用户名: 密码: 验证码:
装备系统测试性需求分析技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
装备测试性设计是提高装备测试与诊断能力、降低全寿命周期费用的关键,是提高装备的可用性、战备完好性和任务成功性的重要途径。测试性需求分析(Testability Requirement Analysis)是指根据装备系统的使用要求和约束条件,明确装备的测试性设计要求内容和确定测试性指标的过程,是开展测试性工程的基础和首要环节。由于缺乏科学、合理的测试性需求分析理论、模型和方法,目前复杂装备系统测试性工作存在着测试性需求不明确、指标要求不合理、需求分析和指标确定凭经验等问题,影响着测试性工程的应用与发展。
     本文从系统的角度,重点对测试性需求影响因素分析、建模、指标体系和指标确定等理论与技术进行深入研究。其主要研究内容与结论如下:
     1.装备系统测试性需求影响因素分析
     在分析测试性需求内涵的基础上,从系统工程的角度分析给出了全系统全寿命周期的测试性需求影响因素;重点分析了装备系统任务要求、功能结构要求、可靠性要求、维修保障要求、性能要求和可利用/可达技术等对测试性需求的影响;面向任务需求,定量分析了可用度和任务成功率等性能指标对测试性需求和指标确定的影响,为开展测试性需求分析和确定测试性指标奠定基础。
     2.装备测试性指标体系构建技术研究
     首先进行测试性参数分析和优化选择,给出关键的测试性指标集合;然后提出面向系统结构、任务阶段和工程阶段的三维综合测试性指标体系,分析指标体系中指标的传播过程、指标体系选择方法和指标确定流程,明确测试性需求分析输出的测试性指标体系,理清论证部门、设计部门和使用部门相应的测试性指标体系及指标要求之间的关联关系。
     3.基于UML-GSPN的测试性需求信息建模技术研究
     提出基于统一建模语言(Unified Modeling Language,UML)和广义随机Petri网(Generalized Stochastic Petri Nets,GSPN)相结合的测试性需求信息建模方法(UML-GSPN)。首先提出面向测试性需求的UML-GSPN集成建模过程,构建基于UML的测试性需求信息描述模型,有效地将自然语言描述的测试性需求影响因素统一到一个信息模型框架下;在此基础上提出测试性需求信息的UML模型到GSPN的转换方法,实现测试性需求信息非形式化描述到形式化描述的转变,从而为分析求解测试性需求和确定测试性指标要求奠定基础。
     4.装备测试性需求分析建模与指标确定方法研究
     (1)首先提出基于广义随机Petri网(Generalized Stochastic Petri Nets,GSPN)的一般系统测试性需求分析模型和指标确定方法,解决了装备系统测试性指标科学合理确定的问题;然后针对具有下一层级的测试需求、维修保障等更多的需求信息及系统上下层需求之间存在关联关系的情况,提出基于GSPN的多层级测试性需求分析模型,采用分层模型将整个GSPN自顶向下逐步分解为多个压缩子网,利用等效变迁法则,以定性分析与定量计算相结合的方法,逐步分析求解各层级测试性指标要求。该方法获得的系统及各层级测试性指标更加科学合理,为复杂装备的测试性需求分析和指标确定提供一种新的更加科学和有效的方法。
     (2)针对复杂装备系统具有多阶段任务性、多状态变迁的特点,提出基于确定与随机Petri网(Deterministic and Stochastic Petri Net,DSPN)的多阶段任务系统(Phased-Mission System,PMS)测试性需求分析模型,采用阶段网(PhN)和系统网(SN)有效描述多阶段任务的系统状态测试性需求信息,并提出阶段任务间状态转换模型,将系统性能要求和阶段任务需求有机结合,通过对DSPN模型进行分析求解,在满足系统性能要求和相关约束下,确定装备系统测试性指标;最后通过案例验证该方法的有效性。
     5.方法验证与工程应用
     以导弹为研究对象,通过获取和输入测试性需求影响因素,建立基于UML-GSPN的测试性需求模型,采用本文提出的测试性指标确定方法分别确定多阶段任务指标体系、系统层指标体系、分系统层指标体系,最后构成导弹系统的综合测试性指标体系。结果表明本文所提测试性需求和指标确定思路和方法的可行性、合理性和有效性。
     总之,论文通过理清测试性需求分析影响因素和指标参数体系,建立了基于UML-GSPN的测试性需求描述模型,在此基础上建立了一套测试性需求参数指标确定方法,科学地解决了目前测试性需求分析无从下手的工程技术难题,具有重要的学术和工程实际应用价值。
Design for testability (DFT) is a key technique to improve equipment test and diagnosis capability and to decrease life cycle cost (LCC). DFT can also enhance the equipment availability, combat readiness and mission success. As the basis and key stage of testability engineering, testability requirement analysis is the process of confirming testability design content and determining testability indices, according to the operation requirements and constrains. Due to the lack of theory, model and method for testability requirement analysis, there are some significant problems in DFT of complex equipments, such as testability requirements uncertainty, testability indices irrationality, testability requirements and indices empiricism, which influence the application and development of testability engineering.
     In this dissertation, it is deeply researched the theories and techniques of testability requirement influencing factors analysis, modeling, indices architecture and indices determination. The main contents and conclusions are as follows.
     1.Analysis on the influence factors of testability requirement for equipment. Firstly, the testability requirement influencing factors for whole system and life cycle are analyzed with the analysis of testability requirement essence. Then, the factors of system requirement, which influence testability requirement, are analyzed, such as mission requirement, functional requirement, reliability requirement, maintenance and support requirement, system performance requirement and usable and reachable technology. Finally, the effect of availability and mission success probability on testability requirement and indices determination is analyzed quantitatively, it establishes the foundation for testability requirement analysis and indices determination.
     2.Study on the construction technique for testability indices architecture.
     Firstly the key testability indices set is gained with testability parameters analysis and selection optimization. Secondly it is set up the three-dimensional synthetically testability indices architecture for system structure, mission pattern and project phase. Then with the analysis of the propagation process, indices architecture selection and indices determining process, the output testability indices architecture of testability requirement analysis is designated. Finally it is clarified the relationship among testability indices architecture and indices requirement for demonstration department, design department and users.
     3.Study on the testability requirement information modeling technology based on UML-GSPN.
     The testability requirement information modeling method is proposed based on combination of unified modeling language (UML) and Generalized Stochastic Petri Nets (GSPN). It proposes the UML-GSPN integration modeling method for testability requirement information, and sets up the testability requirement information description model based on UML, which can effectively unify the natural language described testability requirement influencing factors with an information model framework. Base on the previous models, the transition method from UML model to GSPN is put forward to make the testability information transform from non-formalized mode to formalized mode, which establishes the foundation of testability indices requirement.
     4.Study on the testability requirement modeling and indices determination method.
     (1) Firstly, it is proposed the normal testability requirement analysis model and indices determination method based on GSPN, which can determine system testability indices reasonable. Secondly, for system has requirement informations of its sub-level and the requirement informations between different levels are relevant, the multi-level testability requirement analysis model is built up. Then, the whole GSPN is decomposed into multi-reduced subnets. Finally, based on the equivalent transition principle, testability indices requirements of each level are analyzed and solved step by step, with combination method of qualitative analysis and quantitative computation. The results indicate that the testability indices about system level and other levels are more scientific and reasonable. This method is novel and effective for complex equipment testability analysis and indices determination.
     (2) Aiming at the multi-phased missions and multi-state transitions in complex equipment, it is proposed a phased-mission system (PMS) testability requirement analysis model based on deterministic and stochastic Petri net (DSPN), which can effectively describe multi-phased mission and system state information about testability requirement by phased net (PhN)and system net (SN). It is built up a transition model between phased mission state, which combines system performance requirement and phased mission requirement effectively. By analyzing the DSPN model, the system level testability indices are determined, which satisfy the system performance requirement and relative constrains. Finally, the application results demonstrate the validity of the method.
     5.Method validation and engineering application.
     The application in a missile system validates the efficiency of the presented methods. The testability requirement model based on UML-GSPN is constructed by collecting and inputting the testability requirement influencing factors. Then it is respectively determined multi-phase mission system indices architecture, system level indices architecture and sub-system level indices architecture. Finally the synthetically testability indices architecture of missile system is constructed. The results show that the testability requirement analysis and indices determination method is feasible and reasonable.
     In summary, testability requirement influencing factors and indices architecture are clarified in the paper, and testability requirement description model is built up based on UML-GSPN. Based on the previous research, a method of testability indices determination is set up to solve the testability requirement analysis problem effectively. These researches have some academic and practical significance.
引文
[1] MIL-STD-2165A. Military Standard Testability Program for Systems and Equipments[S]. 1993.
    [2] GJB 2547-95,装备测试性大纲[S]. 1995.
    [3]温熙森,徐永成,易晓山等.智能机内测试理论与应用[M].北京:国防工业出版社, 2002.
    [4]曾天翔.电子设备测试性及诊断技术[M].北京:航空工业出版社, 1996.
    [5] Emmert G. Method for Improving Design Testability through Modeling[C]. IEEE Autotestcon Proceedings, Orlando, FL, 2010: 1-4.
    [6] Watterson J. W., Royals M., Kanopoulos N. Chip-level Testability Requirements Guidelines[R]. Rome Laboratory, 1992.
    [7]林志文,贺喆,郭丽华. D矩阵在舰船超短波设备综合诊断中的应用[J].计算机测量与控制, 2009, 17(11): 2105-2108.
    [8] HB/Z301-1997,航空电子系统和设备测试性设计指南[S]. 1997.
    [9] GJB 1909-94,装备可靠性维修性参数选择和指标确定要求[S]. 1994.
    [10] GJB 3970-2000,军用地面雷达测试性要求[S]. 2000.
    [11] SJ 20695-1998,地面雷达测试性设计指南[S]. 1998.
    [12] GJB 4260-2001,侦察雷达测试性通用要求[S]. 2001.
    [13] SJ 20838-2002,指挥自动化系统设备BITE通用要求[S]. 2002.
    [14] QJ 3051-1998,,航天产品测试性设计准则[S]. 1998.
    [15] Mansoor A., Ubaid M. A. Quantitative Reliability Evaluation of Repairable Phased-Mission Systems Using Markov Approach[J]. IEEE Transactions on Reliability, 1986, 35(v): 498-503.
    [16] OMG. Requirements Analysis for UML for Systems Engineering(Draft V0.4)[R]. 2003.
    [17] Davis A. M. Software Requirements:Objects,Functions,and States[M]. NJ: Prentice Hall, 1993.
    [18] Wiegers K. E.,陆丽娜等译.软件需求[M].北京:机械工业出版社, 1994.
    [19] Robertson S., Robertson J.著.,王海鹏译.掌握需求过程[M].北京:人民邮电出版社, 2003.
    [20]李明树,王青.需求工程研究现状[J].中国计算机用户, 1999, 395(47).
    [21]李师贤,张珞玲.需求分析的常见问题及其对策分析[J].计算机工程, 2002, 28(1): 6-8.
    [22] Khalid S., Zehra S., Zehra S. Analysis of Object Oriented Complexity and Testability Using Object Oriented Design Metrics[C]. NSEC'10, Rawalpindi, Pakistan, 2010.
    [23]郑华林,刘飞,王逢春等.面向大规模定制的产品需求建模方法研究[J].中国机械工程, 2003, 14(6): 471-474.
    [24] Bukata E., Davis D. C., Shombert L. The Use of Model-based Test Requirements Throughout the Product Life Cycle [J]. IEEE Aerospace and Electronic Systems Magazine, 2000, (2): 39-44.
    [25] IEEE P1598/D3.0, Draft Standard for the Test Requirements Model(TeRM)[S]. 2003.
    [26] Shombert L., Bukata E. Test Requirements Model (TeRM) Overview and Status[C]. IEEE Autotestcon Proceedings, 2000: 380-387.
    [27] Lohse J. J., Trimpe T. D. Enveloping Test Requirements Across Product Life Cycle Phases[C]. IEEE Autotestcon Proceedings, 2002: 306-315.
    [28] Barton D. L. The Relation of Test Requirements Models to other Requirements Models[C]. IEEE Systems Readiness Technology Conference, AutoTestCon 2001: 63-70.
    [29] Barton D. L. The Relation of Test Requirements Models to Other Requirements Models[C]. IEEE Autotestcon Proceedings, 2001: 63-70.
    [30] Klion J. A Rational and Approach for Defining and Structuring Testability Requirements[R]. Rome Air Development Center, 1985.
    [31]田仲,石君友.系统测试性设计分析与验证[M].北京:北京航空航天大学出版社, 2003.
    [32]陈万创.地空导弹武器系统可测试性要求与分配[J].上海航天, 1995, (3).
    [33]常亮明.测试性参数及其指标分配[J].质量与可靠性, 1996, (4): 35-37.
    [34]田仲.测试性分配方法研究[J].北京航空航天大学学报, 1999, 25(5): 607-610.
    [35]陈万创.新一代地空导弹武器系统测试性要求与指标分配[J].测控技术, 1997, 16(6): 4-7.
    [36]沈亲沐.装备系统级测试性分配技术研究及应用[D].长沙:国防科学技术大学硕士学位论文, 2007.
    [37] Michael G. M., Walter W. W. Chip to System Testability[R]. Rome Laboratory, 1996.
    [38] McGrath J. N. Improved Testability Provisions for Boiling Water Reactors[C]. IEEE Transactions on Nuclear Science, 1976: 782-784.
    [39] Brocchi R. Can Avionic Testability Requirements be Enforced?[C].International Automatic Testing Conference, 1978: 282-285.
    [40] Roche J. M. Avionics Design for Testability : an Aircraft Contractor's Viewpoint[C]. International Automatic Testing Conference, 1978: 286-293.
    [41] Loo T. Testability Considerations in High-Performance Avionics Processors[C]. IEEE/AIAA 11th Digital Avionics Systems Conference, 1992: 553-557.
    [42]许国志.系统科学[M].上海:上海科技教育出版社, 2000.
    [43] Checkland P. Systems Thinking, Systems Practice[M]. Wiley: Chichester, 1981.
    [44] Flood R. L., Jackson M. C. Creative Problem Solving - Total System Intervention[M]. John Wiley & Sons Ltd, 1991.
    [45]顾基发.系统工程方法论的演变[C].中国系统工程学会第八届学术年会, 1994: 42-53.
    [46]顾基发,高飞.从管理科学角度谈物理-事理-人理系统方法论[J].系统工程理论与实践, 1998, (8): 1-5.
    [47]杨为民.可靠性维修性保障性总论[M].北京:国防工业出版社, 1995.
    [48] GJB 450-88,装备研制与生产的可靠性通用大纲[S]. 1988.
    [49] GJB 368A-94,装备维修性通用大纲[S]. 1994.
    [50] Vianna B. S., Cunha E. B., Boin F. F. Hardware Quality Control in the TROPICO System[C]. IEEE International Conference on Communications, 1988: 632-636.
    [51] Mulder D., Sinkevich V., McCarson T. D., et al. System Testability: a Russian Solution for Space Power Systems[C]. Space Programs and Technologies Conference, Huntsville, AL, 1995: 1-10.
    [52] Larsson E. An Integrated System-Level Design for Testability Methodology[D]. Department of Computer and Information Science, Link?pings University, 2000.
    [53] Vujosevic R. Maintainability Analysis in Concurrent Engineeiring of Mechanical Sys tem , CE Concurernt Engineering: Research and Application[J]. 1997.
    [54] Beshears R., Butler L. Designing for Health: a Methodology for Integrated Diagnostics/Prognostics[C]. IEEE Autotestcon Proceedings, 2005: 90-95.
    [55]刘江华.履带式自行火炮底盘测试性研究[D].北京:北京理工大学, 2003.
    [56]朱竟夫,赵碧君,杨忠国等.武器装备测试性设计探讨[J].测试技术学报, 2002, 16: 43-48.
    [57]吕晓明,黄考利,连光耀等.复杂装备系统级测试性指标确定方法研究[J].计算机测量与控制, 2008, 16(3): 357-359.
    [58]刘宝友,方攸同,魏金祥等.状态维修机械设备的可靠性和检测更换策略[J].机械工程学报, 2006, 42(3): 30-35.
    [59] Hosseini M. M., Kerr R. M., Randall R. B. An Inspection Model with Minimal and Major Maintenance for a System with Deterioration and Poisson Failures[J]. IEEE Transactions on Reliability, 2000, 3: 88-98.
    [60]苏春,黄茁,许映秋.基于可用度和维修成本的设备维修建模与优化[J].中国机械工程, 2007, 18(9): 1096-1099.
    [61] Kumar S., Dandotiya R., Kumar R. Inspection Frequency Optimization Model for Degrading Flowlines on an Offshore Platform[J]. International Journal of Reliability, Quality and Safety Engineering, 2008, 15(2): 167-180.
    [62] Aly a. a. Performance Models of Testability[R]. ADA146255, 1984.
    [63]熊海林,沈永福,邓方林等.库存导弹定期检测模型的数字仿真研究[J].系统仿真学报, 2000, 12(3): 219-221.
    [64] Krantz F. M., Liberati G. L., Panrons J. F. Study on the Operational and Logistics Impact on System Readiness. [R]. ADA201346 1989.
    [65] David M. B., Brian A. K., Alony H. Automated Testability Decision Tool[R]. Rome Laboratory Air Force Systems Command Griffiss AFB NY, 1991.
    [66]王刚.装备测试性参数优化选择技术研究[D].长沙:国防科学技术大学, 2010.
    [67]常亮明.测试性参数及其指标分配[J].质量与可靠性, 1996, 64(4): 35-38.
    [68]朱力立,李庄生,许宗泽.飞机综合航电系统总体设计综合评估方法[J].航空学报, 2007, 28(3): 685-689.
    [69]彭万宝,李彦,赵武等.产品开发需求分析技术研究[J].机械工程学报, 2006, 33(4): 44-46.
    [70]王博,刘媛,洪其麟等.对军用航空发动机可靠性参数体系选择和指标确定的探讨[J].燃气涡轮试验与研究, 2003, 16(2): 38-42.
    [71]徐廷学.浅谈导弹武器系统保障性参数体系[J].飞航导弹, 1999, (7): 1-3.
    [72]李媛媛.飞机总体设计评估智能论证[D].西北工业大学硕士学位论文, 2007.
    [73]孙志学.武器装备可靠性与维修性指标体系[J].四川兵工学报, 1994, 15(4).
    [74]王自力.直升机可靠性、维修性指标研究[J].航空学报, 1995, 16(8): 20-27.
    [75]李根成,姜同敏.空空导弹可靠性指标体系研究[J].中国惯性技术学报, 2006, 14(4): 88-92.
    [76]江妙富.装备可靠性维修性保障性要求验证总体方案技术研究[D].北京航空航天大学硕士学位论文, 2004.
    [77]王厚军.可测性设计技术的回顾与发展综述[J].中国科技论文在线, 2008, 3(1): 52-58.
    [78]杨华冰,李执力,何清华.对武器系统RMS指标的研究[J].火力与指挥控制, 2005, 30(7): 77-80.
    [79]徐廷学,李光.确定导弹武器系统保障性指标的思考[J].现代防御技术, 2001, 29(4): 36-38.
    [80]董文洪,徐廷学.确定导弹武器系统保障性指标的研究[J].弹箭与制导学报, 2005, 25(4): 885-887.
    [81]马原.支持大规模定制的产品需求管理系统研究与实现[D].杭州:浙江大学博士学位论文, 2004.
    [82]郭伟,王凤岐,杜玉明等.产品生命周期需求的分析及其间映射方法的研究[J].机械工程学报, 1998, 34(5): 40-48.
    [83]张和明,熊光楞.产品需求获取及其结构化建模方法[J].计算机集成制造系统—CIMS, 2001, 7(10): 18-21.
    [84]戴若夷,谭建荣,李涛.面向大规模定制的广义需求建模方法及实现技术研究[J].计算机辅助设计与图形学学报, 2003, 15(4): 467-474.
    [85]高鹏,林兰芬,蔡铭等.基于本体映射的产品配置模型自动获取[J].计算机集成制造系统—CIMS, 2003, 9(9): 810-816.
    [86]林志航,车阿大.质量功能部署研究现状及进展[J].机械科学与技术, 1998, 17(1): 119-122.
    [87]袁贵勇,刘晓东. QFD方法在空战武器装备需求分析中的应用[J].装备指挥技术学院学报, 2004, 15(4): 23-26.
    [88]常天庆,刘晓斌.一种基于QFD的结构化装备作战需求论证方法[J].装甲兵工程学院学报, 2003, 17(2): 17-20.
    [89]翟丽.质量功能展开技术及其应用综述[J].管理工程学报, 2000, 14(1): 52-60.
    [90]刘继民,黄金波,刘立泽等.质量功能展开在生成装备维修牲设计要求中的应用[J].机械制造, 2006, 44(8): 59-61.
    [91]方程.基于Zachman框架的信息系统需求工程建模方法[J].重庆交通学院学报, 2007, 26(2): 155-159.
    [92]孙昌爱,金茂忠,刘超等.一种基于UML的面向对象需求分析方法[J].航空学报, 2003, 24(1): 75-78.
    [93]沈如松,张育林.基于UML的武器装备体系需求描述[J].系统工程与电子技术, 2005, 27(2): 270-274.
    [94]王智学.一种业务概念模型驱动的需求分析与获取方法[J].军事运筹与系统工程, 2006, 20(1): 18-22.
    [95] Perdu D. Requirements Specification with Petri Nets Using the Cube Tool Methodology[M]. 1989.
    [96]罗雪山,罗爱民,张耀鸿. Petri网在C4ISR系统建模、仿真与分析中的应用[M].长沙:国防科技大学出版社, 2007.
    [97]邱建雄,谭东风. C3I系统功能需求的Petri网模型[J].数学理论与应用, 2001, 21(1): 49-54.
    [98]沈如松,张育林.基于UML和Petri网的武器装备体系需求分析方法[J].系统工程理论与实践, 2006, (1): 136-140.
    [99]齐胜利,武昌,赵晓明等. UML-OPN的建模方法及其在通信装备维修保障系统中的应用[J].系统工程理论与实践, 2006, (10): 50-56.
    [100] Basile F., Chiacchio P., Grosso D. D. A Two-stage Modelling Architecture for Distributed Control of Real-time Industrial Systems: Application of UML and Petri Net[J]. Computer Standards & Interfaces, 2009, 31: 528-538.
    [101]郑怀洲,刘兵.装备指挥训练模拟需求概念模型研究[J].系统仿真学报, 2009, 21(10): 28-31.
    [102]钱彦岭,邱静,温熙森.确定系统级测试性参数的广义随机Petri网模型[J].系统工程与电子技术, 2002, 5: 4-7.
    [103] Ministry of Defence Defence Standard 00-42, Reliability and Maintainability(R&M) Assurance Guide[S]. 2002.
    [104]聂冲.基于过程模型的导弹总体优化设计框架及其关键技术研究[D].长沙:国防科学技术大学博士学位论文, 2006.
    [105]甘茂治,康建设,高崎.军用装备维修工程学[M].北京:国防工业出版社, 1999.
    [106] Schroeder G. J., Johnson M. M. Complex Availability: The New Availabily Problem[C]. Proceedings Annual Relability and Maintainability Symposium, 1990: 268-274.
    [107]杜晓明.非确定多属性决策理论方法及在维修性设计中的应用[D].南京:南京理工大学博士学位论文, 1998.
    [108]陈圣斌.现代武装直升机可靠性和维修性的参数选择和指标确定[J].直升机技术, 2001, (1): 25-32.
    [109]许萌,李执力,王鹏.武器装备的“五性”工作研究[J].国防技术基础, 2009, (9): 26-29.
    [110]李凡,卢形富.某型导弹武器系统综合保障仿真研究[J].华中科技大学学报, 2001, 29(8): 56-58.
    [111]康锐,章国栋,吕川.可靠性维修性保障性效能模型研究[J].北京航空航天大学学报, 1999, 25(2): 232-234.
    [112]聂俊华.可靠性维修性保障性CAD框架研究[D].北京:北京航空航天大学硕士学位论文, 2000.
    [113]吕明春,王旭,张延坤等.装备综合保障相关问题的探讨[J].质量与可靠性, 2010, (2): 12-15.
    [114]王醒华,田仲.确定测试性设计要求的方法[J].测控技术, 1995, 14(6): 9-12.
    [115] Huang C. C., Kuo C. M. The Transformation and Search of Semi-structured Knowledge in Organizations[J]. Journal of Knowledge Management, 2003, 17(4): 106- 123.
    [116]郭继周.作战单元维修保障资源优化配置建模研究[D].长沙:国防科学技术大学博士学位论文, 2007.
    [117]李世英,曲长征,薛文力.信息化装备体系的RMS参数体系框架研究[J].装甲兵工程学院学报, 2008, 22(6): 39-42.
    [118]吴利荣,王建华.基本可靠性和任务可靠性模型研究[J].现代制造工程, 2004, (4): 24-25,37.
    [119] Beniaminy I., Joseph D. Reducing the "No Fault Found" Problem: Contributions from Expert-system Methods [C]. IEEE Aerospace Conference Proceedings, Big Sky,MT,USA, 2002: 2971-2973.
    [120] Thomas D. A., Ayers K., Pecht M. The 'Trouble Not Identified' Phenomenon in Automotive Electronics[J]. Microelectron Reliability, 2002, 42(4): 641-651.
    [121] McCullough B. No-Fault-Found PCBs: If It Ain't Broke, Don't Swap it[J]. Electron Test, 1988, 11(5): 57-61.
    [122]周鸣岐.国外导弹武器系统维修性概述[C].航天可靠性学术交流会, 2006: 180-185.
    [123] Dalas S. W., Jenkins J. C. Two-level Maintenance for Missile Systems[C]. IEEE AutoTestCon, 1989: 347-350.
    [124]王乃超,康锐.备件需求产生、传播及解析算法研究[J].航空学报, 2008, 29(5): 1163-1167.
    [125]刘明,左洪福.航空维修策略研究[J].飞机设计, 2007, 27(3): 42-45.
    [126] James I., Lumbard D., Willis I., et al. Investigating No Fault Found in the Aerospace Industry.[C]. Reliability and Maintainability Symposium, Tampa ,FL,USA, 2003: 441-446.
    [127] IEEE Std 1500-2005, IEEE Standard Testability Method for Embedded Core-based Integrated Circuits[S]. 2005.
    [128] Yang L. T., Muzio J. Testing Methodologies for Embedded Systems and Systems-on-Chip[C]. ICESS, 2004: 15–24.
    [129] O'Donnell S. J., Zarcone A. Managing Evolving Hardware and Software Requirements[J]. IEEE, 2009.
    [130] Franco J. R. Using Integrated Diagnostics on Automatic Test Equipment[C]. AUTOTESTCON, IEEE Systems Readiness Technology Conference, 1991: 337-343.
    [131] Ravikumar C. P., Saund G. S., Agrawal N. A STAFAN-like Functional Testability Measure for Register-level Circuits[C]. Test Symposium, Proceedings of the Fourth Asian, 1995: 192-198.
    [132] Minh C. C., Chung J. W., Kozyrakis C., et al. STAMP: Stanford Transactional Applications for Multi-Processing[C]. IEEE International Symposium on Workload Characterization, 2008: 35-46.
    [133] Larsson E., Arvidsson K., Fujiwara H., et al. Efficient Test Solutions for Core-based Designs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2004, 23(5): 758-775.
    [134]莫毓昌,杨孝宗,崔刚等.一般阶段任务系统的任务可靠性分析[J].软件学报, 2007, 18(4): 1068-1076.
    [135]陈玉波,于永利,张柳等.多阶段任务系统(PMS)可靠性模型研究[J].系统工程与电子技术, 2006, 28(1): 146-149.
    [136]何书元,赵宇,房祥忠.估计不同阶段和环境下的设备可靠性[J].北京大学学报(自然科学版), 2008, 44(3): 331-334.
    [137]任建军,张恒喜,尚柏林.航空装备可靠性使用指标确定方法研究[J].系统工程与电子技术, 2002, 24(12): 123-125.
    [138] Booch G., Rumbaugh J., Jacobson I. UML用户指南[M].北京:机械工程出版社, 2004: 52-61.
    [139]刁成嘉. UML系统建模与分析设计[M].北京:机械工业出版社, 2007: 31-56.
    [140] Bouabana-Tebibel T., Belmesk M. Formalization of UML Object Dynamics and Behavior[C]. IEEE International Conference on Systems,Man andCybernetics, Hague,Netherlands, 2004: 4971-4976.
    [141] Kong J., Zhang K., Dong J., et al. Specifying Behavioral Semantics of UML Diagrams Through Graph Transformations[J]. The Journal of Systems and Software, 2009, 82: 292-306.
    [142]袁崇义. Petri网原理与应用[M].北京:电子工业出版社, 2005.
    [143]江志斌. Petri网及其在制造系统建模与控制中的应用[M].北京:机械工业出版社, 2004.
    [144]林闯.随机Petri网和系统性能评价[M].北京:清华大学出版社, 2005: 19-35.
    [145]吴哲辉. Petri网导论[M].北京:机械工业出版社, 2006.
    [146] Liu T. S., Chiou S. B. The Application of Petri Nets to Failure Analysis[J]. Reliability Engineering and System Safety, 1997, 57(6): 129-142.
    [147] Volovoi V., Kavalieratos G., Waters M., et al. Modeling the Reliability of Distribution Systems Using Petri Nets[C]. International Conference on Harmonics and Quality of Power, Atlanta,USA, 2004: 567-572.
    [148] Barkaoui K., Florin G., Fraize C., et al. Reliability Analysis of Non Repairable Systems Using Stochastic Petri Nets [C]. International Symposium on Fault-Tolerant Computing,, Paris, France, 1988: 90-95.
    [149] Holliday M. A., Vernon M. K. A Generalized Timed Petri Net Model for Performance Analysis[J]. IEEE Transactions on Software Engineering, 1987, 13(12): 1297-1310.
    [150] Carneiro J. S. A., Ferrarini L. Reliability Analysis of Power System Based on Generalized Stochastic Petri Nets [C]. Proceedings of the 10th International Conference on Probablistic Methods Applied to Power Systems 2008: 1-6.
    [151] Al-Jaar R. Y. Performance Evaluation of Automated Manufacturing Systems Using Generalized Stochastic Petri Nets[D]. New York: Rensselaer Polytechnic Institute, 1989.
    [152] Zhan H., Gu J. Study of the Normal Generalized Stochastic Petri nets and its Application in Testing System[C]. Instrumentation and Measurment Technology Conference, Sorrento, Italy, 2006: 1123-1128.
    [153] Jin Y. C., Reveliotis S. A. A Generalized Stochastic Petri Net Model for Performance Analysis and Control of Capacitated Reentrant Lines[J]. IEEE Transctions on Robotics and Automation, 2003, 19(3): 474-480.
    [154]张俊星,张纪会,张宏.基于规则专家系统的广义随机Petri网仿真分析模型[J].系统仿真学报, 1998, 10(2): 41-46.
    [155] Bernardi S., Donatelli S., Merseguer J. From UMlL Sequence Diagrams andStatecharts to analysable Petri Net models[C]. Proc. 3rd Int. Workshop on Software and Performance, Rome,Italy, 2002: 35-45.
    [156] Distefano S., Scarpa M., Puliafito A. From UML to Petri Nets: the PCM-based Methodology[J]. IEEE Transactions on Software Engineering, 2010, (1): 1-16.
    [157] Bernardi S., Donatelli S., Merseguer J. From UML Sequence Diagrams To Stochastic to analysable Petri Net models[C]. Workshop on Software and Performance(WOSP 2002), Rome, Italy, 2002: 35-45.
    [158] Lo'pez-Grao J. P., Merseguer J., Campos J. From UML Activity Diagrams To Stochastic Petri Nets: Application to Software Performance Engineering[C]. Int. Workshop on Software and Performance, Redwood City, CA, 2004: 25-36.
    [159]刘丹.基于扩展UML的嵌入式系统开发方法的研究[D].沈阳:中国科学院沈阳自动化研究所, 2005.
    [160]柳毅,麻志毅,何啸等.一种从UML模型到可靠性分析模型的转换方法[J].软件学报, 2010, 21(2): 287-304.
    [161]孙莹. Petri网和UML在建模过程中的转换机制研究[D].大连:大连海事大学硕士学位论文, 2008.
    [162] Bernardi S., Donatelli S., Merseguer J. From UML Sequence Diagrams and Stochastic to analysable Petri Net models[C]. Workshop on Software and Performance(WOSP 2002), Rome, Italy, 2002: 35-45.
    [163]徐景辉.基于UML-Petri网模型的实时系统的研究[D].上海:复旦大学硕士学位论文, 2005.
    [164] Lee K. H., Fabrel J. Hierarchical Reduction Method for Analysis and Decomposition of Petri Nets. [J]. IEEE Transactions on System, Man, Cybernetics., 1985, SMC-15(2): 272-280.
    [165] www.ee.duke.edu/~kst/software_packages.html[M]. 2011,3.
    [166]聂成龙,张柳,于永利等.多阶段任务系统任务持续能力数学评价模型研究[J].军械工程学院学报, 2007, 19(2): 7-12.
    [167] Kim K., S.Park K. Phased-mission system reliability under Markov environment [J]. IEEE Transactions on Reliability, 1994, 43(2): 301-309.
    [168] Xing L. D. Analysis of Generalized Phased-Mission System Reliability, Performance, and Sensitivity[J]. IEEE Transactions on Reliability, 2002, 51(2): 199-211.
    [169] Alam M., Al-Saggaf U. M. Quantitative Reliability Evaluation of Repairable Phased-Mission Systems Using Markov Approach [J]. IEEE Transactions on Reliability 1986, 35(5): 498-503.
    [170] Xing L. D., Dugan J. B. Generalized Imperfect Coverage Phase-MissionAnalysis[C]. Proceedings Annual Reliability and Maintainability Symposium, 2002: 112-119.
    [171] Mo Y. C., Siewiorek D., Yang X. Z. Mission Reliability Analysis of Fault-Tolerant Multiple-Phased Systems[J]. Reliability Engineering and System Safety, 2008, 93: 1036-1046.
    [172] Lesanovsky A. Multistate Markov Models for Systems with Dependent Units[J]. IEEE Transactions on Reliability, 1988, 37(5): 505-511.
    [173] Vaurio J. K. Fault Tree Analysis of Phased Mission Systems with Repairable and Non-Repairable Components[J]. Reliability Engineering and System Safety, 2001, 74: 169-180.
    [174] Xing L. D., Dugan J. B. Reliability Analysis of Phased-Mission Systems with Combinatorial Phase Requirements[C]. Proceedings Annual Reliability and Maintainability Symposium, 2001: 344-351.
    [175] Chew S. P., Dunnett S. J., Andrews J. D. Pased Mission Modelling of Systems with Maintenance-free Operating Periods Using Simulated Petri Nets[J]. Reliability Engineering and System Safety, 2008, 93: 980-994.
    [176] Marsan M. A., Conte G. A Class of Generalized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems[J]. ACM Transactions on Computer Systems, 1984, 2(2): 93-22.
    [177] Marsan M. A., Chiola G. On Petri Nets with Deterministic and Exponentially Distributed Firing Times.[C]. Advances in Petri Nets, 1987: 132-145.
    [178] Lindemann C., Thummler A. Transient Analysis of Deterministic and Stochastic Petri nets with Concurrent Deterministic Transitions[J]. Performance Evaluation, 1999, 36: 35-54.
    [179] Choi H., Mainkar V., Trivedi K. S. Sensitivity Analysis of Deterministic and Stochastic Petri Nets[C]. International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, San Diego, USA, 1993.
    [180] Bondavalli A., Chiaradonna S., Giandomenico F. D., et al. Dependability Modeling and Evaluation of Multiple-Phased Systems Using DEEM[J]. IEEE Transactions on Reliability, 2004, 53(4): 509-522.
    [181] Mura I., A.Bondavalli, Zang X., et al. Dependability Modeling and Evaluation of Phased-Mission Systems: a DSPN Approach[C]. Conference on Dependable Computing for Critical Applications, 1999: 299-318.
    [182] Mura I. Markov Regenerative Stochastic Petri Nets to Model and Evaluate Phased Mission Systems Dependability[J]. IEEE Transactions on Computers, 2001, 50(12): 1337-1351.
    [183] Kulkarni V. G. Modeling and Analysis of Stochastic Systems[M]. Chapman-Hall, 1995: 14.
    [184] Choi H., Kulkarni V. G., Trivedi K. S. Transient analysis of deterministic and stochastic Petri Nets[C]. Proc. 14th International Conference on Application and Theory of Petri Nets, Chicago Illinois, USA, 1993: 166-185.
    [185] V.G.Kulkarni. Modeling and analysis of stochastic systems[M]. Chapman-Hall, 1995: 14.
    [186] Ambler A. P., Bassat M. B., Ungar L. Y. Economics of Diagnosis[C]. IEEE Autotestcon Proceedings 1997: 435-445.
    [187] Williams D., Ambler A. P. System Manufacturing Test Cost Model[C]. International Test Conference, 2002: 482-490.
    [188] Ungar L. Y., Davidson S. Simplified Metrics for Evaluating Design for Testability[C]. IEEE Autotestcon Proceeding, 2009: 293-298.
    [189]卜广志,张宇文.一种新的武器总体综合设计方法[J].数学的实践与认识, 2006, 36(1): 107-114.
    [190]张恒喜,郭基联,朱家元等.小样本多元数据分析方法及应用[M].西安:西北工业大学出版社, 2002.
    [191] Luman R. R. Quantitative Decision Support for upgrading Complex Systems of Systems[D]. The School of Engineering and Applied Science of the George Washington University, Washington, 1997.
    [192]胡守信,李柏年.基于MATLAB的数学实验[M].北京:科学出版社, 2004: 63-65.
    [193]张明礼.非线性规划问题求解的计算机实现[J].武警工程学院学报, 2006, 22(2): 5-9.
    [194]于春田,李法朝.运筹学[M].北京:科学出版社, 2006.
    [195]曹卫华,郭正.最优化技术方法和MATLAB的实现[M].北京:化学工业出版社, 2005.
    [196]陈杰. MATLAB宝典[M].北京:电子工业出版社, 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700