用户名: 密码: 验证码:
公共服务设施选址问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公共服务设施是城市社会性服务业的依托载体,是指城市中呈点状分布并服务于社会大众的教育、医疗、文体等社会性基础设施。公共服务设施选址问题事关城市公共资源的公平分配和社会公正,是反映居民生活质量的重要标志,也是城市规划和城市发展的中心议题。在现有研究的基础上,论文围绕公共服务设施选址问题,对覆盖模型、层次模型及重力模型进行了拓展,并考虑了不确定性条件下的选址问题,以武汉市某区医院、学校、急救中心等公共服务设施选址为例进行研究。本论文的研究总体上分为七个部分:
     第一,论文介绍了研究背景和意义,本论文研究的目的和意义在于,通过对公共服务设施选址问题的探讨,达到城市公共资源的科学合理配置,从而实现社会和谐,提高城市居民生活质量。
     第二,在对国内外文献进行分析、总结的基础上,分别从覆盖模型、层次模型、重力模型、不确定性四个方面提出了要研究的问题。
     第三,论文对基于覆盖模型的公共服务设施选址问题进行了研究。针对传统的选址问题设置严格覆盖半径这一不切合实际的情况,论文引入渐进覆盖的概念,以成本最小化、系统效用最大化及基本服务质量最大化为目标,建立了基于渐进覆盖的多目标公共服务设施选址模型,设计了相应的进化算法进行求解,并以武汉市某区小学选址为例进行了案例研究,且就算法的有效性进行了讨论。针对公共服务设施处在工作状态,需求区域看似被覆盖而实际上出现服务设施不可达的现象,论文引入备用覆盖的概念,以一次覆盖人口最大化、至少两次覆盖的人口最大化以及在选址点与需求点超过覆盖距离的情况下,系统总的旅行距离之和最小化为目标,建立了基于备用覆盖的多目标公共服务设施选址模型,以武汉市某区急救中心选址为例进行案例分析,用模糊目标规划方法进行求解,并与传统的多目标求解方法——线性加权法进行比较。
     第四,论文对基于层次模型的公共服务设施选址问题进行了研究。对于多层需求而言,根据设施各层级提供服务水平的相互关系可分为嵌套型与非嵌套型。对于非嵌套型而言,论文提出基于非嵌套的层次模型的公共服务设施选址模型,使用拉格朗日松弛算法,以武汉市某区学校选址为例,就目前选址及分配的合理性问题、需求波动后的重新选址及分配问题和学校最小容量的合理设置问题进行了分析。对于嵌套型而言,论文提出基于嵌套的层次模型的公共服务设施选址模型,利用遗传算法,以武汉市某区医院选址问题为例进行案例分析,并就按效用分配与按距离分配的情况进行对比分析,就嵌套情况与非嵌套情况进行比较与讨论。
     第五,论文对基于重力模型的公共服务设施选址问题进行了研究。论文首先考虑客户不同的消费水平,引入Huff重力模型,以收费设施的效用最大化为目标,在最大覆盖选址模型基础上建立基于重力模型的公共服务设施选址模型,使用遗传算法进行求解,以武汉市某区小学选址为例进行案例研究,并进一步分析了预算约束、需求及消费水平变化对于最优解的影响。
     第六,论文对不确定性的公共服务设施选址问题进行了研究。利用随机规划的期望值模型,引入排队论,建立了需求不确定条件下基于时间效率的公共服务设施选址模型,通过混合多目标进化算法进行求解,并随机选取Pareto优化前沿3个近似Pareto最优解,对其选址及分配情况进行分析,还就预算及最大容忍时间发生变化时平均旅行时间和平均逗留时间变化情况进行分析。
     最后,对全文进行全面总结,并对将来进一步有待深入研究的工作作了展望。
Public service facility is the infrastructure of municipal social service, referring to the social foundational facility for educational, medical, cultural and athletic functions for the mass, which is usually spotted in a city. Public service facility location involves fairly allocation of municipal public resources and social fairness. It has become an important feature concerning the living standard of residents and a key issue in city planning and development. Based on the present research, the dissertation aims at public service facility location, extends the covering-model, hierarchical model, Huff gravity model and takes public service facility location under the uncertain circumstances into account. As a real-world case, the public service facility location, such as hospitals, schools, emergency centers based on a district in Wuhan has been discussed. The dissertation can be divided generally into seven parts as follows.
     Firstly, the background and significance of the study are introduced. The importance of the study lies in planning urban public resources scientifically and reasonably by the reseach of public service facility location, so as to achieve social harmony and improve the quality of life in the city.
     Secondly, based on the review of previous literatures, the author puts the problem to be studied, which involves covering-model, hierarchical model, Huff gravity model and uncertainty.
     Thirdly, the dissertation studies the public service facility location problem based on covering model. Conventional location model adopts a set of rigid covering standards, which can't always satisfy the practical needs. A multi-objective public facility location model based on gradual covering is set up, aiming to realize the cost minimization, system effectiveness maximization and to optimize the basic service quality. The evolutionary algorithm is used correspondingly to find solutions based on a district in Wuhan, in which the efficiency of the algorithm has been discussed. In order to slove the problem of facility unavailability when it is busy, a multi-objective public facility location model based on backup coverage is proposed. The objectives in the model are maximization of the population covered by one vehicle, maximization of the population with backup coverage and increasing the service level by minimizing the total travel distance from locations at a distance bigger than a prespecified distance standard for all zones. The Fuzzy Goal Programming (FGP) approach has been used correspondingly to find solutions based on a district in Wuhan and is compared with convitional ones, such as Weighted Linear Method (WLM).
     Fourthly, the dissertation studies the public service facility location problem based on hierarchical model. For multiple-demand level, facility can be divided into nested and non-nested ones according to the relationship of the facility service levels. For non-nested facility, a public service facility model based on non-nested hierarchical model is set up. As a real-world case, the lagrangian relaxation algorithm has been used to solve the school location-allocation problem of a district in Wuhan, in which three scenarios are discussed: location-allocation rationality at the present, re-location and allocation after fluctuations in demand, and reasonable minimum capacity constrains. For nested facility, a public service facility model based on nested hierarchical model is set up. As a real-world case, the genetic algorithm has been used to solve the hospital location problem based on a district in Wuhan, which includes:the comparation between utility-based and distance-based allocation, the contrast between nested case and non-nested one.
     Fifthly, the dissertation studies the public service facility location problem based on Huff grivaty model. The author takes different consumption level into account, adopts Huff grivaty model and sets up a consumption-based public facility location model baded on Maximal Coverage Location Model, which aims to realize the maximization of utility of charge facility. As a real-world case, the genectic algorithm has been used to solve the location problem of a district in Wuhan. And the author makes further analysis on the influence of budget constraint, demand and consumption level changes on the optimal solution.
     Sixthly, the dissertation studies the public service facility location problem under uncertainty. A time-based public service facility location model on efficiency under the uncertain background is set up based on expectancy-value model of stochastic programming and queuing theory. The mixed multi-objective evolutionary algorithm is proposed and the location-allocation is disscused by selecting three approximate Pareto optimal solutions randomly in Pareto optimal front. The changes of average travel time and average stay time are analyzed when the budget and the biggest tolerance time change.
     Finally, the dissertation summarizes the research and presents a prospect of future study.
引文
[1]Aboolian R., Berman O., Drezner Z. The multiple server center location problem [J]. Annals of Operations Research,2009,167(1):337-352
    [2]Aboolian R., Berman O., Krass D. Competitive facility location model with concave demand[J]. European Journal of Operational Research,2007,181(2): 598-619
    [3]Alminana M., Pastor J. T. An adaptation of SH heuristic to the location set covering problem[J]. European Journal of Operational Research,1997,100: 586-593
    [4]Antunes A., Peeters D. A dynamic optimization model for school network planning[J]. Socio-Economic Planning Sciences,2000,34(2):101-120
    [5]Araz C., Selim H., Ozkarahan I. A fuzzy multi-objective covering-based vehicle location model for emergency services[J]. Computers & Operations Research, 2007,34:705-726
    [6]Ashtiani M. G., Makui A., Ramezanian R. A robust model for a leader-follower competitive facility location problem in a discrete space[J]. Applied Mathematical Modelling,2011, doi:10.1016/j. apm.2011.12.013
    [7]Austin C. M. The evaluation of urban public facility location:an alternative to cost-benefit analysis[J]. Geographical Analysis,1974,6:135-146
    [8]Averbakh I. Minmax regret solutions for minimax optimization problems with uncertainty[J]. Operations Research Letters,2003,27(2):57-65
    [9]Averbakh I. The minmax relative regret median problem on networks[J]. Informs Journal on Computing,2005,17(4):451-461
    [10]Averbakh I., Berman O. Minimax regret p-center location on a network with demand uncertainty[J]. Location Science,1997,5(4):247-254
    [11]Aytug H., Saydam G. Solving large-scale maximum expected covering location problems by genetic algorithms:a comparative study[J]. European Journal of Operational Research,2002,141(3):480-494
    [12]Beasley J. E., Chu P. C. A genetic algorithm for the set covering problem[J]. European Journal of Operational Research,1996,94:392-404
    [13]Beasley J. E., Jornsten K. Enhancing an algorithm for set covering problems[J]. European Journal of Operational Research,1992,58:293-300
    [14]Benedict J. Three hierarchical objective models which incorporate the concept of excess coverage for locating EMS vehicles or Hospital[D]. M. Sc. Thesis, Northwestern University, EvanstonⅡ,1983
    [15]Berman O., Drezner Z. The multiple server location problem[J]. Journal of the Operational Research Society,2007,58:91-99
    [16]Berman O., Drezner Z. The p-median problem under uncertainty[J]. European Journal of Operational Research,2008,189(1):19-30
    [17]Berman O., Drezner Z., Krass D. Generalized coverage:New developments in covering location models[J]. Computers & Operations Research,2010,37: 1675-1687
    [18]Berman O., Drezner Z., Krass D., et al. The variable radius covering problem[J]. European Journal of Operational Research,2009a(196):516-525
    [19]Berman O., Kalcsics J., Krass D. Nickel. The Ordered Gradual Covering Location Problem on a Network[J]. Discrete Applied Mathematics,2009b,157(11): 3689-3707
    [20]Berman O., Krass D. Flow intercepting spatial interaction model:a new approach to optimal location of competitive facilities[J]. Location Sci.1998,6(1-4):41-65
    [21]Berman O., Krass D. Locating Mutiple Competitive Facilities:Spatial Interaction Models with Variable Expenditures[J]. Annals of Operations Research 2002a,111: 197-225
    [22]Berman O., Krass D. The generalized maximal covering location problem[J]. Computers and Operations Research,2002b,29(6):563-581
    [23]Berman O., Krass D., Drezner Z. The gradual covering decay location problem on a network[J]. European Journal of Operational Research.2003,151(3):474-480
    [24]Berman O., Krass D., Wang J. The probabilistic gradual covering location problem on a network with discrete random demand weights[J]. Computers & Operations Research,2011,38(11):1493-1500
    [25]Berman O., Wang J. The 1-median and 1-antimedian problems with uniform distributed demands. Working paper, Rotman School of Management, University of Toronto,2004
    [26]Berman O., Wang J. The minmax regret gradual covering location problem on a network with incomplete information of demand weights[J]. European Journal of Operational Research,2011,208(3):233-238
    [27]Berman O., Wang J., Drezner Z., et al. The minimax and maximin location problems with uniform distributed weights[J]. HE Transaction,2003,35: 1017-1025
    [28]Bhattacharya R., Bandyopadhyay S. Solving conflicting bi-objective facility location problem by NSGA II evolutionary algorithm[J]. International Journal of Advanced Manufacturing Technology,2010,51(1-4):397-414
    [29]Bigman D., ReVelle C. An operational approach to welfare considerations in applied public-facility-location models[J]. Environment & Planning A,1979,11(1): 83-95
    [30]Bigman D., ReVelle C. The theory of welfare considerations in public facility location problems[J]. Geographical Analysis,1978,10:229-240
    [31]Birkin M., Clarke G, Clarke M., et al. Intelligent GIS:location decisions and strategic planning[M]. Cambridge:Geoin formation International,1996
    [32]Bollapragada, Camm R J. A Two-phase greedy algorithm to locate and allocation hubs for fixed-wireless broadband access[J]. Operations Research Letters,2005, 33(2):134-142
    [33]Brandeau Chiu. A unified family of single-server queuing location models[J]. Operations Research,1990(38):1034-1044
    [34]Brimberg J., ReVelle C. A biobjective plant location problem:Cost vs. demand served[J]. Location Science,1998,6(1-4):121-135
    [35]Bullnheimer B., Hartl R. F., Strauss C. A new rank based version of the ant system-a computational study[OL]. Central European Journal for Operations Research and Economics,1998
    [36]Canbolat M. S., Massowb M. V. Locating emergency facilities with random demand for risk minimization [J]. Expert Systems with Applications,2011,38(8): 10099-10106
    [37]Carbone. Public facilities under stochastic demand[J]. INFOR,1974(12):261-270
    [38]Carson Y. M., Batta R. Locating an Ambulance on the Amherst Campus of the State University of New York at Buffalo[J]. Interfaces,1990,20(5):43-49
    [39]Cha Y J., Agrawal A. K., Kim Y, et al. Multi-objective genetic algorithms for cost-effective distributions of actuators and sensors in large structures [J]. Expert Systems with Applications(2012), doi:10.1016/j. eswa.2012.01.07
    [40]Charnes A., Cooper W. W. Chance-constrained programming[J]. Management Science,1959,6(1):73-76
    [41]Charnes A., Cooper W. W., Ferguson R. O. Optimal estimation of executive compensation by goal programming[J]. Management Science,1955(1):13,8-151
    [42]Chen B., Lin C S. Minmax-regret robust 1-median location on a tree[J]. Networks, 1998,31(2):93-103
    [43]Chen L. H., Tsai F. C. Fuzzy goal programming with different importance and priorities[J]. European Journal of Operation Research,2001,133:548-56
    [44]Chen R., Handler G. Y. The conditional p-center problem in the plane[J]. Naval Research Logistics,1993,40:117-127
    [45]Church R. L. Geographical information systems and location science[J]. Computers & Operations Research,2002,29(6):541-562
    [46]Church R., ReVelle C. The maximal covering location problem[J]. Papers in Regional Science,1974,32(1):101-118
    [47]Church R., Roberts K. Generalized coverage models and public facility location[J]. Papers of the Regional Science Association,1983,53(1):117-135
    [48]Church W. Computational procedures for location problems on stochastic networks[J]. Transportation Science,1983(17):168-180
    [49]Conde E. Minmax regret location-allocation problem on a network under uncertainty[J]. European Journal of Operational Research,2007,179(3): 1025-1039
    [50]Cox K. R., Robert K. Location and public problems:a political geography of the contemporary world[M]. Oxford:Blackwell,1979
    [51]Cox K., Johnston R. Conflict, politics and the urban scene:a conceptual framework[M]. Harlow:Longman,1982:1-19
    [52]Current J. R., Storbeck J. E. Capacitated covering models[J]. Environment and Planning,1988(15):153-164
    [53]Daskin M. S. A maximum expected covering location problem:formulation, properties, and heuristic solution[J]. Transportation Science,1983,17:48-70
    [54]Daskin M. S. Network and discrete location:models, algorithms, and applications[M]. New York:Wiley Interscience,1995.
    [55]Daskin M. S., Coullard C. R., Shen Z. J. M., et al. An inventory-location model: formulation, solution algorithm and computational results[J]. Annals of Operations Research,2002,110:83-106
    [56]Daskin M. S., Hopp W. J., Medina B. Forecast horizons and dynamic facility location planning[J]. Annals of Operations Research,1992,40:125-151
    [57]Daskin M. S., Stern E. H. A hierarchical objective set covering model for emergency medical service vehicle deployment[J]. Transportation Science, 1981(15):137-152
    [58]Davari S., Zarandi M. H. F., Hemmati A. Maximal covering location problem (MCLP) with fuzzy travel times[J]. Expert Systems with Applications,2011, 38(12):14535-14541
    [59]Dear M. Planning for mental health care:a reconsideration of public facility location theory[J]. International Regional Science Review,1978,3(2):93-111
    [60]Dear M. Understanding and overcoming the NIMBY syndrome[J]. Journal of the American Planning Association,1992,58(3):288-300
    [61]Dear M., Wolch J., Wilton R. The service hub concept in human services planning[J]. Progress in Planning,1994,42(3):179-267
    [62]Deb K. Multi-objective Optimization Using Evolutionary Algorithms[M]. Chichester, U. K.:Wiley,2001:25-40
    [63]Deb K., Pratap A., Agarwal S., Meyarivan T. A Fast and Elitist Multi-objective Genetic Algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197
    [64]DeVerteuil G. Reconsidering the legacy of urban public facility location theory in human geography[J]. Progress in Human Geography,2000,24(1):47-69
    [65]Doerner K. F., Gutjahr W. J., Nolz P. C. Multi-criteria location planning for public facilities in tsunami-prone coastal areas[J]. Operation Research Spectrum,2009, 31(3):651-678
    [66]Dorigo M., Gambardella M. Ant colony system:a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computations,1997,1(1):53-66
    [67]Dorigo M., Maniezzo V., Colomi A. The ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics,1996, 26(1):29-41
    [68]Drezner T. Locating a single new facility among existing unequally attractive facilities[J]. Journal of Regional Science,1994,34(2):237-252
    [69]Drezner T., Drezner Z., Eiselt H. A. Consistent and inconsistent rules in competitive facility choice[J]. Journal of the Operational Research Society,1996, 47:1494-1503
    [70]Drezner T., Drezner Z., Salhi S. Solving the multiple competitive facilities location problem[J]. European Journal of Operational research,2002,142:138-151
    [71]Drezner Z. Facility location:a survey of applications and methods[M]. New York: Springer Verlag,1995a
    [72]Drezner Z. On the conditional p-median problem[J]. Computer and Operation Research,1995b,22:525-530
    [73]Drezner Z., George O. W., Drezner T. On the logit approach to competitive facility location[J]. Journal of Regioanl Science,1998,38(2):313-327
    [74]Drezner Z., Hamacher H. Facility location:applications and theory[M]. New York: Springer,2002
    [75]Drezner Z., Wesolowsky G. O. A new method for the multifacility minimax location problem[J]. Journal of the operational research society,1978, (24): 1507-1514
    [76]Drezner Z., Wesolowsky G. O., Drezner T. The gradual covering problem[J]. Naval Research Logistics,2004,51:841-55
    [77]Eiselt H. A., Laporte G. The maximum capture problem in a weighted network[J]. Journal of Regional Science,1989,29(3):433-439
    [78]Eiselt H. A., Marianov V. Gradual location set covering with service quality[J]. Socio-Economic Planning Sciences,2009,43(2):121-130
    [79]Erdemir E. T., Batta R., Rogerson P. A., et al. Joint ground and air emergency medical services coverage models:A greedy heuristic solution approach[J]. European Journal of Operational Research,2010,207 (2):736-749
    [80]Fernandez J., Pelegrin B., Plastria F., et al. Planar locationand design of a new facility with inner and outer competition:an interval lexicographical-like solution procedure[J]. Networks and Spatial Economics,2007,7:19-44
    [81]Fernando Y. C., Roberto D. G., Morabito R. A note on solutions to the maximal expected covering location problem[J]. Computers & Operation Research,2002, 30:87-96
    [82]Fische K. Sequential discrete p-facility models for competitive location planning[J]. Annals of Operations Research,2004,111(1-4):253-270
    [83]Fisher M. L., Kedia P. Optimal soluteion of set covering/partitioning problems using dual heuristics[J]. Management Sience,1990,36:674-688
    [84]Fonseca C. M., Fleming P. J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization[C]. In Proceedings of the Fifth International Conference on Genetic Algorithms:Forrest S. San Mateo, CA: Morgan Kauffman,1993.416-423
    [85]Galvao R. D., Espejo L. G. A., Boffey B. A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro[J]. European Journal of Operational Research,2002,138(3):495-517
    [86]Garey J. Computers and int ractability:a guide to the theory of NP-completeness [M].1979, New York:Freeman
    [87]Garey M. R., Johnson D. S. Computers and Intractability:A Guide to the Theory of NP-Completeness[M]. New York:Freeman,1997
    [88]Glover F. Future paths for integer programming and links to artificial intelligence[J]. Computers and Operations Research,1986,13:533-540
    [89]Glover F. Tabu search part I[J]. ORSA Journal on Computing,1989,1:190-206
    [90]Glover F. Tabu search part II[J]. ORSA Journal on Computing,1990,2:4-32
    [91]Goldman. Optimal center location in simple networks[J]. Transportation Science, 1971(5):212-221
    [92]Grossman T., Wool A. Computational experience with approximation algorithms for the set covering problem[J]. European Journal of Operational Research,1997, 101:81-92
    [93]Hakimi. Optimum locations of switching centers and the abs olute centers and medians of a graph[J]. Operations Research,1964(12):450-459
    [94]Hedetniemi S. M., Cockayne E. J., Hedetniemi S T. Linear algorithms for finding the Jordan center and path center of a tree[J]. Transportation Science,1981(15): 98-114
    [95]Hodder J. E., Dincer M. C. A multifactor model for international plant location and financing under uncertainty[J]. Computers & Operations Research,1986,13(5): 601-609
    [96]Hodder J. E., Jucker J. V. A simple plant-location model for quantity-setting firms subject to price uncertainty[J]. European Journal of Operational Research,1985, 21:39-46
    [97]Hodge D., Gatrell A. Spatial constraint and the location of urban public facilities[J]. Environment & Planning A,1976,8(2):215-230
    [98]Hogan K., ReVelle C. S. Conception and applications of backup coverage[J]. Management Science,1986,32:1432-1444
    [99]Holland J. Adaptation in nature and artificial system[M]. University of Michigan Press, Ann Arbor, MI,1975
    [100]Hopfield J., Tank D. Computing with neural circuits:a model[J]. Science,1986, 233:625-633
    [101]Hopfield J., Tank D. Neural computation of decisions in optimization problems[J]. Biological Cybernetics,1985,52:141-152
    [102]Horn J., Nafploitis N., Goldberg D. E. A niched Pareto genetic algorithm for multiobjective optimization[C]. In Proceedings of the First IEEE Conference on Evolutionary Computation:Michalewicz Z. Piscataway, NJ:IEEE Press,1994: 82-87
    [103]Huff D. L. Defining and estimating a trade area[J]. Journal of Marketing,1964,28 (3) 34-38
    [104]Jackson P., Smith S. J. Exploring social geography[M]. London:Allen & Unwin, 1984
    [105]Jagers A. A., VanDoorn E. A. Convexity of function which are generalizations of the Erlang loss function and the Erlang delay function[J]. SIAM Review,1991,33: 281-283
    [106]Jucker J. V., Carlson R. C. The simple plant-location problem under uncertainty[J]. Operations Research,1976,24(6):1045-1055
    [107]Kariv O., Hakimi S. L. An algorithmic approach to network location problems[J]. Applying Mathematics,1979(37):539-560
    [108]Karp R. M. Reducibility among Combinatorial Problems, in:R. E. Miller and J. W. Thatcher (eds.), Complexity of Computer Computations[M]. Plenium Press, New York,1972
    [109]Kirkpatrick S., Gelatt Jr C. D., Vecchi M. P. Optimization by simulated annealing[J]. Science,1983,220:671-680
    [110]Kouvelis P., Kluwer G. Y. Robust discrete optimization and its applications[M], Dordrecht:Kluwer Academic Publishers,1989
    [111]Kucukaydin H., Aras N., Altine I K. A leader-follower game in competitive facility location[J]. Computers & Operations Research,2012,39(2):437-448
    [112]Lake R. W. Negotiating local autonomy[J]. Political Geography,1994,13(5): 423-442
    [113]Lake R. W. Rethinking NTMBY[J]. Journal of the American Planning Association, 1993,59(1):87-93
    [114]Larson. A hypercube queuing model for facility location and redist ricting in urban emergency services[J]. Computers & Operations Research,1974, (1):672-95
    [115]Liao S. H., Hsieh C. L., Lai P. J. An evolutionary approach for multi-objective optimization of the integrated location-inventory distribution network problem in vendor-managed inventory[J]. Expert Systems with Applications,2011,38(6): 6768-6776
    [116]Listes O., Dekker R. A stochastic approach to a case study for product recovery network design[J]. European Journal of Operational Research,2005,160(1): 268-287
    [117]Liu B., Iwamura K. Chance constrained programming with fuzzy parameters[J]. Fuzzy Sets and Systems,1998,94(2):227-237
    [118]Liu S., Chan F. T. S., Chung S. H. A study of distribution center location based on the rough sets and interactive multi-objective fuzzy decision theory[J]. Robotics & Computer-Integrated Manufacturing,2011,27(2):426-433
    [119]Macintyre S., Macdonald L., Ellaway A. Do poorer people have poorer access to local resources and facilities? The distribution of local resources by area deprivation in Glasgow, Scotland[J]. Social Science & Medicine,2008,67(6): 900-914
    [120]Marianov V., Rios M., Taborga P. Finding locations for public service centers that compete with private centres:Effects of congestion[J]. Papers in Regional Science, 2004a,83:631-648
    [121]Marianov V., Serra D. Hierarchical location-allocation models for congested systems[J]. European Journal of Operational Research,2001,135(1):195-208
    [122]Marianov V., Serra D. New trends in public facility location modeling. Economics Working Papers,2004b,755
    [123]Mausser H. E., Laguna M. A heuristic to minimax absolute regret for linear programs with interval objective function coefficients[J]. European Journal of Operational Research,1999a,117:157-174
    [124]Mausser H. E., Laguna M. Minimising the maximum relative regret for linear programmes with interval objective function coefficients[J]. Journal of the Operational Research Society,1999b,50(10):1063-1070
    [125]Megiddo N., Supowit K. On the complexity of some common geometric location problems[J]. SIAM Journal on Computing,1984,13:182-196
    [126]Metropolis N., Rosenbluth A., Rosenbluth M., et al. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics,1953,21:1087-1092
    [127]Miranda P. A., Garrido R. A. Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand[J]. Transportation Research Part E,2004,40:183-207
    [128]Miranda P. A., Garrido R. A., Garrido. A simultaneous inventory control and facility location model with stochastic capacity constraints[J]. Networks Spatial Economics,2006,6:39-53
    [129]Moore G. C., Revelle C. The hierarchical service location problem[J]. Management Science,1982,28(7):775-780
    [130]Mumphrey A., Wolpert J. Equity considerations and concessions in the siting of public facilities[J]. Economic Geography.1973,49(2):109-121
    [131]Murali P., Ordonez F., Dessouky M. M. Capacitated facility location with distance-dependent coverage under demand uncertainty[OL].2009 http://www-rcf. use. edu/~maged/publications/facloc_new. Pdf
    [132]Murray A. T., ReVelle C., Serra D. Location models for ceding market share and shrinking services[J]. Omega The International Journal of Management Science, 2007,35:533-540
    [133]Nakanishi M., Cooper L. G. Parameter estimates for multiplicative competitive interaction models-least square approach[J]. Journal of Marketing Research,1974, 11(3):201-311
    [134]Narasimhan R. Goal programming in a fuzzy environment[J]. Decicion Science, 1980(11):325-336
    [135]Nelson C., Wolch J. Intrametroplitan planning for community based residential care:a goal programming approach[J]. Socio-Economic Planning Sciences,1985, 19(3):205-212
    [136]Ogryczak W. Inequality measures and equitable approaches to location problems[J]. European Journal of Operational Research,2000,122(2):374-391
    [137]Ogryczak W. Inequality measures and equitable locations[J]. Annals of Operations Research,2007,167(1):61-86
    [138]Ratick S. J., Osleeb J. P., Hozumi D. Application and extension of the Moore and ReVelle Hierarchical Maximal Covering Model[J]. Socio-Economic Planning Sciences,2009,43(2):92-101
    [139]Raymond T. Y, Pearlson K., George K. Zero Time:Providing instant customer value every time, all the time![M]. New York:John Wiley & Sons,2000
    [140]ReVelle C. S., Laporte G. The plant location problem:New models and research prospects[J]. Operations Research,1996, (44):864-874
    [141]Roth R. Computer solutions to minimum cover problems[J]. Operations Research, 1969,17:455-465
    [142]Sahin G., Siiral H. A review of hierarchical facility location models[J]. Computers & Operations Research,2007,34(8):2310-2331
    [143]Schilling D. A. Strategic facility planning:The analysis of options[J]. Decision Sciences,1982,13:1-14
    [144]Schutz P., Stougie L., Tomasgard A. Stochastic facility location with general long-run costs and convex short-run costs[J]. Computer & Operations Research, 2008,35(9):2988-3000
    [145]Serra D., Colome R. Consumer choice and optimal locations models:Formulations and heuristics[J]. Papers in Regional Science,2001,80(4):439-464
    [146]Serra D., Marianov V. The p-median problem in a changing network:the case of Barcelona[J]. Location Science,1998,6(1-4):383-394
    [147]Serra D., ReVelle C. Competitive location in discrete space [M]. In:Drezner eds. Facility location:a survey of applications and methods. Berlin:Springer-verlag, 1995:367-386
    [148]Sheppard E. S. A conceptual framework for dynamic location-allocation analysis[J]. Environment and Planning A,1974, (6):547-564
    [149]Sheu J. B., Lin A. Y. S. Hierarchical facility network planning model for global logistics network configurations[J]. Applied Mathematical Modelling, doi:10. 1016/j. apm.2011.09.095
    [150]Shiode S., Drezner Z. A competitive facility location problem on a tree network with stochastic weights[J]. European Journal of Operational Research,2003,149: 47-52
    [151]Silva F., Serra D. Incorporating waiting time in competitive location models[J]. Network Spatial Economics,2007,7:63-76
    [152]Snyder L. V. Facility location under uncertainty:a review[J]. HE Transactions, 2006,38(7):537-554
    [153]Snyder L. V., Daskin M. S., Teo C. P. The stochastic location model with risk pooling[J]. European Journal of Operational Research,2007,179(3):1221-1238
    [154]Srinivas N., Deb K. Multiobjective function optimization using nondominated sorting genetic algorithms[J]. Evolutionary Computation,1995,2(3):221-248
    [155]Stalk J. G Time-the next source of competitive advantage[J]. Harvard Businness Review,1988,66(4):41-51
    [156]Stiizle T. An ant approach for the flow shop problem[C]. In Proceedings of the 6th European Congress on Intelligent Techniques & Soft Computing,1998,3: 1560-1564
    [157]Stiizle T. Max-min ant system for the quadratic assignment problem[R]. Technical Report AIDA-97-4, FG Intellektik, TU Darmstadt, Germany,1997
    [158]Sviridenko M. I. Worse-case analysis of the greedy algorithm for a generalization of maximum p-facility location problem[J]. Operation Research Letters,2000, 26(4):193-197
    [159]Teitz M. B. Toward a theory of urban public facility location[J]. Papers in Regional Science,1968,21(1):35-51
    [160]Teixeira J. C., Antunes A. P. A hierarchical location model for public facility planning[J]. European Journal of Operational Research,2008,185(1):92-104
    [161]Tien J. M., El-tell K., Simons G R. Improved formulations to the hierarchical health facility location-allocation problems[J]. IEEE Transactions on Systems, Man and Cybernetics,1983,13(6):1128-1132
    [162]Tiwari R. N., Dharmar S., Rao J. R. Fuzzy goal programming-an additive method[J]. Fuzzy Sets and Systems,1987,24:27-34
    [163]Toregas C., Swaim R., ReVelle C., et al. The location of emergency service facilities[J]. Operations Research,1971,19:1363-1373
    [164]Tsou K. W., Hung Y. T., Chang Y. L. An accessibility-based integrated measure of relative spatial equity in urban public facilities[J]. Cities,2005,22(6):424-435
    [165]Tzeng G. H., Lin J. J. Using backup coverage and TOPSIS fuzzy approach to emergency facilities layout in new development planning area[C]. Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium, Taiwan:Kenting,1996:109-114
    [166]Velarde J. L. G., Laguna M. A Benders-based heuristic for the robust capacitated international sourcing problem[J]. HE Transactions,2004,36:1125-1133
    [167]Verter V., Dincer M. C. An integrated evaluation of facility location, capacity acquisition, and technology selection for designing global manufacturing strategies[J]. European Journal of Operational Research,1992,60:1-18
    [168]Wesolowsky T. The multiperiod location-allocation problem with relocation of facilities[J]. Management Science,1976(22):57-65
    [169]Widener M. J., Homer M. W. A hierarchical approach to modeling hurricane disaster relief goods distribution[J]. Journal of Transport Geography,2011,19(4): 821-828
    [170]Wolch J., Dear M. Malign neglect:homelessness in an American city[M]. San Franciso:Jossey-Bass Publishers,1993
    [171]Wolpert J. Departures from the usual environment in locational analysis[J]. Annals of the Association of American Geographers,1970,60(2):220-228
    [172]Wolpert J. Regressive siting of public facilities[J]. Natural Resources Journal,1976, 16(1):103-115
    [173]Yasenovskiy V., Hodgson J. Hierarchical location-allocation with spatial choice interaction modeling[J]. Annals of the Association of American Geographers,2007, 97(3):496-511
    [174]Yuri L., Adi B. I. A heuristic method for large-scale multi-facility location problems[J]. Computers & Operations Research,2004,31:257-272
    [175]Zadeh L. A. Fuzzy sets. Inform and control[J].1965, (8):338-353
    [176]Zimmermann H. J. Fuzzy programming and linear programming with several objective function[J]. Fuzzy Sets and System,1978,1:45-55
    [177]Zitzler E., Thiele L. Multiobjective optimization using evolutionary algorithms-A comparative case study[M]. Lecture notes in computer science, Berlin, Germany: Springer-Verlag,1998.292-301
    [178]白光润.地理科学导论[M].北京:高等教育出版社,2006
    [179]毕娅,李文锋.基于协同库存和模糊需求的离散选址模型研究[J].统计与决策,2011(6):67-69
    [180]蔡砥,滕丽,林小慧.城乡一体化地区120急救医疗站点设施区位问题分析:以广东省鹤山市为例[J].人文地理,2009,24(1):63-66
    [181]陈鸿.城市消防站空间布局优化研究:以安徽省六安市为例[D].同济大学,2007
    [182]陈建国.区位分析中的若干可计算模型研究[D].华东师范大学,2005
    [183]陈志芬,李强,陈晋.城市应急避难场所层次布局研究(Ⅱ)[J].自然灾害学报,2010,19(5):14-19
    [184]陈志宗.城市防灾减灾设施选址模型与战略决策方法研究[D].上海:同济大学,2006
    [185]崔迅,张瑜.顾客需求多样化特点分析[J].中国海洋大学学报(社会科学版),2006,(2):27-30
    [186]范建华.基于阶梯型衰退效用函数的竞争选址问题[J].管理学报,2009,6(12):1638-1642
    [187]范里安·哈·R.微观经济学:现代观点[M].费方域等,译.上海:上海人民出版社,2006
    [188]方远平,闫小培.西方城市公共服务设施区位研究进展[J].城市问题,2008(9):86
    [189]高军波,周春山.西方国家城市公共服务设施供给理论及研究进展[J].世界地理研究,2009,18(4):81-90.
    [190]高阳,徐克林,陆瑶等.基于层次分析法与重心法的学校选址研究[J].物流技术,2009,28(2):113-115
    [191]郭占宽,常利胜,尹健等.一类排队系统等待时间的分布.内蒙古大学学报(自然科学版),2008,39(4):375-379
    [192]何波.多层逆向物流网络优化设计研究[D].武汉:华中科技大学,2008
    [193]何波,杨超,任鸣鸣.废弃物处理站选址问题及多目标演化算法求解[J].系统工程理论与实践,2007,(11):72-78
    [194]胡丹丹.拥塞型设施的选址问题[D].武汉:华中科技大学,2011
    [195]胡丹丹,杨超,刘智伟.带有响应时间承诺的选址-分配问题研究[J].管理科学,2010,23(1):114-120
    [196]黄松,杨超,杨堵.基于Stackelberg博弈的变质物品分销网络设计模型[J].中国管理科学,2009,17(6):122-129
    [197]雷英杰,张善文,李续武,周创明.Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005
    [198]李猛.交互式Huff模型的实现[D].开封:河南大学,2009
    [199]连启里.生态旅游区污染物处理的模型和算法研究[D].武汉:华中科技大学,2009
    [200]刘琦,高惠瑛,张洁.城市消防站选址模型研究[J].建设科技,2011(7):77-78
    [201]罗辞勇,陈民铀,张聪誉.采用循环拥挤排序策略的改进NSGA-Ⅱ算法[J].控制与决策,2010,25(2):227-231
    [202]马云峰,杨超,张敏,郝春艳.基于时间满意的最大覆盖选址问题[J].中国管理科学,2006,14(2):45-51
    [203]马云峰.网络选址中基于时间满意的覆盖问题研究[D].武汉:华中科技大学,2005
    [204]明亮.遗传算法的模式理论及收敛理论[D].西安:西安电子科技大学,2006
    [205]庞碧君.线性规划与随机线性规划[M].郑州:郑州大学出版社,2009
    [206]彭立,杨武年,刘汉湖,邵怀勇,潘佩芬.基于RS和GIS的地震移民选址空间决策研究与实现[J].西南大学学报(自然科学版),2011,33(3):96-103
    [207]任鸣鸣,何波.多阶段零售店选址的模型与算法研究[J].计算机集成制造系统,2009,15(2):299-305
    [208]宋正娜,陈雯,袁丰,王丽.公共设施区位理论及其相关研究述评[J].地理科学进展,2010,29(12):1499-1508
    [209]宋正娜,陈雯.基于潜能模型的医疗设施空间可达性评价方法研究[J].地理科学进展,2009,28(6):848-854
    [210]唐凯.分销网络设计中的库存-选址问题研究[D].武汉:华中科技大学,2009
    [211]万波,杨超,黄松,董鹏.基于分级选址模型的学校选址问题研究[J].工业工程与管理,2010,15(6):16-21
    [212]王亭娜.基于可达性的公共产品空间布局研究:以仪征市医院和高级中学为例[D].南京师范大学,2007
    [213]吴建军.基于GIS的农村医疗设施空间可达性分析:以河南省兰考县为例[D].河南大学,2008
    [214]谢慧,李沁.武汉市普通中小学校布局规划探索[J].规划师,2005,21(11):50-53
    [215]谢金星,薛毅.优化建模与LINDO/LINGO软件[M].北京:清华大学出版社,2005
    [216]邢文训,谢金星.现代优化计算方法(第2版)[M].北京:清华大学出版社.2005
    [217]许可MEXCLP模型在优化公共设施选择问题上的研究[J].硅谷,2011(8):80
    [218]张建科,刘三阳,姜飞,高卫峰.含不确定参数线性优化的新鲁棒优化模型[J].系统工程与电子技术,2011,33(1):102-105
    [219]张仁桥.基于离散型地域结构的乡村公共设施配置研究[J].安徽农业科学,2010,38(13):7012-7017
    [220]张曦,杨超,胡丹丹.考虑市场扩张和吞并的新设施竞争选址模型[J].工业工程与管理,2009,14(2):43-47
    [221]周晓猛,刘茂,王阳.紧急避难场所优化布局理论研究[J].安全与环境学报,2006,6(增刊):118-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700