催化剂达到5.0mg/L时,隐孢子虫和贾第虫的灭活率分别为:99.8%和99.9%。
     以紫外(UV)为代表,考察了物理工艺灭活“两虫”的情况,实验结果表明,UV照射功率越大,灭活能力越强,UV灭活“两虫”的最佳条件为:UV照射功率4.5mW/cm~2,照射剂量13.5mJ/cm~2;浊度和有机物浓度对UV灭活“两虫”影响较为明显,浊度(有机物浓度)提高,UV照射“两虫”后的灭活率相应降低;pH值和温度对UV灭活无明显的促进或抑制。对实际水源水灭活实验表明,UV灭活水中“两虫”具有较强的可行性和一定的应用价值。
     以扫描电镜(SEM)、蛋白质实验、脂质过氧化氢化反应和聚合酶链式反应(PCR)等技术,探求各种水处理药剂和工艺处理水中“两虫”过程中的灭活机理,发现:Cl_2和ClO_2灭活“两虫”的机理主要是依靠氧化性和细胞膜穿透能力,致使“两虫”细胞变形,功能缺失,细胞膜通透性增加,从而引起失活或死亡;O_3灭活“两虫”不仅是自身较强的氧化能力,而且和羟基自由基作用密切相关;UV灭活机理在于细胞内核酸生成嘧啶二聚体,甚至引起核酸失活,致使细胞死亡;H_2O_2/O_3协同作用产生大量的羟基自由基对“两虫”的灭活作用最为显著,羟基自由基是最为有效的“两虫”灭活手段。
Cryptosporidium and Giardia (they are referred as two insects) can infect humans and other species of animal, which will cause fever, abdominal pain and other symptoms, and even to cause the death of the patients whose immunity was low or lacked. Two insects can survived in the water as a long time, and they had a strong resistance to environmental factors and chlorine disinfectants, and could not be completely removed by the conventional water treatment process. In China, the water treatment process are slow, and most of the water plants can only purify the physical and microbial contamination, thus, it had the possibility of infection outbreak at largescale, which threat to our country majority of the people's health, safety and development of harmonious and stable society seriously.
     At present, the research in our country only concentrated on the development of detection methods, the improved recovery method and so on. So the study on the removal of water beetle is an urgent question in our country. In this study, the fluorescent staining and immune TD (pyrimidine dimer) fluorescence detect methods had been optimizd and improved, and the activity detection rate and specificity of detection had been improved. Besides, the eliminate effect of Fungicide treatment and the processing on two insects. At the same time, the primary investigation of the mechanism of disinfection through scanning electron microscopy (SEM), the protein experiments, lipid peroxidation hydrogenation reaction, polymerase chain reaction (PCR) technology and fungicide treatment. All the work carried out in this paper is to seek effective and feasible prevention and control of water, the two insects, the methods and processes for the protection of urban and rural drinking water quality and health of residents to provide strong technical support.
     For the current problem which is poor detection rate and inaccurate evaluate activity, the EPA1623 method, in vitro excystation and modified acid-fast staining methods, such as the detection rate, and establishment of a fluorescent activity staining method were compared. Besides, the "two worm" detection rate, the time and other factors, and the fluorescent activity staining procedure to improve were studied to get a good precision and accuracy, and to imporve that it was the reliable method for "two worms" activity detecting, which was the foundation of a further study to carry out.
     Study on the effect and impact factors of inactivation two insects by chemical disinfection, and found that: the inactivation of O_3 to two insects was stronger than that of ClO_2, and Cl_2 had the worst inactivation effect; the best inactivation effect conditions were as follows: the inactivation rate reached more than 99.0%, and the dosage must be above 6.3mg/L with the reaction time was over 360min. Related factors studies have shown that the turbidity and organic matter were the main factors influencing the inactivation, and the lower the turbidity and organic mater were, the better inactivation effect was. Lower temperature was not suitable for the inactivation of two insect, and pH had little effect on the inactivation of the two insects.
     In order to achieve the desired inactivation of two insects (inactivation rate above of 99.0%), the two insects inactivated by O_3/H_2O_2 obtained the best results, which not only reduced the initial concentration of bactericide (O_3 dosage of 2.0mg / L), but also shortened the sterilizing time (7.0min). The best H_2O_2/O_3 molar ratio is 0.8. The common ions which influenced inactivation of H_2O_2/O_3 on two insect were investigated in water. Low concentrations of Ca~(2+), Mg~(2+) and Cu~(2+) are divalent metal ions play a catalytic role for the inactivation, Na~+ had no significant effect on disinfection, but NO_3~-, HCO_3~- and Cl~- inhibited H_2O_2/O_3 inactivation of two insects within a certain range. Photocatalytic inactivation of two insects with the amount of catalyst increased the inactivation rate gradually. When the photocatalyst is 1.0 mg/L, the Cryptosporidium and Giardia inactivation rate was 69.5% and 80.0%, respectively. As the dose increased, inactivation rate is rapidly increasing, especially when the photocatalyst was 5.0mg/L, the Cryptosporidium and Giardia inactivation rate reached 99.8% and 99.9% respectively.
     Physical inactivation process studies have shown that inactivation of two insects, UV method has a better ability. The higher the UV irradiation power was, the stronger the inactivation capacity was. When the UV radiation power was 4.5mW/cm~2, the irradiation dose increased to 13.5mJ/cm~2, the inactivation rate of the two insects reached 99.9%. Turbidity and the concentration of organic matter on UV inactivation of the "two bugs" is more obvious, when the turbidity (concentration of organic matter) increased, the the inactivation rate of "two worms" after radiated by UV was reduced accordingly. pH value and temperature no significant promote or inhibit effect on the UV inactivation to two insects. The actual water source experimental results show that the UV inactivation of "two worm" has a strong feasibility and value of certain applications.
     Scanning electron microscopy (SEM), the protein experiments, lipid peroxidation hydrogenation reaction and polymerase chain reaction (PCR) technology were used to explore a variety of water treatment chemicals and process water treatment on the inactivation process and the mechanism of "two worms". Results showed that the inactivation of "two worm" by Cl_2 and ClO_2 relied mainly on oxidation and cell membrane penetration, resulting in "two worms" cell deformation, which lost function, cell membrane permeability, and then causing inactivation or death. The inactivation of O_3 on two insects was not only relay on its strong oxidizing ability, but also had a colse relationship with the hydroxyl radicals. The mechanism of UV inactivation on two insects was the generation of intracellular nucleic acid pyrimidine dimers, which even lead to inactivation of nucleic acids, and then resulting in cell death. H_2O_2/O_3 synergies produce large amounts of hydroxyl radicals on the inactivation of the two worms, which is the most significant effective method in the inactivation of two worms.
引文
[1]熊正为.水资源污染与水安全问题探讨[J].中国安全科学学报,2000,10(5): 40-43.
    [2]国家环境保护总局. 2008年中国环境状况公报. 2008:3-7.
    [3]朱立.为喝上放心水需要创新预警应急机制[J].中国减灾,2009,10:43-45.
    [4]国家环境保护总局. 2009年中国水资源公报. 2011.
    [5]詹希美.人体寄生虫学[M].第五版,北京:人民卫生出版社,2001:78-79.
    [6] EnemarkNemark H L, Hrens P A, Hansen V B, et al. Cryptosporidium parvum: infectivity and pathogenicity of the“porcine”genotype[J]. Parasitology, 2003, 126(5): 407-416.
    [7] Fayer R, Morgan U, Upton S. Epidemiology of Cryptosporidium: transmission, detection and identification[J]. International Journal for Parasitology, 2000, 30(12-13): 1305-1322.
    [8]武林,李培英.隐孢子虫致病机理的研究进展[J].中国兽医寄生虫病,2005, 13(3):28-33.
    [9] Xiao L, Bern C, Limor J, et al. Identification of 5 Types of Cryptosporidium Parasites in Children in Lima, Peru[J]. Journal of Infectious Diseases, 2001, 183(3): 492-497.
    [10] Guyo K, Follet-Dumoulin A, Lelièvre E, et al. Molecular Characterization of Cryptosporidium Isolates Obtained from Humans in France[J]. Journal of Clinical Microbiology, 2001, 39(10): 3472-3480.
    [11] DuPont H L, Chappell C L, Sterling C R, et al. The infectivity of Cryptosporidium parvum in healthy volunteers[J]. New England Journal of Medicine, 1995, 332: 855-859.
    [12]薛燕萍.新出现的寄生虫病-隐孢子虫病[J].临床和实验医学杂志,2006,5(9):1427-1429.
    [13] Graczyk T K, Majewska A C, Schwab K J. The role of aquatic birds in dissemination of human waterborne enteropathogens[J]. Trends Parasitology, 2008, 24(2): 55-59.
    [14] Leticia E G, Adrian C C. Genotype of Giardia intestinalis isolates from children and dogs and its relationship to host origin[J]. Parasitol Research, 2006, 97: 1-6.
    [15] Marco L, Edoardo P, et al. Genetic hetrogeneity at the B-Giardia locus amonghuman and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes[J]. International Journal for Parasitology, 2005, 35: 207-213.
    [16] W. R. Mackenzie, et al. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply[J]. New England Journal of Medicine, 2004, 331: 161-167.
    [17]高云霞.二氧化氯对水中隐孢子虫卵囊杀灭效果及机理初探[D].哈尔滨:哈尔滨工业大学. 2008: 15-16.
    [18]蔡炯.介水蓝氏贾第鞭毛虫和隐孢子虫感染的流行现状及控制[J].中国卫生检验杂志,2005,15(11):1401-1402.
    [19] Jex A R, Smith H V, Monis P T, et al. Cryptosporidium–biotechnological advances in the detection, diagnosis and analysis of genetic variation[J]. Biotechnology Advances, 2008, 26(4), 304-317.
    [20] Kang C D, Cao C, Lee J, et al. Surface plasmon resonance-based inhibition assay for real-time detection of Cryptosporidium parvum oocyst[J]. Water Research, 2008, 42(6-7): 1693-1699.
    [21] Poitras C, Fatisson J, Tufenkji N, et al. Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents[J]. Water Research, 2009, 43(10): 2631-2638.
    [22] Mccuin R M, Clancy J L. Modifications to United States Environmental Protection Agency Methods 1622 and 1623 for Detection of Cryptosporidium Oocysts and Giardia Cysts in Water. Applied and Environmental Microbiology, 2003, 69(1): 267-274.
    [23] Wang C, He H, Duan M. Development and evaluation of a recombinant CP23 antigen-based ELISA for serodiagnosis of Cryptosporidium parvum[J]. Experimental Parasitology, 2009, 121(2): 157-162.
    [24] Rimhanen-Finne R, Enemark H L, Kolehmainen J. Evaluation of immunofluorescence microscopy and enzyme-linked immunosorbent assay in detection of Cryptosporidium and Giardia infections in asymptomatic dogs[J]. Veterinary Parasitology, 2007, 145(3-4): 345-348.
    [25] Stinear T, Matusan A, Hines K, et al. Detection of a single viable Cryptosporidium parvum oocyst in environmental water concentrates by reverse transcription-PCR[J]. Applied Environmental Microbioloy, 1996, 62(9): 3385-3390.
    [26] Widmer G, Orbacz E A , Tzipori S. Tubulin mRNA as a marker of Cryptosporidium parvum oocyst viability [J]. Applied EnvironmentalMicrobiolog, 1999, 65 (4):1584-1588.
    [27] Rochelle P A, Upton S J, Montelone B A, Woods K. The response of Cryptosporidium parvum to UV light[J]. Trends in Parasitology, 2005, 21(2): 81-87.
    [28] Slifko T R, Friedman D, et al. An in vitro method for detecting infectious Cryptosporidium oocysts with cell culture[J]. Applied environmental microbiology. 1997, 63(9): 3669-3675.
    [29] Vesey G, Ashbolt N, Fricker E J, Deere D, et al. The use of a ribosomal RNA targeted oligonucleotide probe for fluorescent labelling of viable Cryptosporidium parvum oocysts[J]. Journal of Applied Microbiology, 1998, 85(3): 429-440.
    [30] Alagappan A, Tujula N A, Power M, et al. Development of fluorescent in situ hybridisation for Cryptosporidium detection reveals zoonotic and anthroponotic transmission of sporadic cryptosporidiosis in Sydney[J]. Journal of Microbiological Methods, 2008, 75(3): 535-539.
    [31] Richter B, Kubber-Heiss A, Weissenbock H, Schmidt P. Detection of Cryptosporidium spp. Entamoeba spp. and Monocercomonas spp. in the Gastrointestinal Tract of Snakes by In-situ Hybridization[J]. Journal Comparative Pathology, 2008, 138(2-3), 63-71.
    [32] Neumann N F, Gyürek L L, Gammie L, et al. Comparison of animal infectivity and nucleic acid staining for assessment of Cryptosporidium parvum viability in water[J]. Applied Environmental Microbiology, 2000, 66(1): 406-412.
    [33] Hijjawi N, Estcourt A, et al. Complete development and multiplication of Cryptosporidium hominis in cell-free culture[J]. Veterinary parasitology, 2010, 169(1): 29-36.
    [34] Karapetyan A E. Methods of Giardia lamblia cultivation[J]. Tsitologiya, 1960, 2(3): 379-384.
    [35] Meyer E A, Giardia lamblia: isolation and axenic cultivation[J]. Experimental Parasitology, 1976, 39(1): 101-105.
    [36]卢思奇,王正仪.贾第虫纯培养的建立[J].中国寄生虫与寄生虫病杂志, 1990, 8 (3): 199-202.
    [37]阎歌,卢思奇.从家兔分离贾第虫并建立纯培养[J].首都医学院学报, 1995, 16 (1): 24-26.
    [38] Hijjawi N S, Meloni B P, et al. Complete development of Cryptosporidium parvum in host cell-free culture[J]. International Journal for Parasitology,2004, 34(7), 769-777.
    [39] Hijjawi N S. Cryptosporidium: New development in cell culture[J]. Experiment Parasitology, 2010, 124(1): 54-60.
    [40] Wickramanayake G B, Alan J R, Otis J Sproul. Inactivation of Giardia lamblia cysts with ozone[J]. Applied and Environmental Microbiology, 1984, 48(3): 671-672.
    [41] Eugene W R, John C H. Inactivation of Giardia cysts by ultraviolet irradiation[J]. Applied and Environmental Microbiolo, 1981, 42(3):546-547.
    [42] Hayes S L, Rice E W, Ware M W, et al. Low Pressure ultraviolet studies for inactivation of Giardia muris cysts[J]. Journal of Applied Microbiology, 2003, 94(1):54-59.
    [43] Eugene W R, Jong C H, Frank W S. Inactivation of Giardia Cysts by Chlorine[J]. Applied And Environmental Microbiology, 1982, 43(1): 250-251.
    [44]黄君礼.新型水处理剂——二氧化氯技术及其应用[M].北京:化学工业出版社,2002:26-37.
    [45] Ruffell K M, Rennecker J L, Mari?as B J. Inactivation of Cryptosporidium parvum oocysts with chlorine dioxide[J]. Water Research, 2000, 34(3): 868-876.
    [46] Robert M C, Mano S, Eugene W R. Development of a Ct equation for the inactivation of Cryptosporidium oocysts with chlorine dioxide[J]. Water research, 2003, 37(11): 2773–2783.
    [47] Celine M, Aurelien D, Sylvie G, et al. Monitoring of Cryptosporidium and Giardia river contamination in Paris area[J]. Water research, 2009, 43(1): 211-218.
    [48] Furness B W, Beach M J, Roberts J M. Giardiasis surveillance - United States, 1992-1997[J]. Morbidity and Mortality Weekly Report CDC Surveillance Summary, 2000, 49(7): 1-13.
    [49]张彤,胡洪营,宗祖胜.再生水中隐孢子虫和贾第鞭毛虫的检测方法研究[J].中国给水排水,2006,22(5):9-23.
    [50] Facile N, Barbeau B, Prévost M, et al. Evaluating bacterial aerobic spores as a surrogate for Giardia and Cryptosporidium inactivation by ozone[J]. Water research, 2000, 34(12): 3238-3246.
    [51] Driedger A M, Rennecker J L, Mari?as B J. Inactivation of Cryptosporidium parvum oocysts with ozone and monochloramine at low temperature[J]. Water research, 2001, 35(1): 41-48.
    [52] Dong L, Stephen A C, Daniel W S, et al. Survival of Giardia lambliatrophozoites after exposure to UV light[J]. FEMS Microbiology Letter. 2008. 278(1): 56–61.
    [53] King B J, Hoefel D, Daminato D P, et al. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters[J]. Journal of Applied Microbiology. 2008, 104(5): 1311-1323.
    [54] Emilio E, Yves J F G, Pascale M, et al. Pilot-scale evaluation of UV reactors’efficacy against invitro Infectivity of Cryptosporidium parvum oocysts[J]. Immunology Medecine Microbiology, 2007, 51(3): 562-567.
    [55] Dong L, Stephen A C, Daniel W S, et al. Comparison of levels of inactivation of two isolates of Giardia lamblia cysts by UV light[J]. Applied and Environmental Microbiology, 2007, 73(7): 2218-2223.
    [56]金云霄,孙艳,张立成.饮用水中隐孢子虫的紫外线灭活[J].洛阳大学学报, 2004,19(2):35-39.
    [57] Clancy J L, Bukhari Z, Hargy T M., et al. Using UV to Inactivate Cryptosporidium[J]. Journal American Water Works Association, 2000, 92(9): 97-104.
    [58] Bukhari Z, Hargy T M, Bolton J R, et al. Medium-pressure UV for oocyst inactivation[J]. Journal-American Water, 1999, 91(3): 86-94.
    [59] Fujishima A, Honda K. Electrochemical evidence for the mechanism of the primary stage of photosynthesis[J]. Nature, 1972, 238: 37.
    [60] Carey J H, Lawrence J, Tosine H M. Photode-chlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull Environmental contamination Toxicology[J], 1976, 16: 697.
    [61] Pruden A L, Ollis D F. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water[J]. Journal of Catalysis. 1983, 82(2): 404-417.
    [62] Fernando M H, Elvira A M, Kevin G M, et al. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO_2[J]. Journal of Photochemistry and Photobiology B: Biology, 2007, 88(2-3): 105-111.
    [63] Hodon R, Daniel G, John C C, et al. Photocatalytic inactivation of Cryptosporidium parvum with TiO_2 and low-pressure ultraviolet irradiation[J]. Water research, 2008, 42(6-7): 1523-1530.
    [64] Munevver S, Serpil D, Alper A. Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water[J]. Experimental Parasitology, 2008, 119(1): 44-48.
    [65] Rochelle P A, Upton S J, Montelone B A, et al. The response ofCryptosporidium parvum to UV light[J]. Trends in Parasitology, 2004, 21(2):81-87.
    [66] Deng M, Mark S R, Mitchell S A. Host intestinal epithelial response to Cryptosporidium parvum[J]. Advanced Drug Delivery Reviews, 2004, 56(6): 869-884.
    [67] Jeanine I B, Hung L, Jack T T. Molecular targets for detection and immunotherapy in Cryptosporidium parvum[J]. Biotechnology Advances, 2007, 25(1): 13-44.
    [68]范志云,黄君礼,许晶,等.隐孢子虫病及其水媒传播控制[J].环境污染治理技术及设备,2002,3(5):76-78.
    [69] Betancourt W Q, Rose J B. Drinking water treatment processes for removal of Cryptosporidium and Giardia[J]. Veterinary Parasitology, 2004, 126(1): 219-234.
    [70] LeChevallier M W, Norton W D, Lee R G. Giardia and Cryptosporidium spp. in filtered drinking water supplies[J]. Applied and Environmental Microbiology, 1991, 57(9): 2617-2621.
    [71] Keegan A, Daminato D, Saint C P, Monis P T. Effect of water treatment processes on Cryptosporidium infectivity[J] Water research, 2008, 42(6-7): 1805-1811.
    [72] Brehant A, Glucina K, Moigne I L, Laine J M. Risk management approach for monitoring UF membrane integrity and experimental validation using Ms2-phages[J]. Desalination, 2010, 250(3): 956-960.
    [73] Swertfeger J, Metz D H, DeMarco J, et al. Effect of filter media on cyst and oocyst removal[J]. Journal AWWA, 2009, 91(9): 90-100.
    [74] Dugan N R, Fox K R, Owens J H., et al. Controlling cryptosporidium oocysts using conventional treatment[J]. Journal AWWA 2001, 93(12): 64-76.
    [75] Ongerth J E, Pecoraro J P. Removing Cryptosporidium using multimedia filters[J]. Journal American Water Works Association, 1995, 87(12): 83-89.
    [76] Trevor J B, Monica B E. Chitosan and metal salt coagulant impacts on Cryptosporidium and microsphere removal by filtration[J]. Water Research, 2009, 43(2): 331-338.
    [77] Jacangelo J G., Adham S S, Laine J M. Mechanism of Cryptosporidium, Giardia, and MS2 virus removal by MF and UF[J]. American Water Works Association. 1995, 87(9):107-121.
    [78]季德成,陈文樾.隐孢子虫病[J].中国预防兽医学报,1982,3:64-67.
    [79]朱云娟.对PCR、巣式PCR和荧光抗体检测污水中的贾第鞭毛虫和隐孢子虫的评价[J].国外医学寄生虫病分册,1997,2:197-199.
    [80]余淑苑,张志诚,叶宝英,等.深圳市饮用水污水中隐孢子虫和贾第鞭毛虫的调查[J].环境与健康杂志,2005,20(3):26-28.
    [81]周云,戎颖,孙磊,等.上海市浦东给水厂两虫去除研究[J].给水排水,2007,33(8):16-18.
    [82]张志诚,余淑苑,张仁利,等. 2008年深圳市集中式供水中贾第鞭毛虫和隐孢子虫污染现状[J].环境与健康杂志,2009,26(1):50-51.
    [83]李培英,连德润.微小隐孢子虫DNA探针的制备[J].中国寄生虫与寄生虫病杂志,1999,17(2):113-114.
    [84]王权,王永康.套式PCR检测奶牛粪便中隐孢子虫[J].畜牧兽医学报,2002,33(6):852-584.
    [85]张龙现,蒋金书,刘群,等. PCR-RFLP鉴定隐孢子虫种类研究[J].畜牧兽医学报,2004,35(5):555-559.
    [86]李安平,黄克和,王权,等.微小隐孢子虫和安氏隐孢子虫SYBR Green real time PCR检测方法的建立[J].中国兽医科学,2009,39(6):510-515.
    [87]黄克和,李培英.应用间接ELISA检测动物隐孢子虫病抗体[J].中国兽医学报,1999,19(4):353-355.
    [88]何宏轩,张西臣,尹继刚,等.应用间接ELISA检测微小隐孢子虫抗体的研究[J].中国兽医科技,2003,33(6):23-26.
    [89]张彤,胡洪营,宗祖胜.免疫磁性分离法检测水中隐孢子虫和贾第鞭毛虫的影响因素[J].环境与健康杂志,2007,24(1):56-58.
    [90]张冬青,李红岩,李栋,等.密度梯度离心纯化/免疫荧光技术检测饮用水中两虫[J].中国给水排水,2009,25(2):25-29.
    [91]何少华,谢水波,陈朝猛,等.新型消毒工艺灭活水中小隐孢子虫卵囊[J].安全与环境学报,2005,5(2):75-78.
    [92] Feng Y Y, Xiao L H. Zoonotic Potential and Molecular Epidemiology ofGiardia Species and Giardiasis[J]. Clinical Microbiology Reviews. 2011, 24(1): 110-140.
    [93] Lobo M L, Xiao L, Antunes F, et al. Occurrence of Cryptosporidium and Giardia genotypes and subtypes in raw and treated water in Portugal[J]. Letterin Applied Microbiology, 2009, 48(6): 732-737.
    [94] Hansen J S, Ongerth J E, et al. Effects of time and watershed characteristics on the concentration of Cryptosporidium oocysts in river water[J]. Applied and Environmental Microbiology, 1991, 57(10): 2790-2795.
    [95] LeChevallier M W, Norton W D, Lee R G. Occurrence of Giardia and Cryptosporidium spp. in surface water supplies[J]. Applied and EnvironmentalMicrobiology, 1991, 57(9): 2610-2616.
    [96] Finch G R, Black E K, et al. Ozone inactivation of Cryptosporidium parvum in demand-free phosphate buffer determined by in vitro excystation and animal infectivity[J]. Applied and Environmental Microbiology, 1993, 59(12): 4203-4210.
    [97] Finch G R, Black E K, et al. Comparison of Giardia lamblia and Giardia muris cyst inactivation by ozone[J]. Applied and Environmental Microbiology, 1993, 59(11): 3674-3680.
    [98] Smith H V, Girdwood R W, Patterson W J, et al. Waterborne outbreaks of Cryptosporidiosis[J]. The Lancet, 1988, 332(8626): 1484.
    [99] MacKenzie W R, Hoxie N J, Proctor M E, et al. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply[J]. New England Journal of Medicine, 2004, 331(3): 161-167.
    [100] Pouillot R, Beaudeau P, Denis J B, Derouin F. Cryptosporidium study group A quantitative risk assessment of waterborne cryptosporidiosis in France using second-order Monte Carlo simulation[J]. Risk Analysis, 2004, 24 (1): 1-17.
    [101] Bruce W F, Michael J. B, Jacquelin M R. Giardiasis surveillance-United States, 1992-1997[J]. Morbidity and Mortality Weekly Report CDC Surveillance Summary, 2000, 49(1): 1-13.
    [102]金云霄,张立成,傅金祥,等.介水隐孢子虫病的防治措施与方法[J].给水排水,2005,31(4):42-45.
    [103] Arrowood M J, Sterting C R. Isolation of Cryptosporidium oocysts and sporozoites using discontinuous sucrose and isopycnic percoll gradients[J]. Journal of Parasite. 1987, 73(2): 314-319.
    [104]徐前明.人隐孢子虫的分离和检测及其抗原P23表位疫苗的构建(D).广州:华南农业大学. 2009:25-26.
    [105]黄君礼.二氧化氯分析技术[M].北京:中国环境科学出版社. 2000: 21-30.
    [106] Bader H, Hoigne J. Determination of ozone in water by the indigo method[J]. Water research. 1981. 15(4): 449-456.
    [107] Khalid M Z, Bhatti I A, Bhatti H N, Sheikh M A. Kinetics of Microbial Inactivation by UV-Disinfection in Water Treatment[J]. Journal of the Chemical Society of Pakistan. 2008, 30(3): 363-367.
    [108] Campbell A, Robertson L, Smith H. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Applied and Environmental Microbiology, 1992, 58(11): 3488-3493.
    [109] McGuigan K G, Mendez-Hermida F, Castro-Hermida J A. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water [J]. Journal of Applied Microbiology, 2006, 101(2): 453-463
    [110] Yao K S, Wang D Y, Yan J J, Yang L Y, Chen W S. Photocatalytic effects of TiO_2/Fe thin film irradiated with visible light on cellular surface ultrastructure and genomic DNA of bacteria[J]. Surface and Coatings Technology, 2007, 201(15): 6882-6885.
    [111] Montemayor M, B Galofre, et al. Comparative study between two laser scanning cytometers and epifluorescence microscopy for the detection of Cryptosporidium oocysts in water[J]. Cytometry Part A, 2007, 71A(3): 163-169.
    [112] Kevin R J, Peter M. Neural network models of Cryptosporidium parvum inactivation by chlorine dioxide and ozone[J]. Environmental. Engineering. Science, 2007, 6: 477-482.
    [113] Fox K R, et al. Milwaukee cryptosporidiosis outbrea: investigation and recommendations[J]. AWWA, 1996, 9: 87-94.
    [114] Fernando M H, Elvira A M, et al. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO_2[J]. Journal of Photochemistry and Photobiology B: Biology ,2007, 88(9): 105-111.
    [115] Joaquin Q, Caridad S A, Catalina A, Efficacy of Two Peroxygen Based Disinfectants for Inactivation of Cryptosporidium parvum Oocysts [J],Applied and Environmental Microbiology, 2006, 71(5): 2479-2483.
    [116] Reinoso R, Becares E, Smith H V. Effect of various environmental factors on the viability of Cryptosporidium parvum oocysts[J]. Journal of Applied Microbiology, 2008, 104(4): 980-986.
    [117]黄侠,徐梅倩,冯耀宇,等.分子生物学技术在隐孢子虫研究中的应用[J].中国兽医寄生虫病, 2006,14(3): 36-41.
    [118] Smith H V, Nichols R. Cryptosporidium: Detection in water and food[J]. Expermental Parasitology. 2009, 123(4): 1-19.
    [119] Reinoso R, Becares E, Smith H V. Effect of various environmental factors on the viability of Cryptosporidium parvum oocysts[J]. Journal of Applied Microbiology, 2008, 104(4): 980-986.
    [120] Lobo M L, Xiao L, Antunes F, et al. Occurrence of Cryptosporidium and Giardia genotypes and subtypes in raw and treated water in Portugal[J].Letterin Applied Microbiology. 2009, 48(6): 732-737.
    [121] Xiao L, Feng Y. Zoonotic Cryptosporidiosis[J]. FEMS Immunol Med Microbiol, 2008, 52(3): 309-323.
    [122] Stark D, Aassab S E, Barratt J L N, et al. Evaluation of multiplex tandem Real-Time PCR for detection of Cryptosporidium spp, Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis in clinical stool samples. Journal of Clinical Microbiology. 2011, 49(1): 257-262.
    [123]穆效群,马铃,谭壮生,等.氯化消毒对中水遗传毒性的影响[J].毒理学杂志,2008,22(2):137-140.
    [124] Falabi J A, Gerba C P, Karpiscak M M. Giardia and Cryptosporidium removal from waste-water by a duckweed (Lemna gibbal) covered pond [J]. Letters in Applied Microbiology, 2002, 34(5): 384-387.
    [125] Fernando M H, Elvira A M, et al. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst UV/TiO_2[J]. Journal of Photochemistry and Photobiology B: Biology, 2007, 88(2): 13-18.
    [126] Sun X B, Cui F Y, Zhang J X. Inactivation of Chironomid larvae with chlorine dioxide[J]. Journal of Hazardous Materials, 2007, 142(1-2): 348-353.
    [127] Li J W, Xin Z T, Wang X W, et al. Mechanisms of inactivation of hepatitis A virus in water by chlorine dioxide[J]. Water Research.2004. 38(6): 1514-1519.
    [128] Wickramanayake G B, Rubin A J, Sproul O J. Inactivation of Giardia lamblia Cysts with ozone[J]. Applied and Environmental Microbiology, 1984, 48(4): 323-329.
    [129]张青松,高乃云,陈国光,等.贾第虫与隐孢子虫与饮用水浑浊度的关系[J],哈尔滨工业大学学报,2008,40(6):985-989.
    [130] Giovanni W, Tim C, Honorine D. et al. Structural and Biochemical Alterations in Giardia lamblia Cysts Exposed to Ozone[J]. Journal of Parasitology, 2002, 88(6): 1100-1106.
    [131] HoignéJ, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in waterⅢ: inorganic compounds and radicals [J]. Water Research. 1985, 19(8): 993-1004.
    [132]李海燕,曲久辉,康艳.饮用水中DBP的臭氧氧化效能与影响因素[J],环境化学, 2004,23(3):278-282.
    [133] Jason L R, Jae H K, Benito C V, et al. Role of Disinfectant Concentration and pH in the Inactivation Kinetics of Cryptosporidium parvum Oocysts with Ozone and Monochloramine. Environmental Science Technology[J]. 2001, 35(13): 2752-2757.
    [134]赵雷,马军,孙志忠.无机离子对臭氧氧化降解水中痕量硝基苯效果的影响[J],环境科学,2006,27(5):924-929.
    [135] Sorensen M, Frimmel F H. Photoche-mical degradation of hydrophilic xenobiotics in the UV/H_2O_2 process: influence of nitrate on the degradation rate of EDTA, 2-amino-1-naphthalene sulfonate, diphenyl-4-sulfonate and 4, 4’-diaminostilbene-2, 2’-disulfonate[J]. Water Research. 1997, 31(11): 2885-2891.
    [136]赵雷,马军,孙志忠.无机离子对催化臭氧化降解水中硝基苯效果的影响[J].环境科学. 2007, 28(5):921-925.
    [137] Jason W R, Jack S, Geli G, et al. Calcium efflux is essential for bacterial survival in the eukaryotic host[J]. Molecular Microbiology. 2008, 70(2): 435-444.
    [138] Susan L B, David J W, Mark D S, et al. Inactivation of Cryptosporidium parvum oocyst infectivity by disinfection and sterilization processes[J]. The American Society for Gastrointestinal Endoscopy. 1999, 49(5): 605–611.
    [139] Anzai K, Kunitaka O, Goto Y, Yamamoto H, Ozawa T. Oxidation dependent changes in the stability and permeability of lipid bilayers[J]. Antioxid Redox Signal. 1999, 1(3): 339-347.
    [140] Wolfe R L, Stewart H, Scott K N, McGuire M J. Inactivation of Giardia muris and indicator organisms seeded in surface water supplies by peroxone and ozone[J]. Environmental Science and Technology. 1989, 23(6): 744-745.
    [141] Farooq S, Chian E S K., Engelbrecht R S. Basic Concepts in Disinfection with Ozone. Water Pollution Control Federation. 1977, 49(8): 1818-1831.
    [142] Guarino A, Canani R B, Pozio E, Terracciano L, Albano F, Mazzeo M. Enterotoxic effect of stool supernatant of Cryptosporidium-infected calves on human jejunum[J]. Gastroenterology. 1994, 106(1): 28-34.
    [143] Shields J M, Hill V R, Arrowood M J, Beach M J. Inactivation of Cryptosporidium parvum under chlorinated recreational water conditions[J]. Journal of Water and Health. 2008, 6(4): 513-520.
    [144] Imlay J A, Linn S. DNA damage and oxygen radical toxicity[J]. Science. 1987,240(4857), 1302-1309.
    [145] Lu M C, Chen J N, Chang C P. Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton's reagent[J]. Chemosphere, 1997, 35(10): 2285-2293.
    [146] Liao C H, Kang S F, Wu F A. Hydroxyl radical scavenging role of chlorideand bicarbonate ions in the H_2O_2/UV process[J]. Chemosphere, 2001, 44(5): 1193-1200.
    [147]范小江,唐建军,邹源,等. TiO_2可见光催化的研究进展[J].应用化工,2008,37(10):1221-1225.
    [148] Hijnen W A M, Beerendonk E F, Medema J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review[J]. Water Research, 2006, 40(1): 3-22.
    [149] Goff L L, Khaldi S, Favennec L, et al. Evaluation of water treatment plant UV reactor efficiency against Cryptosporidium parvum oocyst infectivity in immunocompetent suckling mice[J]. Journal of Applied Microbiology. 2010, 108(3): 1060-1-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700