用户名: 密码: 验证码:
腹前外侧壁跨区穿支皮瓣的应用解剖及3D可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     皮瓣的临床研究与应用主要可以分为四个阶段:在20世纪50年代以前,主要是带蒂转移的随意型皮瓣;20世纪50~60年代出现了肌瓣和轴型皮瓣;70年代随着显微外科技术的诞生及发展,临床出现了吻合血管的游离皮瓣、肌皮瓣和肌骨皮瓣;80年代以来,皮瓣的临床应用得到空前的发展,相继开发了主干动脉皮瓣、逆行岛状皮瓣、远端蒂皮瓣、筋膜皮瓣、肌间隔血管皮瓣、静脉皮瓣、真皮下血管网皮瓣、皮神经浅静脉营养血管皮瓣、穿支皮瓣等。
     穿支皮瓣(perforator flap)是20世纪80年代随着精细的显微手术器械的发展与临床的实际需要而出现的一种新型皮瓣,是显微外科皮瓣移植的新发展。Stepanov于1980年首次报道了穿支皮瓣的临床应用,但由于原文是俄语,当时并未引起显微、整形外科界同仁广泛的注意。1984年,我国解剖学者沈怀亮在《中国临床解剖学杂志》上报道了“臀区肌皮穿支”的定位定量研究结果,并明确指出:臀上动脉和臀下动脉穿支是臀区皮肤的主要血供来源,可以考虑以其穿支血管为轴设计皮瓣。然而,遗憾的是由于当时技术与设备条件的限制,其报道未引起业界的重视。Kroll等于1988年报道了以肌皮穿支血管为蒂的转移皮瓣。Koshima等于1989年报道了以腹壁下动脉肌皮穿支为蒂的皮瓣来修复口底及腹股沟部的皮肤软组织缺损。该技术不损伤深部的腹壁下动脉,不携带腹直肌,切取后皮瓣较薄,修复效果完美。直到这些手术方式报道后,才使整形外科医生们开始认识到肌肉并不是维持皮肤组织存活的必要成分,较为细小的穿支血管也可以单独作为血管蒂,用来供养一定的组织量,而且可以取得很好的临床修复效果,于是整形外科领域真正迎来了穿支皮瓣的时代。
     然而,单纯的穿支皮瓣通常仅以管径较细小的肌皮穿支或肌间隔穿支为蒂取瓣,因此供皮面积相对偏小。随着现代工农业的发展及环境的变化,交通意外伤、重度烧伤、严重皮肤撕脱伤、恶性肿瘤等创伤或肿瘤患者越来越多。这些患者往往伴有大面积的皮肤及其他组织的缺损,而对创面早期、良好覆盖是外科修复的重要环节,因此,对供区损伤小的跨区超大穿支皮瓣的切取成为治疗修复的关键。
     腹前外侧壁的皮肤通常比较松弛,面积宽阔,部位相对隐蔽,加之此处脂肪层通常较身体其他部位丰富,这些特性使得临床较易获取大面积、大体积的跨区皮瓣。腹前外侧壁跨区皮瓣最为典型的临床应用是乳房再造。Holmstrom等于1979年首次报道了应用下腹部游离横行腹直肌肌皮瓣(TRAM皮瓣)再造乳房。Hartrampf等于1982年亦成功地应用带蒂的TRAM皮瓣进行乳房再造。随着研究的深入及技术的进步,Blondeel及Allen等均于1994年报道应用腹壁下动脉穿支皮瓣(DIEP皮瓣)成功地进行乳房再造。自此,掀起了DIEP皮瓣应用于临床乳房、阴道、阴茎再造及头颈部、上肢、下肢缺损修复的近20年高潮,也顺理成章地造就了DIEP皮瓣成为跨区穿支皮瓣在临床应用的杰出代表。与临床轰轰烈烈的各种皮瓣术式改良的研究和应用形成鲜明对比的是有关皮瓣解剖学基础的研究,尤其是跨区皮瓣理论基础的研究相对匮乏,为此,我们对腹前外侧壁穿支皮瓣的血供及其伴行神经进行了详细的研究,以期为临床腹前外侧壁跨区皮瓣的切取提供解剖学参考资料。
     目的:
     1.通过对腹前外侧壁穿支体(perforasome)及其伴行神经的应用解剖和Mimics三维重建研究,为临床在腹前外侧壁切取穿支皮瓣或复合皮瓣提供应用解剖基础;
     2.探索穿支体及其吻合血管(choke vessels)的三维形态学特征,为腹前外侧壁跨区穿支皮瓣的设计提供解剖学基础;
     3.探索乳胶-氧化铋微血管灌注技术中灌注液的最佳配比方案,为微血管形态学研究提供一种新的安全便捷的方法。
     方法:
     1.腹前外侧壁跨区穿支皮瓣的应用解剖及3D可视化研究
     福尔马林液浸泡的防腐固定女性标本5具,行腹前外侧壁层次解剖。新鲜自愿捐献的成人整尸10具(男性8具,女性2具),行动脉明胶-氧化铅整体灌注、X线摄影、CT扫描及三维重建、层次解剖。明胶-氧化铅溶液配方:明胶5g,40℃温水100m1,氧化铅100g,即溶液与造影剂的容重比为1:1。灌注液用量:20~30ml/kg.
     腹前外侧壁跨区穿支皮瓣的应用解剖及3D可视化研究主要技术路线图如下:
     1.1腹前外侧壁跨区穿支皮瓣的应用解剖
     标本灌注前,先行螺旋CT扫描,灌注后,再行整尸X线摄片和螺旋CT扫描。CT扫描后对腹前外侧壁行层次解剖,经外科平面完整地截取腹前外侧壁皮肤及皮下组织。在腹外斜肌筋膜和腹直肌鞘的浅层,由外侧向内侧进行剥离。在近腋中线至锁骨中线附近剥离时,应注意由腹外斜肌深面浅出的肋间后(肋下)动、静脉发出的1-3排外侧支及其伴行的肋间(下)神经外侧皮支。剥离至腋前线附近时,注意旋髂浅动脉、腹壁浅动脉皮穿支,观测并标记后切断。继续向内侧解剖,当剥离至半月线邻近腹直肌鞘的外侧缘时,谨慎剥离,注意仔细解剖和保护穿过腹直肌前鞘的腹壁下动、静脉及腹壁上动、静脉的外侧排穿支和内侧排穿支及其伴行神经,在切断各穿支前做好标记。依此方法逐层解剖腹直肌、腹外斜肌、腹内斜肌、腹横肌及腹膜外组织并行X线拍摄。重点解剖观测外径>0.5mm的穿支,观测皮动脉的来源、数量、管径、走行、分布密度、营养区域及其跨区相互吻合的情况等。
     统计方法:所得数据利用SPSS13.0软件进行描述性统计学分析,结果以(x±s)的形式表示。
     1.2腹前外侧壁穿支体的三维重建及跨区皮瓣设计
     1.2.1未灌注造影剂前的骨骼标本三维重建
     灌注造影剂氧化铅后的骨骼显影受动脉血管造影剂显影的影响,骨骼重建时分割难度较大。为解决这一问题,可于未灌注造影剂前先进行一次CT扫描,单独用于骨骼重建,而后将灌注造影剂后的标本重建血管、皮肤、皮下组织及部分骨性标志,再将单独重建的骨骼标本与灌注后重建的骨骼进行配准,这样就可以达到即清晰显示重建血管,又完美显示重建骨骼的目的。
     将CT扫描所得Dicom格式图片资料导入个人计算机,利用Mimics分割(Segmentation)工具,通过设置恰当的骨骼阈值,进行阈值分割(Thresholding),利用区域增长(Region Growing)工具对经分割后产生的新面罩(Mask)选择需要的连续骨骼结构,然后再对经区域增长后的新Mask进行3D重建(Calculate3D from Mask)。最后将3D重建的骨骼模型以STL格式文件导出备配准时用。本课题主要重建了与腹前外侧壁穿支血管有关的骨盆、股骨上段及部分胸廓前壁。
     利用Mimics软件进行3D重建时,必须注意设置除当的阈值提取组织,这一点至关重要。基于灰度值的阈值分割提取,使不同的组织能够轻松的从原始的二维图像中独立出来。对提取对象的编辑均在蒙罩(Mask)的层面上进行,二维图像本身不会发生任何改变,同时支持再编辑。断层图片中,不同组织的灰度值不同,所以可以通过设置不同的阈值来提取相应的组织。着色的象素其灰度值落在阈值之间,故其被提取。准确的设置阈值是提取组织的关键,阈值提取组织的时候,可以通过看图,检查提取的组织是否合适。阈值左区间设置得太低,则会提取许多噪点,影响3D编辑时分割的难度和准确度;阈值左区间设置得太高,则会有许多骨组织丢失,无法完整重建所需骨骼结构。Mimics会将提取的象素存放在一个Mask里,同时Mimics提供一系列的工具编辑修改Mask,从而提取所需的组织。编辑好的Mask可以用来生成3D模型,这样就实现了2D断层扫描图片到3D实体的转换。
     1.2.2灌注造影剂后相关结构的3D重建
     1.2.2.1通过快速直接体绘制(Volume Rendering, VR)方法重建腹前外侧壁穿支血管
     鼠标左键点击Mimics软件3D视窗的右侧的"Show/hide the volume rendering"(显示或隐藏体绘制)工具按钮,稍等一会后在3D视窗内即可观察到经快速直接体绘制方法获得的血管3D重建图片。
     1.2.2.2通过动态重建(Dynamic Reconstruction, DR)重建相关的骨骼、腹前外侧壁穿支血管、皮肤及浅筋膜
     Ⅰ相关的骨骼重建
     灌注造影剂后的骨骼重建无法像未灌注造影剂之前骨骼重建那样相对简单。因为骨骼显影受血管造影剂显影的影响,很难直接用阈值分割的方法直接重建骨骼。需要利用菜单栏内的分割(Segmentation)工具按钮的多层编辑(Multiple Slice Edit)工具条,先将轴视图全部图层数据所有灰度值擦除(Remove),再在各轴视图层面上根据骨骼的形状画出骨骼轮廓,选择添加(Add),然后对添加的新Mask进行3D重建,即可建立灌注造影剂后的部分骨骼模型。为减小手工绘制各层面骨骼外形轮廓的工作量,仅选择画出与腹前外侧壁穿支血管相关的标志性层面进行部分骨骼重建。
     然后,导入保存好的STL格式文件(File/Import STL...)骨骼模型,全屏状态下在3D视窗内通过移动、旋转等操作将灌注造影剂前重建的骨骼与灌注造影剂后重建的部分骨骼进行配准,利用经配准好的骨骼与准备重建的穿支血管等模型组合立体显示,这样就可以同时完美、清晰地显示重建的血管及骨骼结构。
     Ⅱ腹前外侧壁穿支血管的动态重建
     为了减少计算机在3D动态重建中的工作量及手工提取单一穿支血管的编辑时间,很有必要首先对导入Mimics软件的CTA数据进行剪切(Crop Project),对腹前外侧壁范围稍加扩大选择即可。
     设置恰当的阈值提取血管非常重要。恰当的阈值是清晰显示皮肤穿支血管吻合的必要前提条件。若阈值低点设置过高,主要只能显示主干血管及少量粗大穿支,无法显示大多数穿支及其吻合,但此种情况3D编辑相对简单;阈值低点设置过低,将导致图像内噪点过多,重建后很难用擦除工具擦掉干扰的噪点,提取单条穿支血管重建的难度很大。经反复实验、对比,可将最低阈值设置为350~450,阈值最高不限,这样就可以清晰显示腹前外侧壁各穿支血管及其跨区吻合情况。
     将轴视图移至剪切后的图像顶层,利用多层编辑(Multiple Slice Edit)的擦除(Remove)功能手工擦掉除胸壁下部、腹前外侧壁及股部上部以外的所有无关组织结构的灰度值(注意保留胸廓内动脉、肋间后动脉、腹壁下动脉、腹壁浅动脉、旋髂浅动脉、旋髂深动脉主干及其分支的分布区域,并保留发出各分支的一小段髂外动脉及股动脉),然后对擦除无关组织后的新Mask进行重建。擦除无关组织结构的操作非常必要,这样一方面可以减少重建时计算机的工作量,减少重建时的等待时间,另一方面,更为重要的是,这样可以很大程度上减少干扰因素,从而减小3D编辑时的难度。否则,影响因素太多重建后根本无法提取分离出需要的穿支及其源血管。
     选择阈值低点较高(如2976)的动态重建时3D编辑相对简单,但仅可以重建出血管主干及很少部分粗大的穿支血管。利用菜单栏内的分割(Segmentation)按钮的3D编辑(Edit Mask in3D)选项,在轴视图及冠状面视图中调整边界线位置,保证3D视图中重建的模型均在界线内。放大3D视图至整个屏幕,向多个方向旋转图像,利用3D编辑的套索(Lasso)及擦除(Remove)工具逐步去除多余的结构或噪点。操作中应注意,虽然3D编辑在3D图像上操作,但实际编辑的效果体现在平面Mask上,因此在对3D图像编辑时,必须同时点击到其对应的平面Mask上。关闭3D编辑工具条后,需要对编辑好的对应的平面Mask进行重建,即可获得阈值低点设置为2976时所有腹前外侧壁的血管主干及其少量穿支的3D模型。复制该平面Mask,通过3D编辑的擦除可分别提取建立腹前外侧壁单个血管主干的3D模型,并可以进行分色处理。
     选择阈值低点较低(如400)的动态重建时3D编辑较为复杂,但可以清晰显示各穿支血管及其跨区吻合情况。重建的方法与设置高阈值时相同,只是3D编辑中擦除无关结构或噪点的难度加大,同时需要具备腹前外侧壁血管分布概况的解剖学知识。
     在3D重建编辑过程中一定要注意经常保存,这点尤其在做穿支血管重建时非常必要,否则辛辛苦苦做了很久,在重建时可能因为操作方法不当或运算量过大等原因导致死机,强行关闭Mimics程序甚至需要强行关机后所有未保存数据都会丢失。
     Ⅲ腹前外侧壁皮肤、浅筋膜的重建
     将阈值设置分别调整为皮肤或浅筋膜的阂值范围,各建立新Mask,在轴视图上擦除无关结构的灰度值,然后分别3D重建。若重建的皮肤或浅筋膜有断续现象可进行包裹(Tools/Wrap)操作,使之连续光滑。
     2.乳胶-氧化铋微血管灌注技术的研究
     “明胶-氧化铅灌注技术”被誉为血管灌注技术的“金标准”,但应用此方法研究血管形态亦有不足之处:①铅是对人体及环境毒性最大的重金属之一;②明胶属于热填充剂,灌注时须将温度控制在40℃左右,操作起来较为麻烦;③明胶凝固后弹性差,血管解剖时易拉断。本实验造影剂使用与氧化铅具有相近密度、相似显影效果,但毒性很低的绿色重金属氧化物—氧化铋代替氧化铅;悬浮剂使用常温填充剂、具有较高悬浮性能及超高弹性的乳胶代替明胶,进行大耳白兔皮肤血管的灌注效果研究,从而探索出乳胶-氧化铋微血管灌注技术中灌注液的最佳配比方案,以期为微血管形态学研究提供一种新的安全便捷的方法。
     2.1血管灌注模拟实验
     取用输液头皮针(针头0.6mm)30条,分为5组,每组3条。调整乳胶浓度,分别推注容重比均为1:1的乳胶-氧化铅或乳胶-氧化铋灌注液,测试不同浓度乳胶液对造影剂的悬浮效果。
     2.2探求乳胶最佳稀释比例
     将12只大耳白兔随机分为4组,每组3只。各组灌注液中含60%天然乳胶原液的乳胶溶液与造影剂氧化铋的容重比均为1:1,调整乳胶用氨水的稀释比例,用以测试悬浮性能最佳时的乳胶稀释比例。
     2.3探求乳胶、氧化铋最佳配比
     将9只大耳白兔随机分为3组,每组3只。各组灌注液中含60%天然乳胶原液的乳胶溶液浓度不变,调整造影剂氧化铋的比例,用以测试乳胶、氧化铋最佳配比。
     乳胶-氧化铋微血管灌注技术的研究主要技术路线图如下:
     结果:
     1.腹前外侧壁穿支体的形态
     (1)腹壁下动脉内侧排穿支位于腹直肌的内1/3,外侧排穿支位于腹直肌的外1/3。这些穿支主要分布在脐上一个腱划至脐下8.0cmm范围之内,尤其是在脐下4.0cm范围内或脐旁两侧,有较恒定的外径≥0.8mm的穿支,并且这些穿支均有神经伴行。X线造影显示DIEP在腹前正中线两侧存在丰富的横行真性吻合支。本文15具(30侧)标本中,观测到外径>0.5mm的穿支总数为182支,平均每侧约6支。穿支蒂长为(2.4±0.7)cm,外径为(0.7±0.2)mm,单穿支供血面积(32.9±14.8)cm2。内侧排穿支是腹壁下动脉穿支的优势血管。
     (2)腹壁上动脉在腹直肌的止点处发出粗大的穿支(外径≥1.0mm)营养该处皮肤。外径>0.5mm的穿支总数为142支,平均每侧约5支。这些穿支主要于第6肋间隙至腹直肌第1个腱划处穿出。穿支蒂长为(2.5±1.5)cm,外径为(0.6±0.3)mm,单穿支供血面积(34.4±8.9)cm2。
     (3)腹壁浅动脉以直接皮穿支形式分布于腹前外侧壁下部外侧的皮肤,该动脉变异较大。本文15具(30侧)标本中,单支型25例、双支型5例。该血管外径变异较大,当出现优势腹壁浅动脉时,其外径可达2.0mm,主干在浅筋膜内走行11.Ocm后分为树枝状的内、外侧分支。穿支蒂长为(8.6±3.3)cm,外径为(1.3士0.5)mm,单穿支供血面积(116.5±44.1)cm2。
     (4)旋髂浅动脉通常分出浅支和深支。旋髂浅动脉浅支又可分为股浅支和髂浅支。旋髂浅动脉浅支外径可达1.2mm,以直接皮穿支供应髋关节屈侧皮肤,营养面积变异较大。旋髂浅动脉深支在缝匠肌外侧缘处穿出深筋膜进人浅筋膜,在腹股沟区前外侧部分发出数支细小的筋膜皮穿支。穿支蒂长为(8.1±2.0)cm,外径为(1.1±0.3)mm,单穿支供血面积(51.1±18.3)cm2。
     (5)旋髂深动脉分为3段:腹股沟段、髂嵴内段和髂嵴上段。根据该动脉分支分布的区域,可将其分支分为:腹壁肌支、髂嵴支和肌穿支。旋髂深动脉各段均可发出腹壁肌支,其中腹股沟段和髂嵴内段发出的肌支粗大。各段腹壁肌支发出肌穿支至腹前外侧壁皮肤,分布于平脐平面以下腹前外侧壁下外侧部的皮肤。其中,髂嵴上段发出的1-3支肌穿支,位于腋中线附近,平髂前上棘上方(5.5±0.6)cm范围内,与肋间后(或肋下)动脉、腰动脉、髂腰动脉的肌穿支跨区相吻合,有重要的临床应用价值。由旋髂深动脉髂嵴内段发出的3-6支外径为0.3-0.7rmm的髂嵴支,经腹内斜肌深层筋膜与腹横肌浅层筋膜之间的骨纤维管内走向髂嵴,近直角穿入髂嵴内唇,营养腋中线以前的髂嵴前部及其浅层皮肤。这些髂嵴支有着重要的临床意义。旋髂深动脉肌穿支蒂长为(2.9±0.9)cm,外径为(0.6±0.2)mm,单穿支供血面积(42.8±13.7)cm2。
     (6)下6对肋间后动脉及肋下动脉(7-12对)的外侧支在腋中线附近穿腹外斜肌筋膜浅出于皮下,并即刻分出前支和后支。后支在浅筋膜内向背部走行;前支则与同名静脉及相应肋间神经外侧皮支伴行,由腋中线向前下方走行,阶段性分布于腹前外侧壁外侧部皮肤。下位肋间后动脉及肋下动脉外侧支的肌穿支平行于背阔肌前缘纵行排列成1-3排,第1排在腋中线附近浅出于皮下,第2排在腋前线附近浅出,第3排在锁骨中线附近浅出。以第1排穿支数量最多,平均5支;管径最粗,外径可达1.0mm以上,也最为恒定。穿支蒂长为(3.0±1.0)cm,外径为(0.7±0.2)mm,单穿支供血面积(37.8±11.7)cm2。
     (7)阴部外动脉的上支向上越过耻骨嵴以直接皮穿支形式分布于耻骨联合附近皮肤。穿支蒂长为(7.1±1.8)cm,外径为(0.8±0.3)mm,单穿支供血面积(19.6±5.8)cm2。
     2.腹前外侧壁穿支血管的3D重建及跨区穿支皮瓣设计
     (1)快速直接体绘制的重建方法(VR)可快速、粗略地显示出腹前外侧壁主要穿支的位置与源动脉。
     (2)动态重建方法(DR)获取穿支血管的三维图像,较高的阈值设置可分割及重建血管主干及少量粗大的穿支;适当的较低阈值设置,可以对单一穿支血管进行提取、建模、分色处理,同时相邻穿支之间还可以自由组合,清晰显示跨区穿支之间的三维形态、位置及吻合情况。
     (3)通过恰当的阈值设置获得未灌注造影剂前的骨盆、股骨上段及胸廓前壁3D重建模型,与经多层编辑所获得的部分对应骨骼进行了配准。同时重建获得了腹前外侧壁皮肤及浅筋膜。
     (4)利用Mimics软件VR法及DR法获得的腹前外侧壁穿支血管及其相关结构的3D模型,可以方便、快速、直观的进行跨区穿支皮瓣的自由组合设计,为临床皮瓣术前准备提供了直观可靠、方便有益的数字解剖学参考资料。尤其是经DR法可以获取单条穿支血管体及其源血管等相关结构,经分色处理后,非常容易在3D条件下实现跨区穿支血管的自由组合,从而为临床跨区穿支皮瓣的设计提供了更多的选择余地。
     3.乳胶-氧化铋微血管灌注技术中灌注液的最佳配比方案
     (1)血管灌注模拟实验:大体沉淀情况观察、注射器推出情况及X线造影均可发现随着悬浮剂乳胶液的稀释,悬浮力越来越小。
     (2)悬浮剂乳胶液与造影剂氧化铋容重比不变的情况下,随着悬浮剂乳胶液用氨水的稀释比例增加,大耳白兔皮肤穿支血管显影效果越来越差。
     (3)含60%乳胶原液的乳胶溶液浓度不变,改变乳胶与氧化铋容重比时,观察大耳白兔皮肤穿支血管显影效果可以发现,乳胶与氧化铋容重比为1:1时即可以达到最佳比例。
     结论:
     1.可靠的深部血管蒂、皮下血管吻合网的易扩张性、腹壁皮肤松弛同时组织含量丰富等特点是腹壁下动脉、腹壁上动脉及肋间后动脉外侧支的肌穿支血管具有获取大面积跨区穿支皮瓣的优越性。
     2.腹壁下动脉内侧排穿支为优势穿支; DIEP皮瓣设计时首选近脐穿支;DIEP皮瓣具备切取跨越正中线横行跨区穿支皮瓣的解剖学基础。
     3.旋髂深动脉腹股沟段和髂嵴内段发出的粗大肌支、髂嵴内段发出的稳定的髂嵴支及终末段的发出的肌穿支是临床设计旋髂深动脉穿支嵌合组织瓣的重要解剖学基础。
     4.腹壁浅动脉以直接皮穿支形式分布于腹前外侧壁下部外侧的皮肤,当确认具有优势腹壁浅动脉时,以该血管为蒂的穿支皮瓣是很好的术式选择。
     5.利用Mimics软件VR及DR方法可清晰、完美实现腹前外侧壁穿支血管3D建模及跨区穿支体间的自由组合。Mimics三维重建为腹前外侧壁跨区穿支皮瓣的设计提供了方便、直观、可靠的数字解剖学基础。
     6.乳胶-氧化铋微血管灌注技术是一种显影良好、安全便捷的微血管灌注方法。乳胶-氧化铋微血管灌注技术中乳胶与氧化铋的最佳配比是:100ml乳胶+100g氧化铋(即容重比为1:1)。
     本研究创新点:
     1.灌注造影剂前、后两次CT扫描标本,将两次重建的骨骼进行配准后,可以同时完美、清晰地显示重建的血管树及骨骼;
     2.传统解剖与数字解剖相结合,解决了血管造影与三维重建不能显示小神经之不足;
     3.对腹前外侧壁穿支进行了精确地3D定位、定量分析;
     4.清晰地展示了腹前外侧壁穿支间的吻合血管(choke vessels),为特色组织瓣的设计提供了解剖学基础,如:DIEP皮瓣的横行跨区(跨越腹前正中线),旋髂深动脉穿支嵌合组织瓣等。
     5.优化了乳胶-氧化铋微血管造影技术
Background
     Clinical research and application of skin flaps can be mainly divided into four stages:Before the twentieth Century50's, they were mainly random pattern skin flap transferred with pedicle; In twentieth Century50-60years, muscle flap and axial pattern skin flap appeared; Seventies of last century, with the birth and development of microsurgical technique, the free flap tallied the blood vessels, musculocutaneous flap and musculoskeletal skin flap came to use; since1980s, clinical application of skin flaps got unprecedented development, the main artery flap, reverse island skin flap, distal pedicled flap, fascial cutaneous flap, muscular septal vascular flap, venous flap, subdermal vascular network flap, neurocutaneous flap pedicled with superficial vein and perforator flap are successive developed.
     In the80's in20centuries, with the development of fine microsurgical operating instrument and the actual need of clinical, perforator flap, a new type of flap occurred.It was the new development of microsurgical flap transplantation. Stepanov first reported the clinical application of perforator flap in1980. Because the original was Russian, it did not cause the micro plastic surgery industry colleagues attention at that time. In1984, China's anatomy scholar Shen Huailiang reported "buttock musculocutaneous perforator" positioning and quantitative results, and clearly pointeds out: The superior gluteal artery and the inferior gluteal artery perforators are the main blood supply of the skin in gluteal region. This perforator vessel axis may be considered for the design of flap. However, unfortunately because of the technology and equipment constraints, the report did not cause the attention of peer. The transfer flap of musculocutaneous perforator pedicle was reported by Kroll in1988. The skin flap pedicled with deep inferior epigastric artery musculocutaneous perforator was reported by Koshima in1989. The technology did not damage the deep inferior epigastric artery, and did not carry the rectus abdominis. The flap obtained was thin, and the repair effect was perfect. Until the operation modes were reported, the plastic surgeons began to recognize muscle was not necessary component for maintaining skin tissue survival. The small perforator can also be used as a vascular pedicle to support a certain amount of tissue, and the clinical repair effect is very good. So the plastic surgery field really ushered in the era of perforator flaps.
     However, the simple perforator flap was obtained pedicled with the usually only with diameter smaller musculocutaneous perforator or septocutaneous perforator flap. Therefore, the donor area is relatively small. With the development of modern agriculture and Industry, there are more and more trauma patients, such as traffic accident injury, severe burns and severe skin avulsion. These patients were often associated with a large area of skin and other tissues defects. While the early, good coverage for the wound is an important link of surgical repair. Therefore, the extended large perforator flap which has small injury to the donor site has become the key for repair.
     The skin in anterolateral abdominal wall is usually large expanses, relative concealment, and the fat layer is usually richer than other parts of the body. These characteristics make this region easy access to large area, large volume of extended flaps in clinical. The most typical clinical application of extended perforator flap in anterolateral abdominal wall is used for breast reconstruction. It was the first reported that the application of lower abdominal free transverse rectus abdominis myocutaneous flap (TRAM flap) to reconstruct the breast in1979by Holmstrom. Hartrampf successfully applied the pedicled TRAM flap for breast reconstruction in1982. Along with the research and technical progress, Blondeel and Allen successfully used deep inferior epigastric artery perforator flap (DIEP flap) for breast reconstruction in1994. Since then, a DIEP flap for clinical breast, vagina, penis reconstruction and head, neck, upper limb and lower limb defect repair reaches a climax30years. This also logically made the DIEP flap became outstanding representative of extended perforator flap in clinical application. In stark contrast to the research and application of the modified various flap with vigour and vitality is that the study on the flap anatomy, especially the theoretical basis of extended perforator flap is relatively lack. Therefore, in order to provide anatomical reference for extended perforator flap on the anterolateral abdominal wall for the clinical, we carried on research about blood supply and their acompanied nerves of the perforator flap on the anterolateral abdominal wall in detail.
     Objectives
     1. Provide applied and digital anatomical basis of acquiring extended perforator flap or compound flap for clinical use through the study of perforating vessels and acompanied nerves by applied anatomy and3D Mimics reconstruction in anterolateral abdominal wall.
     2. Design extended perforator flap of anterolateral abdominal wall by using3D reconstruction perforators.
     3. Provide a new safe and convenient method for the micrangium morphology research by exploring the best proportion of perfusion liquid latex-bismuth oxide in microvascular perfusion technique.
     Methods
     1. Applied anatomy and three dimensional reconstruction of extended perforator flaps in anterolateral abdominal wall
     5Formalin soaked specimens were used and underwent red latex injection and dissected layer by layer in anterolateral abdominal wall. The systemic arteriography using the modified mixture of lead oxide-gelatine was performed on10fresh adult voluntarily donated cadavers (mail8, female2). All of the cadavers were serially scanned by a spiral CT. Then perforates and their source arteries of anterolateral abdominal wall were3D reconstructed by Mimics. The relevant information of perforates were also observed by layers dissection combined with X-ray examination. Lead oxide-gelatine solution formula:gelatine5g,40℃warm water100ml, lead oxide100g. That was volume to weight ratio of the solution and contrast agent is1:1. Perfusion fluid volume:20-30ml/kg.
     1.1Applied anatomy of extended perforator flap in anterolateral abdominal wall
     Before perfusion, spiral CT scanning was underwent; after perfusion, and then the whole body X-ray and spiral CT scanning was done. Next anterolateral abdominal wall was dissected layer by layer. The skin and subcutaneous tissue of anterolateral abdominal wall were full intercepted on surgical plane. The cadavers were striped in the superficial layer of the external abdominal oblique fascia and the rectus sheath from lateral to medial. Near the posterior axillary line to the anterior axillary line, attention should be paid to1-3columns posterior intercostal (subcostal) vessels and their accompanied lateral branches of intercostal (subcostal) nerve pireing through the external abdominal oblique to superficial layer. Near the anterior axillary line, attention should be paid to the perforators of superficial circumflex iliac artery and superficial epigastric artery. The perforators should be observed, measured and marked off, then cut off. The dissection was continued medially. When close to the semilunar line near the lateral edge of rectus abdominis sheath, it should be carefully dissected. The lateral row perforators and medial row perforators of deep inferior epigastric artery, vein and superior epigastric artery, vein, and their acompanied nerves should be observed and preserved. They should be marked before cut. According to this method, rectus abdominis, obliquus externus abdominis, obliquus internus abdominis, the transversus abdominis and extraperitoneal organization were dissected by layers, at the same time x-ray was took. The diameter≥0.5mm perforators should be observated and dissected especially. The origin, number, diameter, route, density, nutrition area and cross regional anastomosis of cutaneous arteries were payed attention and meseaured.
     Statistical method:The data were analyzed by using SPSS13.0software in descriptive statistics analysis. Results were expressed in the form of (x±s).
     1.2Three dimensional reconstruction and flaps design of extended perforator flaps in anterolateral wall abdominal
     1.2.1The skeleton reconstruction before non-perfusion imaging agent
     After perfusion imaging agent lead oxide skeletal imagings were affected by artery angiography agent, segmentation of skeletal reconstructions was difficult. In order to solve this problem, a CT scan could be done before perfusion and the bones could be reconstructed first. Then arteries, skin, subcutaneous tissue and part bones were reconstructed after perfusion imaging agent. The two times reconstruction bones would be registered.
     The skeletal threshold should be setted appropriately, and threshold segmentation would be done by Mimics segmentation tools. Continuous skeletal structures would be selected by using region growing tool for new mask. At last "calculate3D from mask" could be done. Finally the skeletal3D reconstruction model was exported out with STL format file for registration.
     When3D reconstruction was done by using Mimics, it was a crucial point that seting the appropriate threshold to extract tissue should be paid attention to. If left interval of threshold was set too low, many noise points would be extracted. If left interval was set too high, a lot of bone tissue would be lost.
     1.2.2Related structures were reconstructed after perfusion imaging agent
     1.2.2.1The perforators of anterolateral abdominal wall were reconstructed by the fast direct volume rendering (VR) method
     3D images of vascular reconstruction could be showed by using "Show/hide the volume rendering" tool.
     1.2.2.2The perforators and other related structures of anterolateral abdominal wall were reconstructed by dynamic reconstruction (DR) method
     I Related bones were reconstructed
     Firstly, all layers data in axis view should be erased all gray value by using multiple slice edit of segmentation tools button. Secondly, the skeletal outline according to the shape of bones would be drawn in the axial view. At last, the added new Mask could be3D reconstruction. Next, the saved STL file bones could be imported to register.
     Ⅱ Perforators in anterolateral abdominal wall were reconstructed by dynamic reconstruction
     In order to reduce the3D dynamic reconstruction workload of the computer and editing time of manual extraction of single perforator, first CTA data imported into Mimics software should be cut by "Crop Project" tool.
     It was very important to set the appropriate threshold to extract vessels. The proper threshold was the necessary precondition of clearly showing cutaneous perforators anastomosis. After repeated experiments, contrast, the lowest threshold was set to350-450.
     All the gray value of each independent organization structure should be wiped by using "Remove" tool of "Multiple Slice Edit".Then the new Mask erased irrelevant tissue could be reconstructed.
     It was relatively simple to3D editor when threshold lower bound was selected high (such as2976) to dynamic reconstruction. But only the artery trunk and a few large perforators could be reconstructed by this method. Redundant structure or noise points should be gradually removed by using the lasso and erase (Remove) tools of "Edit Mask in3D".The3D reconstruction should be done to the edited corresponding plane Mask after the3D edit toolbar was closed. All the trunks and a little big perforator's3D model of the anterolateral abdominal wall could be obtained as threshold lower bound was selected2976.
     It was relatively complex to3D editor when threshold lower bound was selected low (such as400) to dynamic reconstruction. But the perforators and extended anastomosis could be clearly shown by this method. The reconstruction methods were same as that set high threshold. Just that it was more difficult to erase independent structure or noise when3D edited. At the same time, the vascular distribution knowledge in the anterolateral abdominal wall was required.
     Ⅲ Reconstruction of the skin, superficial fascia in anterolateral abdominal wall
     The threshold settings were adjusted to the threshold range of skin or superficial fascia. The new Mask was established respectively. All the gray value of independent structure should be erased in the axial view. Then3D reconstruction was done respectively. Wrapping operation could be done if the skin or superficial fascia presented intermittent phenomenon.
     2. Study on latex-bismuth oxide micro-vascular perfusion technique
     In this experiment contrast agent bismuth oxide was instead of lead oxide. They have similar density and similar development effect. But bismuth oxide is the green heavy metal with very low toxicity.
     2.1Vascular perfusion simulation experiment
     30scalp intravenous needles (0.6mm) were divided into5groups, each group of3. Latex-lead oxide and latex-bismuth oxide (volume to weight ratio was all1:1) were injected, at the same time just adjust the latex concentration to test the suspension effect of contrast agents of different concentrations of liquid latex.
     2.2Explore the best dilution ratio of latex 12rabbits were randomly divided into4groups,3rats in each group. The volume to weight ratio of latex solution containing60%natural latex and bismuth oxide was all1:1. Just the latex dilution ratio with ammonia was adjusted to test optimal dilution ratio when the latex suspension was the best.
     2.3Explore the best ratio of latex, bismuth oxide9rabbits were randomly divided into3groups,3rats in each group. The concentration of the latex solution containing60%natural latex was constant. The ratio of bismuth oxide was adjusted to test the best ratio of latex and bismuth oxide.
     Results
     1. Morphology of perforators in the anterolateral abdominal wall
     (1) The medial row perforators of deep inferior epigastric artery are located in the medial1/3of rectus abdominis muscle, and lateral row perforators are located in the lateral1/3of the muscle. The perforators are mainly distributed from the last tendinous upper the umbilical to below the umbilicus within8.0cm, especially in the range4.0cm under umbilical or on both sides of paraumbilicus. There are constant diameter≥0.8mm perforators accompanied with nerves within this region. X-ray shows there are rich transverse true anastomoses of DIEP running over midline of anterolateral abdominal wall. The total number of observed diameter≥0.5mm perforators is182, each side about6in15(30sides) specimens of this paper. Perforator pedicle length is (2.4±0.7) cm. Perforator diameter is (0.7±0.2) mm. Single perforator supply area is (32.9±14.8) cm2. The medial row perforators are the dominant perforators of DIEP.
     (2) Superior epigastric artery sends out a big perforator (diameter≥1.0mm) in the ending point of the rectus abdominis to provide nutrition to the skin. The total number of observed diameter≥0.5mm perforators is142, each side about5in15(30sides) specimens of this paper. These perforators exite mainly located from the sixth intercostal space to the first intersectio tendinea of rectus abdominis. Perforator pedicle length is (2.5±1.0) cm. Perforator diameter is (0.6±0.1) mm. Single perforator supply area is (34.4±8.9) cm2.
     (3) Superficial epigastric artery forming direct cutaneous perforator distributes the skin in lower part of anterolateral abdominal wall. There is a large range of variability of this artery.25cases single branch type and5cases double branch type in15(30sides) specimens of this paper. The vascular diameter has a great variation. When the dominent superficial epigastric artery appears, the diameter is up to2.0mm. The main trunk running11.0cm in the superficial fascia is divided into medial and lateral branches. Perforator pedicle length is (8.6±3.3) cm. Perforator diameter is (1.3±0.5) mm. Single perforator supply area is (116.5±44.1) cm2.
     (4) Superficial iliac circumflex artery usually divided into superficial and deep branches. The diameter of superficial branch of superficial iliac circumflex artery is up to1.2mm. The superficial branch supplies flexion region skin of the hip joint by direct cutaneous perforator, and there is considerable variation in its nutrient area. Perforator pedicle length is (8.1±2.0) cm. Perforator diameter is (1.1±0.3) mm. Single perforator supply area is (55.1±18.3) cm2.
     (5) Deep iliac circumflex artery is divided into three sections:inguinal segment, inner iliac crest segment and upper iliac crest segment. According to the artery branch distribution area, its branches can be divided into three types:abdominal wall muscular branches, iliac crest branches and muscular perforators.1-3muscular perforators from upper iliac crest segment are located near the middle axillary line. They are in (5.5±0.6) cm range above anterior superior iliac spine. There is important value of clinical application of these perforators. The iliac crest branches come from deep iliac circumflex artery, diameter0.3-0.7mm, have important clinical significance. Perforator pedicle length is (2.9.±0.9) cm. Perforator diameter is (0.6±0.2) mm. Single perforator supply area is (42.8±13.7) cm2.
     (6) Lateral branches of posterior intercostal artery and subcostal artery are near the midaxillary line and pire through the external abdominal oblique fascia to subcutaneous. And instantly they send out anterior branches and posterior branches. The musclar branches of lateral branches of posterior intercostal muscle and subcostal artery is parallel to the anterior edge of latissimus dorsi longitudinal arranged in1-3rows. The first row is in the midaxillary line to subcutaneous layer. The second is in the anterior axillary line, and the third row is in the midclavicular line. Perforator pedicle length is (3.0±1.0) cm. Perforator diameter is (0.7±0.2) mm. Single perforator supply area is (37.8±11.7) cm2.
     (7) The superior branch of external pudendal artery, as direct cutaneous perforator, crosses the pubic crest and distributes in the skin near the symphysis pubis. Perforator pedicle length is (7.1±1.8) cm. Perforator diameter is (0.8±0.3) mm. Single perforator supply area is (19.6±5.8) cm2.
     2.3D reconstruction and extended flaps design of perforators in anterolateral abdominal wall
     (1) We can fast and roughly show the positions and source arteries of the main perforators in the anterolateral abdominal wall by fast direct volume rendering (VR) reconstruction method.
     (2) We can acquire three-dimensional images of perforators by dynamic reconstruction (DR) method. By seting higher threshold to segmentate and reconstruct we can obtain the arteries trunks and little large perforators. By seting appropriate lower threshold we can extract, modele and color-separated the single perforator. At the same time, we can combine the adjacent perforators freely. Further more, we can clearly show the position and anastomosis of the ectended branches.
     (3) Through setting appropriate threshold we can obtain3D reconstruction models of the pelvis, femur and anterior thorax wall without perfusion imaging agent. And then we registrate the bones to part corresponds bones reconstructed by "Multiple Slice Edit". At the same time we can obtain skin and superficial fascia in anterolateral abdominal wall by reconstruction.
     (4) We can take advantage of the3D model of perforators and their related structures obtained by using VR method and DR method of Mimics software to design free combination extended perforator flaps. It is very convenient, fast and intuitive.This method is ready to provide direct, reliable, convenient and useful digital anatomy data for clinical flap operation.Especially we can obtain a single perforator with its sourse vascular and related structures. After color separation processing, we will be very easy to realize the free combination of extended perforators under3D view, which provides more choices for the design of clinical extended perforator flaps.
     3. The best ratio of latex and bismuth oxide in microvascular perfusion technique
     (1) Vascular perfusion simulation experiment:Through deposition observation, injector bolus conditions, and X-ray radiography, we can find that the suspension force is more and more smaller with the latex solution being diluted.
     (2) If volume to weight ratio of latex and bismuth oxide unchanged, with the increase of the dilution ratio of latex with ammonia, rabbit skin perforators' development effect is more and more worse.
     (3) If latex concentration is constant, it is the optimal proportion that volume to weight ratio of latex and bismuth oxide is1:1.
     Conclusions
     1. Myocutaneous perforators of deep inferior epigastric artery, superior epigastric artery and lateral braches of posterior intercostal artery have the superiority to obtain large extended perforator flaps, because of reliable deep vascular pedicle, easy expansion of subcutaneous vascular anastomosis net, relaxation skin in abdominal wall and rich tissue content.
     2. The medial row perforators are the dominant vessels of deep inferior epigastric artery. The perforator close to umbilicus should be first choosed when DIEP flap is designed. It is reasonable to take a transverse DIEP flap.
     3. Big muscular branches of inguinal segment and inner iliac crest segment of deep iliac circumflex artery, iliac crest branches of inner iliac crest segment and muscular perforators of upper iliac crest segment are the important anatomic basises to design deep iliac circumflex artery chimeric perforator flap.
     4. Superficial epigastric artery forming direct cutaneous perforator distributes the skin in lower part of anterolateral abdominal wall. When there is a dominant superficial epigastric artery, the perforator pedicled flap is a good choice.
     5. We can clearly and perfectly realizate the3D modeling of perforators in anterolateral abdominal wall by using VR and DR. methods of Mimics software.
     6. Latex-bismuth oxide microvascular perfusion technique is a good development, safe and convenient microvascular perfusion method. The optimal ratio of latex and bismuth oxide is100ml latex and100g bismuth oxide (volume to weight ratio of latex and bismuth oxide is1:1).
     The innovative point of the study
     1. Two times CT scans are taken before and after perfusion imaging agent and two reconstruction of the skeleton is registered, the reconstruction of the vascular tree and bone can be perfectly and clearly showed at the same time;
     2. Traditional anatomy is combined with digital anatomy, it can be solved the problem that small nerve can not be displayed by angiography and3D reconstruction;
     3. Anterolateral abdominal wall perforators are analyzed accurately in3D positioning and quantitative data;
     4. Clear display of the anterolateral abdominal wall artery anastomosis between the vascular (Choke vessels), to provide the anatomical basis for the characteristics flap design, such as:DIEP flap transverse cross (across the ventral midline), deep iliac circumflex artery perforator chimeric flap etc..
     5. Optimization of latex and bismuth oxide micro angiography.
引文
[1]Burman MS, Umansky M. An experimental study of free periosteal transplants, wrapped around tendon:with a review of the literature[J]. J Bone Joint Surg Am,1930,12(3):579-594.
    [2]吴正荣,周金明,陈奕明,等.前臂逆行岛状皮瓣的改进与临床应用[J].中华烧伤杂志,1911,7(1):26-27.
    [3]Manchot C. Die Hautarterien des Menschlichen Korpers[J].1889, Vol.1. Leipzig:Vogel,1889.
    [4]Salmon M. Arteres de la peau:etude anatomique et chirurgicale[M]. Paris: Masson,1936.
    [5]Conway H, Smith J. Breast plastic surgery:reduction mammaplasty, mastopoxy, augmentation mammaplasty, and mammary construction; analysis of two hundred and fortyfive cases[J]. Plast Reconstr Surg Transplant Bull,1958,21(1):8-19.
    [6]Littler JW, Cooley SG. Opposition Of The Thumb And Its Restoration By Abductor Digiti Quinti Transfer[J]. J Bone Joint Surg Am,1963,45: 1389-1396.
    [7]Seitchik MW, Kahn S. The Effects of Delay on the Circulatory Efficiency of Pedicled Tissue. A Review[J]. Plast Reconstr Surg,1964,33:16-25.
    [8]Orticochea M. The musculo-cutaneous flap method:an immediate and heroic substitute for the method of delay[J]. Br J Plast Surg,1972,25(2):106-110.
    [9]Daniel RK, Williams HB. The free transfer of skin flaps by microvascular anastomoses. An experimental study and a reappraisal [J]. Plast Reconstr Surg,1973,52(1):16-31.
    [10]May H. The transplantation of large unpedicled skin flaps[J]. Plast Reconstr Surg,1968,41(6):572-576.
    [11]杨东岳.等带血管的游离皮瓣修复颊部缺损一例报告[J].中华医学杂志,1974.54:163.
    [12]McCraw JB, Furlow LT, Jr. The dorsalis pedis arterialized flap. A clinical study[J]. Plast Reconstr Surg,1975,55(2):177-185.
    [13]Daniel RK, Cunningham DM, Taylor GI. The deltopectoral flap:an anatomical and hemodynamic approach[J]. Plast Reconstr Surg,1975,55(3): 275-282.
    [14]Ohmori K, Harii K. Free dorsalis pedis sensory flap to the hand, with microneurovascular anastomoses[J]. Plast Reconstr Surg,1976,58(5): 546-554.
    [15]Baudet J, Guimberteau JC, Nascimento E. Successful clinical transfer of two free thoraco-dorsal axillary flaps[J]. Plast Reconstr Surg,1976,58(6): 680-688.
    [16]McCraw JB. On the transfer of a free dorsalis pedis sensory flap to the hand[J]. Plast Reconstr Surg,1977,59(5):738-739.
    [17]Daniel RK. Reconstruction of mandibular defects with revascularized free rib grafts[J]. Plast Reconstr Surg,1978,62(5):775-776.
    [18]Daniel RK. Mandibular reconstruction with free tissue transfers [J]. Ann Plast Surg,1978,1(4):346-371.
    [19]Daniel RK, Kerrigan CL, Gard DA. The great potential of the intercostal flap for torso reconstruction[J]. Plast Reconstr Surg,1978,61(5):653-665.
    [20]Harashina T, Nakajima H, Imai T. Reconstruction of mandibular defects with revascularized free rib grafts[J]. Plast Reconstr Surg,1978,62(4):514-522.
    [21]Harii K, Torii, S., Sckisuchi, J. The free lateral thoracic flap[J]. Plast Reconstr Surg,1978,62:212.
    [22]杨果凡,陈宝驹,高玉智,等.前臂皮瓣游离移植术[J].中华医学杂志,1981,61(3):139-141.
    [23]钟世镇,陶永松,刘牧之,等.肌间隔血管源游离皮瓣的解剖学[J].解剖学报,1982,13(3):230-236.
    [24]Harii K, Omori K, Omori S. Free deltopectoral skin flaps[J]. Br J Plast Surg, 1974,27(3):231-239.
    [25]徐达传,钟世镇,罗力生,等.股前外侧部皮瓣的解剖学一个新的游离皮瓣供区[J].临床应用解剖学杂志,1984,2(3):158-160.
    [26]张世民,徐达传.带皮神经及其营养血管的皮瓣[J].中国临床解剖学杂志,1996,14(4):313-315.
    [27]鲁开化,钟得才,陈璧.前臂桡动脉逆行岛状皮瓣及其临床应用[J].中华外科杂志,1982,20(2):695.
    [28]孙博,刘牧之,原林.前臂桡侧岛状逆行旋转皮瓣静脉回流的解剖学研究[J].中国临床解剖学杂志,1983,1(1):8-12.
    [29]董立闻,王载明,杨昌荣.游离隐动脉血管神经束皮瓣植修复足底溃疡[J].中国麻风皮肤病杂志,1985,(1):63-64.
    [30]冯峰,田松,程春生,等.吻合头静脉的桡动脉鼻烟窝筋膜穿支皮瓣[J].中华手外科杂志,1994,10(2):114.
    [31]Bertelli J, Khoury Z. Radial and ulnar nerve vascularization in the hand. Anatomic basis of neurocutaneous flap[J]. Surg Radiol Anat,1992,14(1): 87-88.
    [32]Bertelli JA, Khoury Z. Neurocutaneous island flaps in the hand:anatomical basis and preliminary results[J]. Br J Plast Surg,1992,45(8):586-590.
    [33]Bertelli JA, Kaleli T. Retrograde-flow neurocutaneous island flaps in the forearm:anatomic basis and clinical results[J]. Plast Reconstr Surg,1995, 95(5):851-859.
    [34]Bertelli JA, Catarina S. Neurocutaneous island flaps in upper limb coverage: experience with 44 clinical cases[J]. J Hand Surg Am,1997,22(3):515-526.
    [35]Masquelet AC, Romana MC, Wolf G. Skin island flaps supplied by the vascular axis of the sensitive superficial nerves:anatomic study and clinical experience in the leg[J]. Plast Reconstr Surg,1992,89(6):1115-1121.
    [36]Nakajima H, Imanishi N, Fukuzumi S. Accompanying arteries of the lesser saphenous vein and sural nerve:anatomic study and its clinical applications[J]. Plast Reconstr Surg,1999,103(1):104-120.
    [37]张世民,张连生,刘大雄.带皮神经血管丛的小腿筋膜皮下组织瓣[J].中华显微外科杂志,1994,17(4):284-285.
    [38]Mathes SJ, Nahai F. Classification of the vascular anatomy of muscles: experimental and clinical correlation[J]. Plast Reconstr Surg,1981,67(2): 177-187.
    [39]Nakajima H, Fujino T, Adachi S. A new concept of vascular supply to the skin and classification of skin flaps according to their vascularization[J]. Ann Plast Surg,1986,16(1):1-19.
    [40]Stepanov Iu I. Perforator for skin transplants[J]. Khirurgiia (Mosk),1980, (7): 87.
    [41]程耕历,何光篪,陈尔瑜,等.足背皮瓣的动脉[J].解剖学报,1980,11(3):225-233.
    [42]沈怀亮.以肌皮动脉穿支为轴的臀部皮瓣解剖学[J].临床应用解剖学杂志,1984,2(3):156-157.
    [43]Kroll SS, Rosenfield L. Perforator-based flaps for low posterior midline defects[J]. Plast Reconstr Surg,1988,81(4):561-566.
    [44]Koshima I, Soeda S. Inferior epigastric artery skin flaps without rectus abdominis muscle[J]. Br J Plast Surg,1989,42(6):645-648.
    [45]Allen RJ. The superior gluteal artery perforator flap[J]. Clin Plast Surg,1998, 25(2):293-302.
    [46]Angrigiani C, Grilli D, Siebert J. Latissimus dorsi musculocutaneous flap without muscle[J]. Plast Reconstr Surg,1995,96(7):1608-1614.
    [47]Donski PK, Fogdestam I. Distally based fasciocutaneous flap from the sural region. A preliminary report[J]. Scand J Plast Reconstr Surg,1983,17(3): 191-196.
    [48]Ponten B. The fasciocutaneous flap:its use in soft tissue defects of the lower leg[J]. Br J Plast Surg,1981,34(2):215-220.
    [49]Wei FC, Jain V, Suominen S. Confusion among perforator flaps:what is a true perforator flap?[J]. Plast Reconstr Surg,2001,107(3):874-876.
    [50]Geddes CR, Morris SF, Neligan PC. Perforator flaps:evolution, classification, and applications[J]. Ann Plast Surg,2003,50(1):90-99.
    [51]Hallock GG. Muscle perforator flaps:the name game[J]. Ann Plast Surg, 2003,51(6):630-632.
    [52]Saint-Cyr M, Schaverien MV, Rohrich RJ. Perforator flaps:history, controversies, physiology, anatomy, and use in reconstruction[J]. Plast Reconstr Surg,2009,123(4):132e-145e.
    [53]Salmon M, Taylor GI, Tempest M. Arteries of the Skin[M]. London: Churchill Livingstone,1988.
    [54]Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental study and clinical applications[J]. Br J Plast Surg,1987,40(2): 113-141.
    [55]Saint-Cyr M, Wong C, Schaverien MV. The Perforasome Theory:Vascular Anatomy and Clinical Implications [J]. Plast Reconstr Surg,2009,124(5): 1529-1544.
    [56]Taylor GI, Corlett RJ, Dhar SC. The Anatomical (Angiosome) and Clinical Territories of Cutaneous Perforating Arteries:What Goes around Comes Around[J]. Plast Reconstr Surg,2010.
    [57]Cormack GC, Lamberty BGH. The Arterial Anatomy of Skin Flaps[J].2nd Ed Edinburgh:Churchill Livingstone (Edinburgh and New York) 1994.
    [58]史立伟,余晶晶,李郦,等.我国道路交通伤的研究进展[J].浙江创伤外科,2008,13(3):273-276.
    [59]Holmstrom H. The free abdominoplasty flap and its use in breast reconstruction. An experimental study and clinical case report[J]. Scand J Plast Reconstr Surg,1979,13(3):423-427.
    [60]Hartrampf CR, Scheflan M, Black PW. Breast reconstruction with a transverse abdominal island flap[J]. Plast Reconstr Surg,1982,69(2): 216-225.
    [61]Scheflan M, Dinner MI. The transverse abdominal island flap:part I. Indications, contraindications, results, and complications [J]. Ann Plast Surg, 1983,10(1):24-35.
    [62]Dinner MI, Labandter HP, Dowden RV. The role of the rectus abdominis myocutaneous flap in breast reconstruction[J]. Plast Reconstr Surg,1982, 69(2):209-215.
    [63]Blondeel PN, Boeckx WD. Refinements in free flap breast reconstruction: the free bilateral deep inferior epigastric perforator flap anastomosed to the internal mammary artery[J]. Br J Plast Surg,1994,47(7):495-501.
    [64]Allen RJ, Treece P. Deep inferior epigastric perforator flap for breast reconstruction[J]. Ann Plast Surg,1994,32(1):32-38.
    [65]A1-Dhamin A, Berry R, Prasad V. Coding system for computed tomographic angiography of inferior epigastric artery perforators in DIEP flaps [J]. Plast Reconstr Surg,2012,129(2):387e-388e.
    [66]Przylecki WH, Chan RK, Carty MJ. Metastatic breast cancer after delayed deep inferior epigastric perforator flap reconstruction[J]. Ann Plast Surg, 2011,66(3):233-234.
    [67]Kim KS, Kim ES, Hwang JH. Buttock reconstruction using a pedicled deep inferior epigastric perforator flap[J]. Microsurgery,2011,31(3):237-240.
    [68]Dellacroce FJ, Sullivan SK, Trahan C. Stacked Deep Inferior Epigastric Perforator Flap Breast Reconstruction:A Review of 110 Flaps in 55 Cases over 3 Years[J]. Plast Reconstr Surg,2011,127(3):1093-1099.
    [69]Sojitra NM, Vandevoort M, Ghali S. Two new techniques for correcting venous congestion in the free DIEP flap for breast reconstruction:an analysis of venous augmentation in 581 DIEP flaps[J]. Plast Reconstr Surg,2010, 125(2):72e-74e.
    [70]Wang X, Qiao Q, Burd A. A new technique of vaginal reconstruction with the deep inferior epigastric perforator flap:a preliminary report[J]. Plast Reconstr Surg,2007,119(6):1785-1790; discussion 1791.
    [71]Teoh R, Johnson RF, Nishino TK. Evaluation of three-dimensional computed tomography processing for deep inferior epigastric perforator flap breast reconstruction[J]. Can J Plast Surg,2007,15(4):196-198.
    [72]Taylor GI. Invited discussion:"Blood supply of the abdomen revisited, with emphasis on the superficial inferior epigastric artery"[J]. Plast Reconstr Surg, 1984,74(5):667-670.
    [73]Mori H, Yano T, Tanaka K. Two pedicled perforator flaps combined with a fascia graft for a large lateral lumbar defect[J]. J Plast Reconstr Aesthet Surg, 2011,64(2):274-276.
    [74]Sinna R, Hajji H, Qassemyar Q. Anatomical background of the perforator flap based on the deep branch of the superficial circumflex iliac artery (SCIP Flap):a cadaveric study[J]. Eplasty,2010,10:ell.
    [75]Hsu WM, Chao WN, Yang C. Evolution of the free groin flap:the superficial circumflex iliac artery perforator flap[J]. Plast Reconstr Surg,2007,119(5): 1491-1498.
    [76]Hamdi M, Spano A, Van Landuyt K. The lateral intercostal artery perforators: anatomical study and clinical application in breast surgery[J]. Plast Reconstr Surg,2008,121(2):389-396.
    [77]Hamdi M, Van Landuyt K, Blondeel P. Autologous breast augmentation with the lateral intercostal artery perforator flap in massive weight loss patients[J]. J Plast Reconstr Aesthet Surg,2009,62(1):65-70.
    [78]Beer GM, Manestar M. The number of intercostal artery perforators over the distal latissimus dorsi muscle[J]. Clin Anat,2010,23(2):216-221.
    [79]White A, Kalimuthu R. Salvaging difficult chest and epigastric defects with the intercostal artery perforator flap[J]. Plast Reconstr Surg,2010,125(3): 124e-125e.
    [80]Bitter K, Danai T. The iliac bone or osteocutaneous transplant pedicled to the deep circumflex iliac artery. I. Anatomical and technical considerations [J]. J Maxillofac Surg,1983,11(5):195-200.
    [81]Stevenson TR, Greene TL, Kling TF, Jr. Heel reconstruction with the deep circumflex iliac artery osteocutaneous flap[J]. Plast Reconstr Surg,1987, 79(6):982-986.
    [82]Brown JS. Deep circumflex iliac artery free flap with internal oblique muscle as a new method of immediate reconstruction of maxillectomy defect[J]. Head Neck,1996,18(5):412-421.
    [83]Sasaki K, Nozaki M, Okagaki M. Variants in the deep circumflex iliac artery: clinical considerations in raising iliac osteocutaneous free flaps[J]. J Reconstr Microsurg,1999,15(7):527-530.
    [84]Jairath D, Hage JJ. Deep circumflex iliac artery (DCIA) free flap without DCIA:report of a unique case[J]. J Reconstr Microsurg,2004,20(7): 519-521.
    [85]Rodriguez ED, Bluebond-Langner R, Martin M. Deep circumflex iliac artery free flap in mandible reconstruction[J]. Atlas Oral Maxillofac Surg Clin North Am,2006,14(2):151-159.
    [86]Bergeron L, Tang M, Morris SF. The anatomical basis of the deep circumflex iliac artery perforator flap with iliac crest[J]. Plast Reconstr Surg,2007, 120(1):252-258.
    [87]陆林国,徐秋华,燕山.高频彩超对穿支皮瓣血管的探索研究[J].上海医学影像,2008,17(3):200-202.
    [88]Holm C, Mayr M, Hofter E. Perfusion zones of the DIEP flap revisited:a clinical study[J]. Plast Reconstr Surg,2006,117(1):37-43.
    [89]Wong C, Saint-Cyr M, Arbique G. Three-and four-dimensional computed tomography angiographic studies of commonly used abdominal flaps in breast reconstruction[J]. Plast Reconstr Surg,2009,124(1):18-27.
    [90]Cina A, Salgarello M, Barone-Adesi L. Planning Breast Reconstruction with Deep Inferior Epigastric Artery Perforating Vessels:Multidetector CT Angiography versus Color Doppler US[J]. Radiology,2010,255(3): 979-987.
    [91]Alonso-Burgos A, Garcia-Tutor E, Bastarrika G. Preoperative planning of deep inferior epigastric artery perforator flap reconstruction with multislice-CT angiography:imaging findings and initial experience [J]. J Plast Reconstr Aesthet Surg,2006,59(6):585-593.
    [92]张绍祥,刘正津,谭立文.首例中国数字化可视人体完成[J].第三军医大学学报,2002,24(10):1231-1232.
    [93]王兴海,傅群武,刘畅.”虚拟中国人”建模的动脉灌注研究[J].中国临床解剖学杂志,2002,20(5):227-329.
    [94]Gao J, Wen Q. Automatic 3D vascular tree construction of perforator flaps for plastic surgery planning[J]. Proceedings of the 26th Annual International Conference of the IEEE EMBS 2004:3424-3427.
    [95]张志浩,李严斌,梅劲.应用放射造影术进行血管3D可视化研究初探[J].中国临床解剖学杂志,2006,24(3):255-258.
    [96]Masia J, Clavero JA, Larranaga JR. Multidetector-row computed tomography in the planning of abdominal perforator flaps [J]. J Plast Reconstr Aesthet Surg,2006,59(6):594-599.
    [97]Tang M, Yin Z, Morris SF. A Pilot Study on Three-Dimensional Visualization of Perforator Flaps by Using Angiography in Cadavers[J]. Plast Reconstr Surg,2008,122(2):429-437.
    [98]Rees MJ, Taylor GI. A simplified lead oxide cadaver injection technique[J]. Plast Reconstr Surg,1986,77(1):141-145.
    [99]Tang M, Geddes CR, Yang D. Modified lead oxide-gelatin injection technique for vascular studies[J]. Chin Clin Anat,2002,1:73-78.
    [100]李卫,周科朝,杨华.氧化铋的应用研究进展[J].材料科学与工程学报,2004,22(1):154-156.
    [101]于频,刘正津.解剖学技术[J].1984:144-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700