用户名: 密码: 验证码:
DSP控制连续波信号发生器机理与风洞模拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随钻测量(MWD)是近年来发展起来的新的测井技术,可提高大位移井、高难度水平井的工程控制能力和地层评价能力,提高油层的钻遇率。而数据信号传输在随钻测量系统设计中占有重要作用,是系统设计的难点与核心部分。针对MWD数据传输速率低及设计过程中试验难度大等问题,本论文对数字信号处理器(DSP)控制的连续波信号发生器工作机理及风洞模拟试验开展研究,取得了一定的进展和有益的结论。
     本论文研究采用理论分析、系统设计、计算机仿真以及风洞模拟试验相结合的方法。在对井底遥测信号传输机理、连续波信号发生器工作机理、风洞试验原理等分析研究的基础上,完成了对信号发生器、DSP控制系统、风洞试验模型结构及测控系统的设计,在此基础上进行风洞模拟试验及计算机仿真试验,进而完成了对转阀的优化设计,并建立起连续压力波变频率传输的预测控制模型。论文研究的主要目标是实现更高的数据传输速率、提高数据传输的可靠性以及增强系统的环境适应能力,在理论和试验方法上为我国研制具有自主知识产权的泥浆连续压力波随钻测量系统奠定基础。
     通过对井底遥测信号的传输机理研究分析表明,泥浆连续波方式代表着无线随钻测量数据传输技术的发展方向。通过分析数据信息的编码方式,选用多进制数字频率调制方式对井下信息进行编码调制,与多进制调相传输方式相比,发送、接收设备以及控制系统相对简单,误码率相对较低,有利于提高数据传输率。制定了地面数据下传和井下数据上传通信协议,为实现变频率的数据传输创造了条件。
     对井下旋转控制信号发生器工作机理研究表明,压力波动信号的类型和变化规律取决于信号发生器转阀的运动规律,压力波信号的强度取决于转阀的最大流通面积和最小流通面积以及转子和定子之间的间隙。通过对信号的产生及衰减分析计算,完成了连续波信号发生器的模型结构设计和基于DSP的控制系统设计,为发送数据试验提供了条件。DSP控制信号发生器发送数据试验表明,该系统可以满足12Hz~36Hz之间8进制调频数字传输的控制要求。
     对风洞试验原理的研究分析表明,在实际的风洞试验中只能满足部分相似准则,做到部分模拟。建立了以风洞气相流模拟井下多相流进行连续波信号传输试验的相似模型,并对风洞试验模型结构的流通面积加以校正。研究表明,在风洞中可以模拟非气相流流动条件下的试验研究,通过风洞模拟试验,可以提高试验效率,降低试验成本。
     通过仿真试验,说明转子叶片厚度、转子与定子之间的间隙、转子的锥度等因素是决定转子扭矩的主要因素,在此基础上给出了转阀优化设计的原则:保证设计的转阀是稳定打开的,同时最大限度地减小转阀的扭矩。对转阀的压差变化仿真结果表明,圆形阀口转阀的压差响应曲线比扇形阀口的压差响应曲线平滑,更近似于正弦波,有利于信号传输。通过风洞模拟试验,证明了通过仿真试验及分析计算所得出的结论是正确的。
     提出了一种扩展隐层的误差反传(BP)网络训练算法,并与改进的蚁群算法相结合,提高了网络的训练精度和预测精度。由风洞模拟试验,确定适合码元传输的频率范围为12Hz~36Hz,并提出了变频率的数据传输模型,以不同进制的频率调制方式发送数据,在风洞试验段中接收信号并用Matlab仿真处理,以这些数据作为样本,对神经网络进行训练。在实际应用中,用训练好的网络对不同传输方式下的数据接收误码率进行预测,并根据预测结果选择适合的数据传输方式,从而实现更高的数据传输速率,提高工作可靠性,同时增强对环境的适应能力。
MWD is a new logging technology which is developed in recent years, it can improve large displacement wells, horizontal wells in difficult engineering control and formation evaluation capabilities, improve the rate of oil drilling encountered. Data signal transmission plays a pivotal role in the MWD system design, and is the core in the system design. For low MWD data transmission rates and the difficult test questions in design process, the paper researched on mechanism of continuous wave signal generator controlled by DSP and the wind tunnel simulation test, made some progress and useful conclusions.
     In this paper, we explore the use of theoretical analysis, system design, computer simulation and wind tunnel simulation method of combining. At the basis of research on telemetry signal transmission mechanism, continuous wave signal generator working mechanism, the principle of wind tunnel tests and other analytical studies, completed a signal generator, DSP control system, wind tunnel test model of the structure and control system design. On this basis, wind tunnel tests and computer simulation experiments were done, and built a variable frequency pressure wave transmission predictive control model and the optimization algorithm model of impeller design. The main goal of the paper is to achieve higher data rates, improve the reliability of data transmissions, as well as enhance the system environmental adaptability, and to lay a foundation at theoretical and experimental methods for our own independent intellectual property rights of continuous mud wave MWD system.
     Analysis of the bottom telemetry signal transmission mechanism showed that the mud continuous wave represents the development direction of MWD wireless data transmission technology. By analyzing the data encoding, M-ary frequency modulation mode was selected to modulate the down-hole information. Compared with M-ary phase modulation transfer mode, M-ary frequency modulation mode has relative simple sending and receiving equipment and control system, and relative low bit error rate is conducive to improve data transfer rate. Ground to down-hole and down-hole to ground data transmission protocols were developed,and it created conditions to achieve variable frequency data transmission.
     Studying on rotation working mechanism of the down-hole pressure control signal generator have shown that the type and changes of the pressure fluctuation signal depend on the movement of the signal generator valve. The strength of the pressure wave signal primarily depends on the largest flow area and the smallest flow area of the rotary valve. Through analysis of signal generation and attenuation, completed the design of the structural model of the continuous wave signal generator and the design of DSP-based control system. It provided sending data conditions for wind tunnel simulation. DSP control signal generator sending data tests show that the system can meet the frequency range of 12Hz~36Hz M-ary digital FM transmission control requirement.
     Research and analysis on principle of wind-tunnel test show that the actual wind tunnel tests can only meet part of similarity criterion, do part of simulations. Similar models were Set up to do continuous wave signal transmission test by simulating down-hole multiphase flow with gas flow in the wind tunnel, and the flow area of the wind tunnel test model structure was corrected. Studies have shown that the wind tunnel can simulate the test of non-gas flow conditions. Through the wind tunnel simulation, the test efficiency could be improved and the test cost could be reduced.
     The simulation test shows that the thickness of the rotor blades, the gap between the rotors and stators, the taper of the rotors are the main factors which decide the rotor torque. On this basis the optimal valve design principles are given: To ensure the rotor valve is stable-opened, and to minimize the rotor valve torque. The rotary valve pressure changes simulation results show that the pressure response curves of round-shaped valve are more smoothing than the fan-shaped pressure response curve, and more similar to sine wave. Such characteristics of signal are favorable to signal transmission. The wind tunnel simulation tests proved that the conclusions by simulation tests and analysis computations are correct.
     A training algorithm was proposed to expand the hidden layer of back-propagation network, and combined with improved ant colony algorithm. The training accuracy and precision of prediction of the network were improved. Wind tunnel simulation tests show that symbol transmission frequency range of 12Hz~36Hz is suitable. A variable-frequency data transmission model was proposed. The data was sent in different M-ary frequency modulation. The signal was received in the wind tunnel test section and simulated and processed with Matlab. These data were trained as samples of the neural network. In practical applications, data reception bit error rate (BER) of different transmission modes will be predicted with well trained network. Suitable means of data transmission are selected according to the results of prediction. In this way, the system could achieve higher data rates, improve job reliability, and enhance the adaptability to the environment.
引文
[1]秦绪英,宋波涛.测井技术现状与展望[J].勘探地球物理进展,2002,25(1):26~34.
    [2]张辛耘,王敬农,郭彦军.随钻测井技术进展和发展趋势[J].测井技术,2006,30(1):10~15.
    [3]苏义脑,窦修荣.随钻测量、随钻测井与录井工具[J].石油钻采工艺,2005,27(1):74~78.
    [4] Hagiwara T.Responseo of 2 MHz resistivity devices in thinly laminated formations (anisotropic resistivity and EM Loginterpretation)[C].69th Anual SPE Technical Conference,l994:667~676.
    [5] Luling M G,Rosthal R A. Processing and modeling 2MHz resistivity tool in laminated,anisotropic formations [C].SPWLA 35th Annual Logging Symposium ,1994:QQ.
    [6] Preey W E.新的地层评价仪器和解释方法的回顾(上册)[M].北京:石油工业出版社,1994:355~367.
    [7]布志虹,任干能,陈乐.随钻测井技术[J].断块油气田,2001,8(4):22~24.
    [8] Clark S B,Holcnka J. Logging while drilling:a thine-year perspective[J].Oilfield Review,1992:30~44.
    [9] Holenka J,Best D,Evans M,et a1. Azimuthal prosity while drilling[C].SPWLA 36th Annual Logging Symposium,1995:BB.
    [10]冯进.随钻测井在地层评价中的应用[J].中国海上油气(地质),2002,16(3):200-206.
    [11] MWD system: The latest generation MWD platform[EB/OL]. http://www.bakerhughes.com/inteq
    [12] Schlumberger, VISION, Scope[EB/OL]. www. slb. com, August, 2005.
    [13] Drack E. Advances in LWD Nuclear Magnetic Reso-nance[J]. SPE Annual Technical Conference and Exhibition, Transaction, 2001.10.
    [14]邹德江,范宜仁,邓少贵.随钻测井技术最新进展[J].石油仪器,2005,19(5):1~4.
    [15] John Macpherson, Ingolf Wasserman, Detlef Hahn, et al. Mud-pulse telemetry sees step-change improvement with oscillating shear valves[J]. Oil & Gas Journal, 106(24). 2008.
    [16] Klotz C,Bond P,Wasserman I, Priegnitz S. A New Mud Pulse Telemetry System for Enhanced MWD/LWD Application[R]. SPE 112683, 2008.
    [17] Wallace R. Gardner.High Data Rate MWD Mud Pulse Telemetry [R]. U.S. Department of Energy’s Natural Gas Conference, Texas,1997.
    [18]田德,郭凤祥,刘树民,等.浓缩风能型风力发电机的整体模型风洞实验[J].农业工程学报, 1997,9: 189~192.
    [19] Phillips D G, Nash T A , Oakey A , et al. Computational fluid dynamics and wind tunnel modeling of a diffuser augmented wind turbine[J] . Wind Engineering, 1999, 23 (1): 7~13.
    [20] Phillips D G, Richards P J , Flay R GJ . CFD modeling and the development of the diffuser augmented wind turbine[M] . Birmingham: Proceedings of Wind Eng , 2000.
    [21]陈忠碧.海洋修井机风洞试验测控系统设计[D].四川南充:西南石油学院,2002.
    [22] Sullivan, J. Laser Scanning System for Pressure and Temperature Paints[R].NASA/CR-97-205815,1997.
    [23]刘新平,房军,金有海.随钻测井数据传输技术应用现状及展望[J].测井技术, 2008, 32(3):249~253.
    [24]刘选朝,张绍槐.智能钻柱信息及电力传输系统的研究[J].石油钻探技术,2006,34(5):10~13.
    [25] Paul Lurie,Philip Head,Jacke E S. Smart drilling with electric drill string [R]. SPE 79886,2003.
    [26]肖仕红,梁政.旋转导向钻井技术发展现状及展望[J].石油机械,2006,34(4):66~70.
    [27] Michael J J,David R H,Darrell C H, et al. Telemetry drill pipe: enabling technology for the downhole internet [C]. SPE/IADC 79885,2003.
    [28] M Reeves,J Macpherson,R Zaeper, et al. High-Speed Drillstring Telemetry Network Enables New Real-Time Drilling and Measurement Technologies[C]. IADC/SPE Drilling Conference: 99134-MS,2006.
    [29]杨兴琴,姜虻,赵滨伟.随钻数据传输新技术[J].石油仪器,2004,18(6):26~31.
    [30]房军,苏义脑.液压信号发生器基本类型与信号产生的原理[J].石油钻探技术,2004,32(2):39~41.
    [31]卢春华,张涛,李海东.泥浆脉冲随钻测量系统研究[J].地质科技情报(增刊),2005,24(7):30~32.
    [32]张涛,鄢泰宁,卢春华.无线随钻测量系统的工作原理与应用现状[J].西部探矿工程,2005(2):126~128.
    [33] Inglis:Directional drilling [M]. London: Boston Graham & Trotman, 1987.
    [34]苏义脑.定向钻井[M].北京:石油工业出版社, 1995.
    [35]刘修善,侯绪田.电磁随钻测量技术现状及发展趋势[J].石油钻探技术,2006,34(5):4~9.
    [36] DeGauque P and Grudzinski R. Propagation of electromagnetic waves along a drillstring of finite conductivity[J].SPE Drilling Engineering, 1987,2(2):127~134.
    [37] Roberto M,Bruno B,Louis S.Electromagnetic transmission improvements applied to on/offshore drilling in the Mediterranean area[R].SPE 28290,1994.
    [38] Hank S. Innovation delivers practical solutions to real-world drilling challenges[J].The American Oil ? Gas Reporter,2002,44(1):68~77.
    [39] Weisbeck D. Case History of First Use of Extended-Range EM-MWD in Off-shore, Under-Balanced Drilling[J]. Paper IADC/SPE74461. IADC/SPE drilling conference, 2002,2.
    [40] Schlumberger, E-Pulse.www.slb.com, 2002,12.
    [41] Halliburton,LWD/MWD services,www.myhalliburton.com, 2002,12.
    [42] Anonymous.New tool extends MWD to underbalanced wells[J].Drilling Contractor. March/April 2005 issue:24~25.
    [43]杜勇,胡建斌,李艳萍,等.声波传输测试技术在油田的应用[J].测控技术,2005,24(11):76~78.
    [44]张辛耘,王敬农,郭彦军.随钻测井技术进展和发展趋势[J].测井技术,2006,30(1):10~15.
    [45] Desbrandes R, Bourgoyne A T Jr, Carter J A. MWD Transmission Data Rates Can be Optimized[J]. Petroleum Engineer International, June 1987:46~52.
    [46]韩文亮,柴宏恩.长输管线桨体水击压力及过渡过程的计算[J].管道运输,1997,2(1):12~17.
    [47]刘修善,苏义脑.泥浆脉冲信号的传输速度研究[J].石油钻探技术,2000,28(5):24~26.
    [48]刘修善,郭钧.钻井液脉冲传输速度的分布规律研究[J].钻采工艺,2000,23(4):74~76.
    [49]刘修善.钻井液脉冲沿井筒传输的多相流模拟技术[J].石油学报,2006,27(4):115~118.
    [50] Desbrandes R.MWD technology , Part2:Data transmission[J].Petroleum Engineer International,1988,60(10):48~54.
    [51]王学芳.工业管道中的水锤[M].北京:科学出版社,1995.
    [52]刘修善,岑章志,苏义脑.钻井液脉冲传输速度的影响因素分析[J].石油钻采工艺,1999,21(5):1~4.
    [53]刘修善,苏义脑.钻井液脉冲信号的传输特性分析[J].石油钻采工艺,2000,22(4):8~10.
    [54] Desbrandes R, Bourgoyne A T Jr, Carter J A. MWD Transmission Data Rates Can be Optimized[J].Petroleum Engineer International,June 1987:46~52.
    [55]王翔.钻井液连续脉冲信号产生及井筒内传输规律研究[D].山东东营:中国石油大学,2008.
    [56]石在虹,刘修善.井筒中钻井信息的传输动态分析[J].天然气工业,2002,22(5):68~71.
    [57]何树山,刘修善.钻井液正脉冲信号的衰减分析[J].钻采工艺,2001,24(6):1~3.
    [58]王智明,管志军,李相方,等.连续波钻井液脉冲发生器结构设计探讨[J].石油机械,2007,35(12):56~58.
    [59] Monroe S P. Applying Digital Data-Encoding Techniques to Mud Pulse Telemetry[C].SPE 20326, 1990.
    [60]张辉,曹丽娜.通信原理[M].北京:科学出版社,2007.
    [61] R.Hutin, R.W.Tennent, S.V.Kashikar. New Mud Pulse Telemetry Techniques for Deepwater Applications and Improved Real-Time Data Capabilities[R].2001,SPE/IADC Drilling Conference:67762-MS.
    [62]李健,刘琳莉,吴华强,等.浅析无线随钻仪脉冲信号信噪比[J].石油仪器,2001,15(5):50~52.
    [63]卢春华,张涛,李海东.泥浆脉冲随钻测量系统研究[J].地质科技情报(增刊),2005,24(7):30~32.
    [64]王兴亮.通信系统原理教程[M].西安:西安电子科技大学出版社,2007:178~179.
    [65]董海平.新型正脉随钻测斜仪地面硬件系统的设计开发和井下控制器的研究[D] .北京:中国科学院渗流流体力学研究所, 2001
    [66] Wilson C.Chin,Thomas E.Ritter. Turbo siren signal generator for MWD systems[P]. U.S.Patent:5586083,1996-12-17.
    [67] Wilson C.Chin. Measurement-while-drilling system and method [P]. U.S.Patent:5583827,1996-12-10.
    [68]房军.随钻测量液压信号发生器建模仿真与实验设计[D].北京:中国石油勘探开发科学研究院,2004.
    [69]林国重,盛东初.液压传动与控制[M].北京:北京理工大学出版社,1986:26.
    [70]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,2000:35~37.
    [71]王智明,菅志军,李相方,等.续波高速泥浆脉冲器设计研究[J].石油天然气学报,2008,30(2):611~613.
    [72] Chin W.C.,Trevino J.A.Pressure pulse generator[P].U.S.Patent:4785300,1988.
    [73]李荣喜.井下旋转控制压力信号发生器的设计与研究[D].山东东营:中国石油大学(华东),2007.
    [74] Holmas.A.B.New Generation of MWD Systerms Show Promise[J].Petroleum Engineer International,May.1987:36~44.
    [75] T.A.Inglis著,苏义脑译.定向钻井[M].北京:石油工业出版社,1995.
    [76]李荣喜,房军.井下旋转压力信号发生器的仿真[J].石油矿场机械,2007,36(2):45~47.
    [77] T.J.E.Miller.Brushless Permanent-Magnet and Reluctance Motor Drives[M].Oxford New York:Clarendon Press,1989.
    [78]刘和平,邓力,江渝,等. DSP原理及电机控制应用[M].北京:北京航空航天大学出版社,2006.10.
    [79]周志光,朱志伟,刘定良.TMS320LF2407A在无位置传感器无刷直流电动机控制系统中的应用[J].现代电子技术,2005(23):67~69.
    [80]肖俊武,李莉,郭卫华.基于DSP控制的无刷直流电动机系统[J].山西电子技术,2006(5):22~24.
    [81]施洪昌.高低速风洞测量与控制系统设计[M].北京:国防工业出版社,2002.7.
    [82]鲍培德.浅谈相似理论与模型试验在机械设计中的应用[J].机械设计与制造工程,2000,29(6):27~28.
    [83]王勋年.低速风洞试验[M].北京:国防工业出版社,2002.
    [84]卫军锋.正弦型风谱的风洞实验与数值模拟研究[D].陕西西安:西安建筑科技大学,2003.
    [85] (美)艾伦·波普著,彭锡铭,严俊仁译.低速风洞试验[M].北京:国防工业出版社,1980.
    [86]王铁成.空气动力学试验技术[M].北京:航空工业出版社,1995.
    [87]刘希圣.钻井工业原理[M].石油工业出版社,1992
    [88]艾延廷,黄福幸,李国文.DFD风洞数据采集与控制系统设计[J].仪器仪表学报,2005,26(8)增刊: 821~823.
    [89]郭山国,陈永会,李海虹.基于DLL和PCI-8333的数据采集系统的实现[J].机械工程与自动化,2008,147(2):166~167.
    [90] Wilson C.Chin,Ph.D.,M.I.T. MWD Siren Pulser Fluid Mechanics[J]. PetroPhysics. 2004, 45(4): 363-379.
    [91] Maki Y, Loparo KA.Neural– network approach to fault detection and diagnosis in industrial processes[J] . IEEE Transsetions on Control Systems Technology, 1997,5(6):529~541.
    [92] Colorni A , Dorigo M , Maniezzo V , et al . Distributed optimization by ant colonies [ A ] . Proceedings of ECAL91 ( European Conference on Artificial Life) . Paris , France :1991. 134~142.
    [93]刘新平,唐磊,金有海.扩展隐层的误差反传网络训练算法研究[J].计算机集成制造系统,2008,14(11):2284~2288.
    [94] S. Yu, K. Zhu, F. Diao. A Dynamic all Parameters Adaptive BP Neural Networks Model and its Application on Oil Reservoir Prediction[J]. Appl. Math. Comput. (2007), doi: 10.1016/j.amc.2007.04.088
    [95]秦建华,李智,LOU Yi-gong.智能蚁群算法在化工过程优化中的应用[J].化工自动化及仪表, 2005,32(3):28~30.
    [96]宋崇智,王璐,谢能刚.基于蚁群优化算法的神经网络训练的研究[J].自动化仪表, 2006,5:10~12.
    [97]段海滨,王道波.一种快速全局优化的改进蚁群算法及仿真[J].信息与控制, 2004, 33(2):241~244.
    [98]洪炳熔,金飞虎,高庆吉,基于蚁群算法的多层前馈神经网络[J].哈尔滨工业大学学报,2003,35(7):823~825.
    [99]詹士昌,徐婕,吴俊.蚁群算法中有关算法参数的最优组合选择[J].科技通报, 2003, 19(5):29~34.
    [100]刘修善,苏义脑.钻井液脉冲信号的传输特性分析[J].石油钻采工艺,2000,22(4):8~10.
    [101]常子恒.石油勘探开发技术[M].北京:石油工业出版社,2001.
    [102]苏义脑,盛利民,王家进,等.一种接收和检测泥浆压力脉冲信号的方法及装置[P].中国专利: CN1657740,2005-08-24
    [103] T.L. Brandon, M.P. Mintchev, Herb Tabler. Adaptive Compensation of the Mud Pump Noise in a Measurement-While-Drilling System [J]. June 1999,SPE Journal 4(2):128~133
    [104] T.Robert,R.D.Sandra,S.Pengyu,et al.Digital Signal Receiver for Measurement While Drilling System Having Noise Cancellation [P].US Patent:6741185,2001-11-15
    [105] Inhyok Cha.Channel Equalization Using Adaptive Complex Radial Basis Function Networks[J]. IEEE Journal on Selected Areas in Communications, Vol. 13, No.1,January 1995
    [106]王兴亮.通信系统原理教程[M].西安:西安电子科技大学出版社,2007.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700