用户名: 密码: 验证码:
通讯约束下的网络控制系统跟踪性能极限研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机、电子和网络通信技术的飞速发展,网络控制系统应运而生。网络控制系统指的是将分布于不同地理位置的传感器、控制器和执行器等设备通过一个有限带宽的数字通信网连接起来,形成的一种空间分布实时反馈闭环控制系统,克服了传统控制系统存在的成本高、可靠性差、故障诊断和维护难等诸多弊端,并由于具有信息资源能够资源共享、易于维护与扩展、高可靠性、高效率和灵活性强等优点,在工业自动化、分布式移动通信和无人机等众多领域都得到了广泛的应用。
     控制系统的稳定性和性能,一直是控制领域备受关注的两大重要课题。稳定是系统正常工作的前提,而控制系统性能极限研究的是在系统稳定的基础上,设计控制器使得系统性能达到最优。目前相关研究成果揭示出控制系统的跟踪性能极限由参考输入信号和被控对象的本质特征共同决定。然而由于网络的引入,使得基于网络的控制系统,即网络控制系统的稳定性和性能极限的研究,面临着前所未有的挑战。本文正是基于此研究通讯约束下的网络控制系统跟踪性能极限问题,全文的研究内容归纳如下:
     研究了网络控制系统在信道输入能量约束,以及输入扰动和高斯噪声影响下的跟踪性能极限。得到了系统跟踪性能极限的精确表达式。研究结果表明,网络控制系统的跟踪性能极限与被控对象的本质特征如非最小相位零点和不稳定极点的位置与方向密切相关,并揭示了输入扰动和高斯白噪声在一定程度上会恶化系统的跟踪性能,而信道允许输入的信号能量越大,网络控制系统跟踪性能越好。
     研究了数据丢包影响下的网络控制系统的跟踪性能极限。基于二进制随机过程对数据丢包进行建模,分别采用单位反馈和双自由度控制结构,得到了系统跟踪性能的一个下确界和一个精确表达式。研究结果揭示了双自由度控制结构相对于单位反馈控制可在一定程度上消除噪声等因素对网络控制系统跟踪性能的影响;而数据丢包的频繁发生,即随着数据丢包概率的增大,系统的跟踪性能将急剧恶化,严重时会使系统失稳。
     研究了基于编码-解码结构的网络控制系统跟踪性能极限。基于通信网络中编码-解码存在的不同位置(反馈通道或前馈通道),采用双自由度控制结构,跟踪给定的随机参考输入信号。研究结果表明系统的跟踪性能与被控对象的非最小相位零点、不稳定极点的位置和方向相关外,还与编码器-解码器的本质属性相关,揭示出编码器-解码器的设计可以在一定程度上提高系统的跟踪性能。
     研究了离散网络控制系统在信道输入能量约束下的跟踪性能极限,以及在控制能量约束下的调节性能极限。提出了新的优化性能指标,基于不等式约束的最优化方法,得到了跟踪性能的下界以及调节性能的精确表达式确定了信道输入能量约束下达到跟踪性能极限,以及控制能量约束下达到调节性能极限的控制器设计方法。
     研究了数据丢包、输入扰动和高斯噪声影响下的网络控制系统的稳定性。基于传递函数矩阵的全通分解、控制器的Youla参数化和不等式约束的最优化方法,得到了保证网络控制系统稳定的信噪比的最小值的表达式。研究结果定量地揭示出非最小相位零点和不稳定极点对信噪比性能的影响。所得结果从另一方面理解为网络控制系统稳定时,通信基本参量(信噪比等)和通信诱导参量(数据丢包等)之间的关系,从而可为通信信道的设计提供指导。
     针对非方阵型被控对象,以及输入扰动和高斯噪声影响下的网络控制系统跟踪性能极限进行了研究。确定了基于非方阵型被控对象的控制器Youla参数化形式,采用内外分解技术,得到了系统跟踪性能的精确表达式,并揭示出当被控对象中非最小相位零点和不稳定极点的位置充分接近时,网络控制系统的跟踪性能急剧下降。
     最后对全文进行了归纳总结,并对网络控制系统性能极限的研究和发展方向进行了展望。
With the fast development of computer, electronic and network communicationtechnique, networked control systems (NCSs) arise at the historic moment. NCSs consistsof geographically distributed sensor, controller and actuators, which are connected by abandwidth limited digital communication network, and it is a kind of spatial distributionof real-time feedback closed loop control systems. NCSs do not have shortcomings oftraditional control systems the high cost, such as poor reliability, difficulty in diagnosingand maintaining fault, and so on. Due to the advantages including shared informationresources, easy to maintain and extend, high reliability, high efficiency, flexibility, and soon, NCSs have been widely used in industrial automation, distributed mobilecommunications, unmanned aerial vehicle and many other fields.
     Being two important topics in control fields, the stability and performance of controlsystems have attracted much attention all the time. Stability is the premise for systemworking normally. While the study of performance of control systems aim to achieveperformance limitation of stable systems by designing controllers. Currently, relevantresults have revealed that the tracking performance limitations of control systems aredetermined by the essential characteristics of reference signals and the plant. However,with networks introduced into control systems, the stability and performance of NCSshave unprecedented challenges, and thus this thesis focus on the study of trackingperformance limitations of NCSs with communication constraints. The research content ofthis dissertation is outlined as follows:
     This dissertation investigated the tracking performance limitations of NCSs withchannel input power constraints, and under the effects of input disturbance and Gaussianwhite noise. The exact expression of tracking performance limitations of NCSs has beenobtained, which show that the tracking performance limitations of NCSs is closely related to the essential characteristics of the plant such as locations and directions of nonminimumphase zeros and unstable poles, and reveal that the tracking performance may be badlydegraded by input disturbance and Gaussian white noise in some degree. In anther aspect,the tracking performance of NCSs becoming better with the increase of the allowedchannel input power.
     Also, the tracking performance limitation of NCSs under effects of packet dropouts isinvestigated. The packet dropouts are modeled as a binary stochastic process. With unityfeedback and two-freedom-of-degree control structure, a lower bound and an exactexpression of tracking performance have been obtained respectively. The results revealthat compared with the unity feedback, the two-freedom-of-degree control can eliminatethe negative effect of noise on tracking performance of NCSs. In addition, due to thefrequentlyly occurs of packet dropouts, that is, with the increase with packet dropouts’probability the tracking performance will be badly degraded, even makes the NCSsunstable.
     This dissertation studied the tracking performance limitations of multi-inputmulti-output NCSs with encoder-decoder. Based on different locations of encoder-decoder(feedforward channel and feedback channel), two-freedom-of-degree controller is adoptedto track the given stochastic reference signal. The results show that the trackingperformance is tightly dependent on the characteristics of the plant and encoder-decoder,and well-designed encoder-decoder can improve the tracking performance limitations ofNCSs.
     Moreover, the tracking performance of discrete-time NCSs with channel input powerconstraints, and the regulation performance of NCSs with control energy constraints werestudied in this dissertation. A new performance index for the tracking performance isproposed. Based on the optimization method with the inequality constraints, a lowerbound of tracking performance and exact expression of regulation performance areobtained. In addition, the design methods of controllers of the tracking performance with channel input power constraints and regulation performance of NCSs with control energyconstraints have also been obtained.
     The stability problem of NCSs with packet dropouts, input disturbance and additiveGaussian white noise is studied. Base on the all-pass factorization of transfer functionmatrices, Youla parameterization of controllers and optimization method with theinequality constraints, the minimum values of signal-to-noise ratio guaranteeing thestability of NCSs are derived. The results quantitatively reveal how the signal-to-noiseratio performance is affected by the nonminimum phase zeros and unstable poles, whichcan also be understood in a different way that when NCSs is stable, the explicitrelationship between communication basic parameters (signal-to-noise ratio, etc.) andcommunication induced parameters (packet dropouts, etc.), which can give some guidancefor the design of communication channel.
     For general non-square plant, this dissertation studied the tracking performancelimitations under the effects of input disturbance and Gaussian noise. The form of Youlaparameterization of controllers for non-square plant model has been determined. Theexplicit expression of tracking performance limitations have been obtained based oninner-outer factorization.
     Finally, a summary has been proposed for all discussions in this dissertation. Thefurther study and research works are presented for the network systems.
引文
[1]张庆灵,邱占芝.网络控制系统.北京:科学出版社,2007.
    [2] Ioannis S, Baxevanos, Dimitris P. Implementing multiage systems technologyforpower distribution network control and protection management. IEEETransactions on power delivery,2007,22(1):433-443.
    [3]戴冠中,郑应平.网络化系统及其建模、分析、控制与优化.自动化学报,2002,28(增刊):60-65.
    [4]邱占芝,张庆灵,杨春雨.网络控制系统分析与控制.北京:科学出版社,2009.
    [5]李洪波,孙增圻,孙富春.网络控制系统的发展现状及展望.控制理论与应用,2010,27(2):238-243.
    [6]王飞跃,王成红.基于网络控制的若干问题的思考和分析.自动化学报,2002,28(增刊):171-176.
    [7] Zhang W, Branicky M S. Phillips S M. Stability of Networked Control Systems.IEEE Control Systems,2001,21(1):84-99.
    [8]王征,谈大龙,王向东.网络控制系统稳定性研究.控制与决策,2002,17(S1):802-804,807.
    [9] Gao H J, Meng X Y, Chen T W. Stabilization of Networked Control Systems witha New Delay Characterization. IEEE Transactions on Automatic Control,2008,53(9):2142-2148.
    [10] Yang H J, Xia Y Q, Shi P. Stabilization of Networked Control Systems withNonuniform Random Sampling Periods. International Journal of Robust andNonlinear Control,2011,21(5):501-526.
    [11] Havre K. Studies on Controllability Analysis and Control Structure Design [Ph. D.dissertation], Norwegian University of Science and Technology, Norway,1998.
    [12] Chen J, Qiu L, Toker O. Limitations on Maximal Tracking Accuracy. IEEETransactions on Automatic Control,2000,45(2):326-331.
    [13] Bode H W. Network Analysis and Feedback Amplifier Design. New York: VanNostrand,1945.
    [14] Freudenberg J S, Looze D. Right Half Plane Poles and Zeros and Design Trade-offin Feedback Systems. IEEE Transactions on Automatic Control,1985,30(6):555-565.
    [15] Freudenberg J, Looze D. A Sensitivity Trade-off for Plants with Time Delay. IEEETransactions on Automatic Control,1987,32(2):99-104.
    [16] Chen J, Nett C N. Sensitivity Integrals for Multivariable Discrete-Time Systems.Automatica,1995,31(8):1113-1124.
    [17] Sung H K, Hara S. Properties of Sensitivity and Complementary SensitivityFunctions in Single-Input Single-Output Digital Control Systems. InternationalJournal of Control,1988,48(6):2429-2439.
    [18] Braslavsky J H, Seron M M, Mayne D Q, et al. Limiting Performance of OptimalLinear Filters. Automatica,1999,35(2):189-199.
    [19] Havre K, Skogestad S. Achievable Performance of Multivariable Systems withUnstable Zeros and Poles. International Journal of Control,2001,74(11):1131-1139.
    [20] Nair G N, Evans R J, Mareels I M Y, et al. Topological Feedback Entropy andNonlinear Stabilization. IEEE Transactions on Automatic Control,2004,49(9):1585-1597.
    [21] Zhou K, Doyle J C, Glover K. Robust and Optimal Control. Englewood Cliffs,N.J.: Prentice Hall,1996.
    [22]周克敏, Doyle K.鲁棒与最优控制.北京:国防工业出版社,2002.
    [23] Seron M, Braslavsky J, Goodwin G C. Fundamental Limitations in Filtering andControl. London: Springer-Verlag,1997.
    [24] Francis B A. A Course in H-infinity Control Theory. Berlin: Springer-Verlag,1984.
    [25] Chen J. Sensitivity Integral Relations and Design Trade-offs in LinearMultivariable Feedback Systems. IEEE Transactions on Automatic Control,1995,40(10):1700-1716.
    [26] Chen J, Qiu L, Toker O. Limitations on Maximal Tracking Accuracy, part2:Tracking Sinusoidal and Ramp Signals, in: Proceedings of Proceedings of the1997American Control Conference, Albuquerque, New Mexico,1997,1757-1761.
    [27] Toker O, Chen J, Qiu L. Tracking Performance Limitations in LTI MultivariableDiscrete-Time Systems. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002,49(5):657-670.
    [28] Chen J, Hara S, Chen G. Best Tracking and Regulation Performance under ControlEnergy Constraint: Two-Parameter Controller Case, in: Proceedings of15thTriennial World Congress, Barcelona, Spain,2002.
    [29] Chen J, Hara S, Chen G. Best Tracking and Regulation Performance under ControlEnergy Constraint. IEEE Transactions on Automatic Control,2003,48(8):1320-1336.
    [30] Qiu L, Davison E J. Performance Limitations of Non-minimum Phase Systems inthe Servomechanism. Automatica,1993,29(2):337-349.
    [31] Braslavsky J H, Seron M M, Mayne D Q, Kokotovic P V. Limiting Performance ofOptimal Linear Filters. Automatica,1999,35(2):189-199.
    [32] Chen G. Fundamental Performance Limitations of Feedback Control Systems:
    [PhD Dissertation]. New South Wales, Australia: University of CaliforniaRiverside,2002.
    [33] Jemaa L B, Davison E J. Limiting Performance of Optimal Linear Discrete Filter.Automatica,2003,39(7):1221-1226.
    [34] Jemaa L B, Davison E J. Performance Limitations in the Robust ServomechanismProblem for Discrete-Time LTI Systems. IEEE Transactions on Automatic Control,2003,48(8):1299-1311.
    [35] Jemaa L B, Davison E J. Performance Limitations in the Robust ServomechanismProblem for Discrete Time Periodic Systems,2003,39(6):1053-1059.
    [36] Chen J, Hara S, Qiu L, Middleton R H. Best Achievable Tracking Performance inSampled-Data Systems via LTI Controllers. IEEE Transactions on AutomaticControl,2008,53(11):2467-2479.
    [37] Wang H N, Ding L, Guan Z H, et al. Limitations on Minimum Tracking Energyfor SISO Plants, in: Proceedings of Proceedings of the21th Chinese Control andDecision Conference, Guilin, China,2009,1432-1437.
    [38] Wang B X, Guan Z H, Yuan F S. Optimal Tracking and Two-ChannelDisturbance Rejection under Control Energy Constraint. Automatica,2011,47(4):733-738.
    [39]王后能,关治洪,丁李.脉冲干扰下网络反馈系统的性能极限.华中科技大学学报(自然科学版),2009,37(10):36-39.
    [40] Su W Z, Qiu L, Chen J. Fundamental Performance Limitations in TrackingSinusoidal Signals, in: Proceedings of Proceedings of the2003American ControlConference, Denver, Colorado,2003,5335-5340.
    [41] Su W Z, Qiu L, Chen J. Fundamental Performance Limitations in TrackingSinusoidal Signals. IEEE Transactions on Automatic Control,2003,48(8):1371-1380.
    [42] Su W Z, Qiu L, Chen J. Performance Limitations of Discrete-Time Systems inTracking Sinusoidal Signals. In Proceedings of the2003American ControlConference, Denver, Colorado,2003,423-428.
    [43] Su W Z, Qiu L, Chen J. Fundamental Limit of Discrete-Time Systems in TrackingMulti-Tone Sinusoidal Signals. Automatica,2007,43(1):15-30.
    [44] Su W Z, Qiu L, Chen J. On Performance Limitation in Tracking a Sinusoid. IEEETransactions on Automatic Control,2006,51(8):1320-1325.
    [45] Su W Z, Qiu L, Chen J. On Performance Limitation in Tracking Sinusoids, in:Proceedings of the44th IEEE Conference on Decision and Control, and theEuropean Control Conference, Seville, Spain,2005,6204-6209.
    [46] Su W Z, Qiu L, Chen J. An Average Performance Limit of MIMO Systems inTracking Multi-Sinusoids with Partial Signal Information. IEEE Transactions onAutomatic Control,2009,54(8):2001-2006.
    [47] Su W Z, Qiu L, Chen J. An Average Performance Limit of MIMO Systems inTracking. In Proceedings of the6th World Congress on Intelligent Control andAutomation, Dalian, China,2006,743-747.
    [48] Su W Z, Zheng W X, Qiu L. Performance Limitation in Random Sinusoidal SignalEstimation, in: Proceedings of Proceedings of the5th World Congress onIntelligent Control and Automation, Hangzhou, China,2004,172-176.
    [49]丁李,关治洪,王后能.多变量离散系统随机信号跟踪性能极限.自动化学报,2010,36(3):446-449.
    [50] Ding L, Wang H N, Guan Z H, et al. Tracking under Additive White GaussianNoise Effect. IET Control Theory&Applications,2010,4(11):2471-2478.
    [51] Eun Y, Kabamba P T, Meerkov S M. Tracking of Random References: RandomSensitivity Function and Tracking Quality Indicators. IEEE Transactions onAutomatic Control,2003,48(9):1666-1671.
    [52] Eun Y, Kabamba P T, Meerkov S M. Analysis of random reference tracking insystems with saturating actuators,” Univ. Michigan, Ann Arbor, MI, ControlGroup Rep. CGR04-12,2004.
    [53] Eun Y, Kabamba P T, Meerkov S M. Analysis of Random Reference Tracking inSystems with Saturating Actuators. IEEE Transactions on Automatic Control,2005,50(11):1861-1866.
    [54] Okajima H, Asai T, Kawaji S. Unified Form of Performance Limitations inReference Tracking Control Problem for Discrete Time Systems. Proceedings ofJoint48th IEEE Conference on Decision and Control and28th Chinese ControlConference, Shanghai, China,2009,4011-4017.
    [55] Ching S N, Kabamba P T, Meerkov S M. Root Locus for Random ReferenceTracking in Systems With Saturating Actuators, IEEE Transactions on AutomaticControl,2009,54(1):79-91.
    [56] Aguiar A P, Dacic D B, Hespanha J P, Kokotovic P. Path-Following or ReferenceTracking? Proceedings of IAV2004—5th IFAC/EURON Symposium IntelligenceAutonomous Vehicle, Lisbon, Portugal, Jul.2004.
    [57] Aguiar A P, Hespanda J P, Kokoroivc P V. Path-Following for NonminimumPhase Systems Removes Performance Limitations. IEEE Transactions onAutomatic Control,2005,50(2):234-239.
    [58] Aguiar A P, Hespanda J P, Kokoroivc P V. Limits of Performance inReference-Tracking and Path-Following for Nonlinear Systems. Proceedings ofIFAC World Congress, Jul.2005.
    [59] Aguiar A P, Hespanha J P, Kokotovic P V. Performance Limitations in ReferenceTracking and Path Following for Nonlinear Systems. Automatica,2008,44(3):598-610.
    [60] Miller D E, Middleton R H. On Limitations to the Achievable Path FollowingPerformance for Linear Multivariable Plants. IEEE Transactions on AutomaticControl,2008,53(11):2586-2601.
    [61] Dacic D B, Subbotin M V, Kokotovic P V. Path-Following for A Class ofNonlinear Systems with Unstable Zero Dynamics. Proceeding of43rd IEEEConference on Decision Control, Atlantis, Bahamas,2004.
    [62] Dacic D B, Subbotin M V, Kokotovic P V. Path-Following for Linear Systemswith Unstable Zero Dynamics. Automatica,2006,42(10):1673-1683.
    [63] Zhang W A, Yu L. A Robust Control Approach to Stabilization of NetworkedControl Systems with Short Time-varying Delays. Acta Automatica Sinica,2010,36(1):87-91.
    [64] Liu K, Fridmana E, Hetel L. Stability and L2-gain Analysis of Networked ControlSystems under Round-Robin Scheduling: A Time-delay Approach. System andControl Letter,2012,61(5):666-675.
    [65] Cloosterman M B G, Wouw N, Heemels W, Nijmeijer H. Stability of NetworkedControl Systems with Uncertain Time-Varying Delays. IEEE Transactions onAutomatic Control,2009,54(7):1575-1580.
    [66] Xu H, Jagannathan S, Lewis F L. Stochastic Optimal Control of Unknown LinearNetworked Control System in the Presence of Random Delays and Packet Losses.Automatica,2012,48(6):1017-1030.
    [67] Donkersa M, Heemels W, Bernardini D, et al. Stability Analysis of StochasticNetworked Control Systems. Automatica,2012,48(5):917-925.
    [68] Wang D, Wang J L, Wang W. Output Feedback Control of Networked ControlSystems with Packet Dropouts in Both Channels. Information Sciences,2013,221:544-554.
    [69] Qiu L, Xu B G, Li S B, et al. Output Feedback Stabilization of Networked ControlSystems with Random Packet Dropouts. Proceeding of the31st Chinese ControlConference, July25-27,2012, Hefei, China.
    [70] Qu F L, Guan Z H, Li T, Yuan F S. Stabilisation of Wireless Networked ControlSystems with Packet Loss. IET Control Theory and Applications,2012,6(15):2362-2366.
    [71] Guan Z H, Yang C X, Huang J. Stabilization of Networked Control Systems withShort or Long Random Delays: A New Multirate Method. International Journal ofRobust and Nonlinear Control,2010,20(16):1802-1816.
    [72] Yang C X, Guan Z H, Huang J, Qian T. Design of Stochastic Switching Controllerof Networked Control Systems Based on Greedy Algorithm. IET Control Theoryand Applications,2010,4(1):164-172.
    [73] Yang C X, Guan Z H, Huang J. Stochastic Fault Tolerant Control of NetworkedControl Systems. Journal of the Franklin Institute,2009,346(10):1006-1020.
    [74] Yang C X, Guan Z H, Huang J. Stochastic Switched Controller Design ofNetworked Control Systems with a Random Long Delay. Asian Journal of Control,2011,39(2):255-264.
    [75] Braslavsky J H, Middleton R H, Freudenberg J H. Feedback Stabilization overSignal-to-Noise Ratio Constrained Channels. IEEE Transactions on AutomaticControl,2007,52(8):1391-1403.
    [76] Rojas A J, Braslavsky J H, Middleton R H. Fundamental Limitations in Controlover a Communication Channel. Automatica,2008,44(12):3147-3151.
    [77] Rojas A J, Braslavsky J H, Middleton R H. Output Feedback Stabilisation overBandwidth Limited, Signal to Noise Ratio Constrained Communication Channels.
    [78] Rojas A J. Signal-to-Noise Ratio Fundamental Limitations in Continuous-TimeLinear Output Feedback Control. IEEE Transactions on Automatic Control,2009,54(8):1902-1907.
    [79] Rojas A J. Signal-to-Noise Ratio Performance Limitations for Input DisturbanceRejection in Output Feedback Control. System and Control Letters,2009,58(5):353-358.
    [80] Freudenberg J H, Middleton R H. The Minimal Signal-to-Noise Ratio Required toStabilize over a Noisy Channel. Proceedings of the2006American ControlConference Minneapolis, Minnesota, USA, June14-16,2006.
    [81] Lin C, Wang Z D, Yang F W. Observer-Based Networked Control forContinuous-time Systems with Random Sensor Delays. Automatica,2009,45(2):578-584.
    [82] Guan Z H, Huang J, Chen G R, Jian M. On the Stability of Networked ImpulsiveControl Systems. International Journal of Robust and Nonlinear Control,2012,22(17):1952-1968.
    [83] Rojas A J, Braslavsky J H, Middleton R H. Channel Signal-to-Noise RatioConstrained Feedback control: Performance and Robustness. IET Control Theoryand Applications,2008,2(7):595-605.
    [84] Freudenberg J S, Braslavsky J H, Middleton R H. Control over Signal-to-NoiseRatio Constrained Channels: Stabilization and Performance. Proceedings of the44th IEEE Conference on Decision and Control, and the European ControlConference S, Spain, December12-15,2005,191-196.
    [85] Rojas A J, Braslavsky J H, Middleton R H. Control over a Bandwidth LimitedSignal to Noise Ratio constrained Communication Channel. Proceedings of the44th IEEE Conference on Decision and Control, and the European ControlConference S, Spain, December12-15,2005,197-202.
    [86] Silva E I, Goodwin G C, Quevedo D E. Control System Design Subject to SNRConstraints. Automatica,2010,46(2):428-436.
    [87] Silva E I, Pulgar S A. Control of LTI Plants over Erasure Channels. Automatica,2011,47(8):1729-1736.
    [88] Ye X, Liu S, Liu P X. Modeling and Stabilisation of Networked Control Systemwith Packet Loss and Time-varying Delays. IET Control Theory Application,2010,4(6):1094-1100.
    [89] Li Y Q, Tuncel E. Optimal Tracking and Power Allocation over an Additive WhiteNoise Channel. IEEE International Conference on Control and Automation,2009,9-11.
    [90] Silva E I, Quevedo D E, Goodwin G C. Optimal Controller Design for NetworkedControl Systems. Preceding of World Congress the International Federation ofAutomatic Control,2008,5167-5172.
    [91] Wang H N, Guan Z H, Ding L, Chen J. Tracking and Disturbance Rejection forNetworked Feedback Systems under Control Energy Constraint. Proceeding of the27th Chinese Control Conference,2008,578-581.
    [92] Zhan X S, Guan Z H. Optimal Performance of SISO Discrete-time Systems Basedon Network-induced Delay. European Journal of Control,2013,19(1):1-9.
    [93] Guan Z H, Zhan X S, Feng G. Optimal Tracking Performance of MIMODiscrete-time Systems with Communication Constraints, International Journal ofRobust and Nonlinear Control,2012,22(13):1429-1439.
    [94] Liu Y, Qi T, Su W Z. Optimal Tracking Performance of a Linear System with aQuantized Control Input, Proceedings of the26th Chinese Control Conference,2008,437-441.
    [95] Qi T, Su W Z. Optimal Tracking Design for a Linear System with a QuantizedControl Input. Proceeding of the27th Chinese Control Conference,2008,437-441.
    [96] Qi T, Su W Z. Tracking Performance Limitation of a Linear MISO UnstableSystem with Quantized Control Signals.200810th Intl. Conf. on Control,Automation, Robotics and Vision Hanoi, Vietnam,17-20December2008,1424-1429.
    [97]赵维佺,李迪.网络化运动控制系统的动态带宽分配策略.控制理论与应用,2010,27(8):1023-1029.
    [98]沈艳,郭兵.网络控制系统变采样周期智能动态调度策略.四川大学学报,2010,42(1):162-167.
    [99]丁李.网络系统的性能分析与控制研究:[博士学位论文],武汉:华中科技大学图书馆,2010.
    [100]詹习生,关治洪,吴博.网络化控制系统最优跟踪性能.华中科技大学学报,2010,28(12):48-51.
    [101] Zhan X S, Guan Z H, Liao R Q, Yuan F S. Optimal Performance in TrackingStochastic Signal under Disturbance Rejection. Asian Journal of Control,2012,14(6):1608-1616.
    [102] Zhan X S, Guan Z H. Performance Analysis of Networked Control Systems Basedon SNR Constraints. International Journal of Innovative Computing, Informationand Control,2012,8(12):8287-8298.
    [103] Guan Z H, Chen C Y, Feng G, Li T. Optimal Tracking Performance Limitation ofNetworked Control Systems with Limited Bandwidth and Additive Colored WhiteGaussian Noise. IEEE Transactions on Circuits and Systems I: Regular Papers,2013,60(1):189-198.
    [104] Ding L, Guan Z H, Yu P, Wang B X. Optimal Regulation via WSAN withMeasurement Noise. Proceeding of the31st Chinese Control Conference,2012,July25-27, Hefei, China.
    [105] Wang B X, Guan Z H, Yuan F S, Ding L. Optimal Weighted Performance of theGeneralized Linear Control System with Uncertainty. Proceeding of the31stChinese Control Conference,2012, July25-27, Hefei, China.
    [106] Chi M, Guan Z H, Ding L, Yuan F S. Tracking Performance under AdditiveGaussian Noise and Control Energy Constraint for Networked Control Systems.24th Chinese Control and Decision Conference,2012.5.23, Taiyuan, China.
    [107] Hara S, Sugie T. Independent Parameterization of Two-degree-of-freedomCompensators in General Robust Tracking Systems. IEEE Transactions onAutomatic Control,1988,33(1):59-67.
    [108] Vidyasagar M. Control System Synthesis: A Factorization Approach. Cambridge,Mass.: MIT Press,1985.
    [109]西安交通大学高等数学教研室.复变函数.北京:高等教育出版社,1996.
    [110]王后能.控制系统的性能优化分析与设计限制研究:[博士学位论文],武汉:华中科技大学图书馆,2009.
    [111] Gasparyan O N. Linear and Nonlinear Multivariable Feedback Control: a ClassicalApproach. New York: Wiley,2008.
    [112] Silva E I, Quevedo D E, Goodwin G C. Optimal Coding for Bit-Rate LimitedNetworked Control Systems in the Presence of Data Loss. Proceedings of the46thIEEE Conference on Decision and Control New Orleans, LA, USA, Dec.12-14,2007,665-670.
    [113] Tatikonda S, Mitter S M. Control under Communication Constraints. IEEETransactions on Automatic Control,2004,49,(7):1056-1068.
    [114] Nair, G N, Evans R J. Exponential Stability of Finite Dimensional Linear Systemswith Limited Data Rates. Automatica,2003,39(4):585-593.
    [115] Nair G N, Evans R J. Stability of Stochastic Linear Systems with Finite FeedbackData Rates. SIAM Journal on Control and Optimization,2004,43(2):413-436.
    [116] Schenato L, Sinopoli B, Franceschetti M, Poollla K, Sastry S S. Foundations ofControl and Estimation over Lossy Networks, Proceeding of IEE,2007,95,(1):163-187.
    [117] Freudenberg J S, Middleton R H, Braslavsky J H. Stabilization with DiturbanceAttenuation over a Gaussian Channel. Proceeding of IEEE Conference on Decisionand Control, New Orleans, LA, USA, December2007,3598-3963.
    [118] Freudenberg, J S, Middleton R H, Braslavsky J H. Minimum Variance Controlover a Gaussian Communication Channel. Proceeding of American ControlConference, Seattle, WA, USA,2008,2625-2630.
    [119] Sun Y, Qing S. Stability of Networked Control Systems with Packet Dropout: anAverage Dwell Time Approach. IET Control Theory and Applications,2011,5(1):47-53.
    [120] Ishido Y, Takaba K, Quevedo D E. Stability Analysis of Networked ControlSystems Subject to Packet-dropouts and Finite-level Quantization. Systems andControl Letters,2011,60(5):325-332.
    [121] Yu M, Wang L, Xie G M, Chu T G. Stabilization of Networked Control Systemswith Data Packet Dropout and Network Delays via Switching System Approach.In Proceedings of43rd IEEE Conference on Decision and Control. Washington D.C., USA: IEEE,2004,3539-3544.
    [122] Xiong J L, Lam J. Stabilization of Linear Systems over Networks with BoundedPacket Loss. Automatica,2007,43(1):80-87.
    [123] Zhang X M, Zhang Y F, Lu G P. Stochastic Stability of Networked ControlSystems with Network-induced Delay and Data Dropout. Journal of ControlTheory and Applications,2008,6(4):405-409.
    [124] Goodwin G C, Quevedo D E, Silva E I. Architectures and Coder Design forNetworked Control Systems. Automatica,2008,44(1):248-257.
    [125] Zhan X S, Guan Z H, Liao R Q, Yuan F. S. Optimal Performance in TrackingStochastic Signal under Disturbance Rejection. Asian Journal of Control,2012,14(6):1608-1616.
    [126] Wu J, Chen T W. Design of Networked Control Systems with Packet Dropouts.IEEE Transactions on Automatic Control,2007,52(7):1314-1319.
    [127] Li W, Wang Q, Xu, L J, Dong C Y. Exponential Stability of a Networked FlightControl System with Large-bounded Successive Packet-dropouts.2010IEEEInternational Conference on Intelligent Computing and Intelligent Systems (ICIS),29-31Oct.2010,596-601.
    [128] Yang R N, Shi P, Liu G P. Filtering for Discrete-Time Networked NonlinearSystems With Mixed Random Delays and Packet Dropouts. IEEE Transactions onAutomatic Control,2011,56(11):2655-2660.
    [129] Zhao X L, Fei S M, Sun C Y. Impulsive Controller Design for Singular NetworkedControl Systems with Packet Propouts.2009,7(6):1020-1025.
    [130] Li X, Weng J M, Du D J, Bai H L Observer-Based Exponential Stability Analysisfor Networked Control Systems with Packet Dropout, Advanced IntelligentComputing, Lecture Notes in Computer Science,2012,6838:694-700.
    [131] Dong H L, Wang Z D, Lam J, Gao H J, Distributed Filtering in Sensor Networkswith Randomly Occurring Saturations and Successive Packet Dropouts.International Journal of Robust and Nonlinear Control, DOI:10.1002/rnc.2960,2013.
    [132] Goodwin G C, Salgado M E, Yuz J I. Performance Limitations for LinearFeedback Systems in the Presence of Plant Uncertainty. IEEE Transactions onAutomatic Control,2003,48(8):1312-1319.
    [133] Qiu L, Davison E J. Performance Limitations of Nonminimum Phase Systems inthe Servomechanism Problem. Automatica,1993,29(2):337-349.
    [134] Seron M M, Braslavsky J H, Kokotovic P V, et al. Feedback Limitations inNonlinear Systems: From Bode Integrals to Cheap Control. IEEE Transactions onAutomatic Control,1999,44(4):829-833.
    [135] Wang B X, Guan Z H, Yuan, F S. Optimal Tracking and Two-channel DisturbanceRejection under Control Energy Constraint. Automatica,2011,47(4):733-738.
    [136] Guan Z H, Zhan X S, Feng G. Optimal Tracking Performance of MIMODiscrete-time Systems with Communication Constraints. International Journal ofRobust&Nonlinear Control,2012,22(13):1429-1439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700