用户名: 密码: 验证码:
几类随机混杂系统的稳定性分析及其控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机混杂系统是由连续(或离散)时间变量和离散事件(或逻辑)变量以及随机因素相互作用的复杂系统。在描述和研究许多复杂的物理现象和实际应用的过程中,随机混杂系统能有效地提供一个数学框架(模型)。它在经济系统控制、容错系统控制,柔性制造系统控制、多目标跟踪控制、航空系统控制以及网络控制等实际问题中都有着广泛的应用。因此,对于随机混杂系统的研究具有重要的理论意义和实用价值。
     本文主要研究了几类随机混杂系统的稳定性以及相关的控制器设计问题。主要工作概括如下:
     1.研究一类随机混杂系统的依概率稳定性及其稳定化问题。首先,应用多Lyapunov函数这一工具给出了系统依概率稳定的充分条件。然后,运用线性矩阵不等式(LMI)和状态划分的方法研究系统的依概率稳定化问题,给出系统的状态反馈增益矩阵和脉冲增益矩阵的求解方法。并将前述结果推广到系统为不确定的情形。
     2.研究一类随机混杂系统的几乎必然稳定性及其稳定化问题。首先,应用切换的Lyapunov函数法研究系统的稳定性,获得了判别其几乎必然稳定且独立于P阶稳定的充分条件,同时,将结果应用到线性随机混杂系统上,获得其相应的判别条件。所得的定理条件允许系统在切换时刻状态发生重置,从而将Mao[95]的模型进一步推广。进一步,设计出随机子系统的位移部分以及扩散部分两部分的控制律,使得在P阶矩意义下不稳定的系统达到几乎必然稳定,同时,结果也应用到线性随机混杂系统上,获得其相应的控制律。
     3.研究一类随机混杂系统的有限时间随机稳定性及其稳定化的问题。首先,利用多Lyapunov函数,给出若干个非线性随机混杂系统的有限时间随机稳定性条件。同时,将结果应用到线性随机混杂系统,通过多Lyapunov函数和线性矩阵不等式(LMI)相结合的方法,给出系统有限时间随机稳定的充分条件。然后,进一步研究系统的有限时间随机稳定化问题,分别给出非线性和线性随机混杂系统的有限时间控制器的设计方法。值得注意的是:所设计的控制器是包括系统位移和扩散两部分的混合控制器。
     4.研究一类广义随机混杂系统的随机稳定性及其稳定化的问题。首先,利用多Lyapunov函数,给出非线性广义随机混杂系统的随机稳定性条件。同时,进一步研究线性广义随机混杂系统的随机稳定性问题。通过多Lyapunov函数和随机广义Lyapunov函数相结合的方法,以耦合广义Lyapunov方程的形式给出系统随机稳定的充要条件,该条件可转化为严格的LMI条件,且无需对原系统作等价变换。然后,将前述结果应用到系统的随机稳定化问题上,给出相应的控制器设计方法。最后,将前述结果推广到系统具有不确定性的情况,分别给出系统随机稳定的判别条件和非脆弱控制器的设计方法。
     5.研究不确定随机混杂系统的鲁棒H∞滤波与控制问题。首先,针对非线性Markov切换随机不确定系统研究它的无限维鲁棒H∞状态估计问题。假设系统的状态不仅受到白噪声影响,而且还受到外在扰动信号的影响,同时测量输出也受到外在扰动的影响,构造了一个渐近稳定的滤波器,使得扩充之后的系统依概率稳定,得到了非线性H∞滤波器的一个确切的形式。然后,针对在切换时刻具有脉冲行为的线性Markov切换随机系统,讨论了它的鲁棒H∞控制问题,分别从系统的鲁棒稳定性及鲁棒H∞性能两方面进行分析,利用多Lyapunov函数法对系统的稳定性进行分析,给出了系统鲁棒依概率稳定的几个充分条件,进一步运用线性矩阵不等式(LMI)法对系统的鲁棒H∞性能进行分析,得到了一般系统的状态反馈矩阵和脉冲控制矩阵,并在此基础上得出了一个鲁棒H∞控制律,最后提出了一套基于Matlab软件的鲁棒控制器的设计方法。
Stochastic hybrid systems are the complicated systems that consist of continuous (or discrete) time dynamics, discrete event (or logical) dynamics, randomness, and the interaction among them. Stochastic hybrid systems can provide an effective framework for mathematical modeling and analysis of many complex physical phenomena and practical applications. They have a variety of applications such as economic systems, fault tolerant control systems, flexible manufacturing systems, multiple target tracking, aircraft systems and network control systems etc. Thus, the study of stochastic hybrid systems has important significance both in theory and applications.
     In this dissertation, stability analysis and control problem of several classes stochastic hybrid systems are studied. The main contributions and original ideas included in the dissertation are summarized as follows.
     1.The stability and stabilization in probability of a class of stochastic hybrid systems are studied. Multiple Lyapunov techniques are used to derive sufficient conditions for stability in probability of the overall system. The conditions are in linear matrix inequalities form, and can be used to solve stabilization synthesis problem with the method of state parttition. The results are extended to the design of a robust-stabilized state-feedback controller as well. A numerical example shows the effectiveness of the proposed approach.
     2.The almost sure stability and stabilization of a class of stochastic hybrid systems are studied. By using switched Lyapunov techniques, sufficient conditions for almost sure stability are presented and they do not rely on the moment stability of the system. The conditions permit continuous state reset at the switching instant and extend the modeling in [95] of Mao. The conditions are then specialized to case of linear systems, to solve the stabilization synthesis problem. Moreover, the control structure appears not only in the shift part but also in the diffusion part of the underlying stochastic subsystem. The results are easily checkable. A numerical example illustrates the effectiveness of the proposed approach.
     3.The finite time stability and stabilization of a class of stochastic hybrid systems are studied. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. The results are reduced to feasibi- lity problems involving linear matrix inequalities(LMIs). Furthermore, based on the state partition of continuous parts of systems, hybrid state feedback controllers which stabilize the closed loop nonlinear and linear systems in the finite-time sense, are then addressed respectively. Moreover, the controller appears not only in the shift part but also in the diffusion part of the underlying stochastic subsystem. A numerical example is presented to illustrate the proposed methodology.
     4.The problems of stochastic stability and stabilization for a class of discrete-time singular hybrid systems with Markov jump parameters are investigated. Based on multiple Lyapunov function and stochastic generalized Lyapunov function techniques, a necessary and sufficient condition is derived without using the restricted equivalent property of singular systems. The condition is given in terms of coupled generalized Lyapunov equations (CGLEs) such that the solution of the discrete-time singular hybrid systems is stochastic stable with time-homogenous finite state Markov chain. The equations can be solved out by changing into strict linear matrix inequalities (SLMIs). The result is extended to solve stabilization problem and the design of robust state-feedback controller and nonfragile controller. A numerical example shows the effectiveness of the proposed approach.
     5. The robust H-infinity filtering and control problem for stochastic hybrid systems are discussed. First, the robust H-infinity estimation for nonlinear perturbed stochastic hybrid systems is investigated. We assume that the state and measurement are corrupted by uncertain exogenous disturbances. The H-infinity filter can be abtained by solving second-order nonlinear Hamilton-Jacobi inequalities. Then, multiple Lyapunov techniq- ues are used to derive some important sufficient conditions for the robust stability in probability of the linear stochastic hybrid systems. Furthermore, by analyzing the robust H-infinity performance of the system with the help of the linear matrix inequality(LMI) method, the state feedback matrix and the impulsive control matrix of the system are obtained, and then a robust H-infinity control rule is derived. Finally, a robust H-infinity control design method based on MATLAB software is presented, and a numerical example shows the effectiveness of the proposed approach.
引文
[1] Tomita S., Hayashi Y. A controllable model of a random multiplicative process for the entire dist- ribution of population [J]. Physica. A, Statistical & Theoretical Physics, 2008, 387(5-6):1345- 1351.
    [2] Delong L., Kluppelberg C. Optimal investment and consumption in a Black-Scholes market with Levy-driven stochastic coefficients [J]. The Annals of applied probability, 2008, 18(3):879-908.
    [3] Kuznetsov E. D., Kaiser G. T. Stochastic Motion of Geosynchronous Satellites [J]. Cosmic Research, 2007, 45(4):359-367.
    [4] Hayes J.G., Allen E.J. Stochastic point-kinetics equations in nuclear reactor dynamics [J]. Annals of Nuclear Energy, 2005, 32(6):572-587.
    [5] Zhang S., Echekki T. Stochastic Modeling Of Finite-rate Chemistry Effects In Hydrogen-air Tur- bulent Jet Diffusion Flames With Helium Dilution [J]. International Journal of Hydrogen Energy, 2008, 33(23):7295-7306.
    [6] Haykin S. Neural Networks [M]. NJ: Prentice-Hall, 1994.
    [7] Scharcanski J. Stochastic Texture Analysis for Measuring Sheet Formation Variability in the Ind- ustry [J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(5):1778-1785.
    [8] Mao X. Stochastic Differential Equations and Their Applications [M]. Chichester: Horwood, 1997.
    [9] Schuss Z. Theory and Applications of Stochastic Differential Equations [M]. NewYork: Wiley, 1980.
    [10] Jazwinsky A.H. Stochastic Processed and Filtering Theory [M]. New York: Academic Press, 1970.
    [11] Has'minskii R.Z. Stochastic Stability of Differential Equations [M]. Holland: Sijthoff and Noor- doff, 1981.
    [12] ?ksendal B. Stochastic Differential Equations: An Introduction with Applications-6th Ed [M]. NewYork: Springer-Verlag, 2003.
    [13] Witsenhausen H. A class of hybrid-state continuous-time dynamic systems [J]. IEEE Transac- tions on Automatic Control, 1966, 11(2):161-167.
    [14] Cellier F. E. Combined Continuous/discrete system simulation by use of digital computer: Technique and Tools [M]. Zurich Switzerland: Swiss Federal of Technology, 1979.
    [15] Levis A. Challenges to control: A collective view [J]. IEEE Transactions on Automatic Control, 1987,32(4):275- 285.
    [16] Bail J. L., Alla H., David R. Hybrid Petri Nets [C]. Proceedings of 1st European Control Confe- rence, France, 1991:1472-1477.
    [17] Alur R., Courcoubetis C., Henzinger T. A., et al. Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. Lecture Notes in Computer Science [M], Berlin: Springer-Verlag., 1993, 736:209-229.
    [18] Titus M., Egardt B. Controllability and Control-Law Synthesis of Linear Hybrid Systems [C]. Proc. of the 11 th Int. conf. on DES, France, 1994:377-383.
    [19] Branicky M. S., Borkar V. S., Mitter S. K. A Unified Framework for Hybrid Control [C]. Proc. of the 11th Int. conf. on DES, France, 1994:352-358.
    [20] Narain S. Reasoning About Hybrid Systems with Symbolic Simulation [C]. Proc. of the 11th Int. conf, on DES, France, 1994:359-368.
    [21] AIur R., Courcouberis C., Henzinger T. A. The Algorithmic Analysis of Hybrid Systems [C]. Proc. of the 11th Int. conf, on DES. France 1994:489-494.
    [22] Raisch J. Simple Hybrid Control Systems-Continuous FDLTI Plants with Quantized Control Inputs and Symbolic Measurements [C]. Proc. of the 11th Int. conf. on DES, France,1994: 369- 376.
    [23] Grossman R.L., Nerode A., Ravn A.P. Hybrid Systems. Lecture Notes in Computer Science [M], Vol.736, Berlin: Springer-Verlag, 1993.
    [24] Antsaklis P. J., Kohn W., Nerode A., et al. Hybrid Systems II. Lecture Notes in Computer Science [M], Vol.999, Berlin: Springer-Verlag, 1995.
    [25] Alur R., Henzinger T. A., Sontag E.D. Hybrid Systems III: Verification and Control. Lecture Notes in Computer Science [M], Vol.1066, Berlin: Springer-Verlag, 1996.
    [26] Antsaklis P. J., Kohn W., Nerode A., et al. Hybrid Systems IV. Lecture Notes in Computer Science [M], Vol.1273, Berlin: Springer-Verlag, 1997.
    [27] Antsaklis P, Kohn W., Lemmon M. Hybrid Systems V. Lecture Notes in Computer Science [M], Vol.1567, Berlin: Springer-Verlag, 1999.
    [28] Automatica, 1997, 35(3) (Special issue on Hybrid Systems).
    [29] IEEE Transactions on Automatic Control, 1998, 43(4) (Special issue on Hybrid Systems).
    [30] Journal of Discrete Event Dynamic Systems, 1998, 8(2) (Special issue on Hybrid Systems).
    [31] Systems & Control Letters, 1999, 38(3) (Special issue on hybrid systems).
    [32] International Journal of Control, 2002, 75 (16/17) (Special issue on Switched, piecewise and polytopic linear systems).
    [33] Manfred M., Lothar T., Francesca R. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M],. Vol.3414, Berlin: Springer-Verlag, 2005.
    [34] Alur R., George J. P. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol.2993, Berlin: Springer-Verlag, 2004.
    [35] Maler O., Pnueli A. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol. 2623, Berlin: Springer-Verlag, 2003.
    [36] Tomlin C., Greenstreet M. R. Proceedings of Hybrid Systems: Computation and Control, Lec- ture Notes in Computer Science [M],Vol.2289, Berlin: Springer-Verlag, 2002.
    [37] Domenica M. et al. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol.2034, Berlin: Springer- Verlag,2001.
    [38] Nancy A. L., Bruce H. K. Proceedings of Hybrid Systems: Computation and Control, LectureNotes in Computer Science [M], Vol.1790, Berlin: Springer-Verlag, 2000.
    [39] Vaandrager F. et al. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol.1569, Berlin: Springer-Verlag, 1999.
    [40] Thomas A. H., Shankar S. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol.1386, Berlin: Springer-Verlag, 1998.
    [41] http://ww.jeeecss.org/TAB/Technical/hybrid/
    [42] http://control.ee.ethz.ch/hybrid/
    [43] http://www.dii.unisi.it/cohes/
    [44] http://www.seas.upenn.edu/~hybrid/
    [45] http://www.nd.edu/~isis/
    [46] http://chess.eecs.berkelev.edu/
    [47] http://www.s2.chalmers.se/research/automation/
    [48] http://sun-valley.stanford.edu/hybrid/
    [49] http://www ece.ucsb.edu/~hespanha/ece229/
    [50] http://www.stanford.edu/class/aa278a/
    [51] http://www.nd.edu/-ptabuada/EE598J/
    [52] http://www.dcsc.tudelft.nl/~sc4160/
    [53] Hou L., Michel A. N. Stability preserving mappings for stochastic dynamical systems [J]. IEEE Transactions on Automatic Control, 2001, 46(6): 933-938.
    [54] Davis M. H. A. Piecewise-deterministic markov processes: A general class of nondiffusion stochastic models [J]. Journal of the Royal Statistical Society, B, 1984, 46(3):353-388.
    [55] Davis M. H. A. Markov Processes and Optimization [M]. London: Chapman & Hall, 1993.
    [56] Pola G., Bujorianu M. L., Lygeros J., et al. Stochastic hybrid models: An overview with applica- tions to air traffic management [C]. In IFAC Conference on Analysis and Design of Hybrid Sys- tems, Saint Malo, France, 2003.
    [57] Lygeros J., Johansson K. H., Simic S. N., et al. Dynamical properties of hybrid automata [J]. IEEE Transactions on Automatic Control, 2003, 48(1):2-17.
    [58] Ghosh M.K., Arapostathis A., Marcus S.I. An optimal control problem arising in flexible manu- facturing systems [C]. In 30th IEEE Conference on Decision and Control, England, 1991, 1844-1849.
    [59] Ghosh M.K., Arapostathis A., Marcus S.I. Optimal control of Switching diffusions with applic- ations to flexible manufacturing systems [J]. SIAM Journal on Control and Optimization, 1993, 31(5):1183-1204.
    [60] Ghosh M.K., Arapostathis A., Marcus S.I. Ergodic control of switching diffusions [J]. SIAM Journal on Control and Optimization, 1997, 35(6):1952—1988.
    [61] Arnold L. Stochastic Differential Equations: Theory and Application [M]. New York: Wiley, 1974.
    [62] Hu J., Lygeros J., Sastry S. Towards a theory of stochastic hybrid systems [M]. In: Hybrid Syst-ems: Computation and Control (Nancy Lynch and Bruce H. Krogh, Eds.), 160-173, Berlin: Springer - Verlag, 2000.
    [63] Bujorianu M. L., Lygeros J., Glover W. et al. A stochastic hybrid system modeling framework. Technical Report D1.2, HYBRIDGE, IST-2001-32460, 2003.
    [64]钱学森,宋健.工程控制论(上、下册) [M].北京:科学出版社,1980.
    [65] Lasalle J P. The stability of dynamical systems. Society for Industrial and Applied Mathematics [M]. Berlin: Hamilton press, 1976. (中译本:廖晓昕,李立鹏译.动力系统的稳定性[M], .武汉:华中工学院出版社,1983.)
    [66] Decarlo R.A., Branicky M.S., Pettersson S. Perspectives and results on the stability and stabili- zability of hybrid systems [J]. Proceedings of the IEEE, 2000, 88(7):1069-1082.
    [67] Davrazos G. N., Koussoulas N. T. A Review of Stability Results for Switched and Hybrid Systems [C]. The 9th Mediterranean Conference on Control and Automation, June 27-29, Dubrovnik, Croatia, 2001:3-19.
    [68] Kozin F. A survey of stability of stochastic systems [J]. Automatica, 1969, 5:95-112.
    [69] Bertram J., Sarachik P. Stability of Circuits With Randomly Time-Varying Parameters [J]. IRE Transactions on Circuit Theory, 1959, 6(5):260-270.
    [70] Elworthy K. D. Stochastic Differential Equations on Manifolds [M]. Cambridge, UK: Cambrid- ge Univ. Press, 1982.
    [71] Friedman A., Pinsky M. Asymptotic stability and spiraling properties for solutions of stochastic equations [J]. Transactions of the American Mathematical Society, 1973, 186: 331–358.
    [72] Kolmanovskii V. B., Myshkis A. Applied Theory Functional Differential Equations [M]. Dordr- echt: Kluwer Academic, 1992.
    [73] Kushner H. Stochastic Stability and Control [M]. Academic New York: Press, 1967.
    [74] Ladde G. S., Lakshmikantham V. Random Differential Inequalities [M]. San Diego:Academic Press, 1980.
    [75] Lakshmikantham V., Leeda S., A. Martynyu. Stability Analysis of Nonlinear Systems [M]. New York:Dekker, 1989.
    [76] Lakshmikantham V., Matrosov V.M., Sivasundaram S. Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems [M]. Dordrecht, The Netherlands: Kluwer, 1991.
    [77] Mohammed S.-E. A. Stochastic Functional Differential Equations [M]. Harlow/New York: Longman, 1986.
    [78] Mao X. Stability of Stochastic Differential Equations with Respect to Semimartingales [M]. Harlow/New York: Longman, 1991.
    [79] Mao X. Exponential Stability of Stochastic Differential Equations [M]. New York:Dekker, 1994.
    [80] Mao X. Stochastic versions of the LaSalle theorem [J]. Journal of Differential Equations,1999, 153:175–195.
    [81] Krasovskii N.N., Lidskii E.A. Analytical design of controllers in systems with random attributes[J].Automation and Remote Control, 1961, 22:1021-1025.
    [82] Mariton M. On the influence of noise on jump linear systems [J]. IEEE Transactions on Autom- atic Control, 1987, 32(12):1094-1097.
    [83] Mariton M. Jump linear quadratic contro1 with random state discontinuities [J].Automatica, 1987, 23(2):237-240.
    [84] Mariton M. Detection delays, false alarm rates and the reconfiguration of control systems[J]. International Journal of Control, 1989, 49(3):981-992.
    [85] Mariton M. Almost sure and moment stability of jump linear systems [J].Systems and Control Letters, 1988, 11:393-397.
    [86] Feng X., Loparo K. A., Ji Y., et al. Stochastic stability Properties of jump linear systems[J]. IEEE Transactions on Automatic Control, 1992, 37(1):38-45.
    [87] Fang Y. A new general sufficient condition for almost sure stability of jump linear systems[J]. IEEE Transactions on Automatic Control, 1997, 42(3):378-382.
    [88] Bolzern P., Colaneri P., De Nicolao G. On almost sure stability of continuous-time Markov jump linear systems [J], Automatica, 2006, 42:983-988.
    [89] Mitchell R. R., Kozin F. Sample stability of second order linear differential equation with wide band noise coefficients[J]. SIAM J. Applied Mathematics, 1974, 27:571-605.
    [90] Bolzern P., Colaneri P., De Nicolao G. On almost sure stability of discrete-time Markov jump linear systems[C]. Proceedings of 43rd IEEE Conference on decision and control. Atlantis, Par- adise Island, 2004:3204-3208.
    [91] Fang Y., Loparo K.A. Stochastic stability of jump linear systems [J]. IEEE Transactions on Aut- omatic Control, 2002, 47(7):1204-1208.
    [92] Li Z.G., Soh Y.C., Wen C.Y. Sufficient conditions for almost sure stability of jump linear systems [J]. IEEE Transactions on Automatic Control. 2000, 45(7):1325-1329.
    [93] Zhai G., Chen X. Stability analysis of switched linear stochastic systems [J]. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 2008, 222(17):661-669.
    [94] Dimarogonas D. V., Kyriakopoulos K. J. Lyapunov-like Stability of Switched Stochastic Syste- ms [C]. Proceedings of the American Control Conference, Boston, 2004, 2:1868-1872.
    [95] Mao X. Stability of stochastic differential equations with Markovian switching [J]. Stochastic Processes and Their Applications, 1999, 79(1):45-67.
    [96] Mao X. Some contributions to stochastic asymptotic stability and boundedness via multiple Lyapunov functions [J]. Journal of Mathematical Analysis and Applications, 2001, 260(2):325- 340.
    [97] Yuan C.; Lygeros J. Asymptotic stability and boundedness of delay switching diffusions [J]. IEEE Transactions on Automatic Control, 2006,51(1):171-175.
    [98] Shen Y., Mao X. Asymptotic behaviours of stochastic differential delay equations [J]. Asian Journal of Control. 2006, 8(1):21-27.
    [99] Chatterjee D., Liberzon D. On stability of stochastic switched systems [C]. 43rd IEEE Confere- nce on Decision and Control, 2004, Atlantis, Paradise Island, Bahamas:4125-4127.
    [100] Chatterjee D., Liberzon D. Stability analysis of deterministic and stochastic switched systems via a comparison principle and multiple Lyapunov functions [J]. SIAM Journal on Control and Optimization, 2006, 45(1):174-206.
    [101]罗交晚,邹捷中,侯振挺.比较原理与Markov调制的随机时滞系统的稳定性[J].中国科学:A辑, 2003, 33(1):62-70.
    [102] Luo J. Comparison principle and stability of Ito stochastic differential delay equations with Poisson jump and Markovian switching [J]. Nonlinear Analysis, 2006, 64(2):253-262.
    [103] Liu B. Stability of solutions for stochastic impulsive systems via comparison approach [J]. IEEE Transactions on Automatic Control, 2008, 53(9):2128-2133.
    [104] Feng W., Zhang J. Stability analysis and stabilization control of multi-variable switched stochastic systems [J]. Automatica, 2006, 42(1):169-176.
    [105] Chatterjee D., Liberzon D. On stability of randomly switched nonlinear systems [J]. IEEE Transactions on Automatic Control, 2007, 52(12):2390-2394.
    [106] Lakshmikantham V., Leela S., Martynyuk A. A. Practical Stability of Nonlinear Systems [M], Singapore: World Scientific, 1990.
    [107] LaSalle J. P., Lefschetz S., Stability by Lyapunov’s Direct Method with Applications [M], New York: Academic, 1961.
    [108] Michel A.N. Quantitative analysis of simple and interconnected systems: stability, bound- edness and trajectory behavior [J]. IEEE Trans. Circuits Syst, CAS-I, 1970, 17(3):292-301.
    [109] Michel A.N. Analysis of discontinuous large-scale systems: stability, transient behavior and trajectory bounds [J]. Int. J. Syst. Sci, 1971, (2): 77-95.
    [110] Weiss L., Infante E. F. Finite time stability under perturbing forces and on product spaces [J]. IEEE Transactions on Automatic Control, 1967, 12(1):54-59.
    [111]阿?阿?玛尔得纽克,孙振绮.实用稳定性及应用[M].北京:科学出版社, 2004.
    [112] Miller R. K., Michel A.N. Qualitative analysis of large k -scale dynamical systems [M]. NewYork, Acad. Press, 1977.
    [113]黄琳.稳定性理论[M].北京:北京大学出版社, 1992.
    [114] Xu X.P., Zhai G.S. Practical stability and stabilization of hybrid and switched systems [J]. IEEE Transactions on Automatic Control, 2005, 50(11):1897-1903 .
    [115] Xu X.P., Zhai G.S. On practical stability and stabilization of hybrid and switched systems, Lecture Notes in Computer Science [M], Berlin: Springer-Verlag, 2004, 2993:615-630.
    [116] Zhai G.S., Michel A.N. On practical stability of switched systems [C]. Proc. 41st IEEE Conf. Decision and Control, Las Vegas, NV, 2002, 3488-3493.
    [117] Zhai G.S., Michel A.N. Generalized practical stability analysis of discontinuous dynamical systems [C]. Proc. 42nd IEEE Conf. Decision and Control, Maui, HI, 2003, 1663-1668 .
    [118] Wang P.G, Liu X. Practical stability of impulsive hybrid differential systems in terms of twomeasures on time scales [J]. Nonlinear Analysis TMA, 2006, 65(11):2035-2042.
    [119] Feng Z.S. Lyapunov stability and practical stability of nonlinear delay stochastic systems: a unified approach [C]. Proc. of the 32nd IEEE Conference on Decision and Control, San Anto- nio, Texas, 1993, 865-870.
    [120] Ting Y. Practical stability with respect to time-varying sets for stochastic differential systems [J]. Stochastic Analysis and Applications, 1999, 17(5):895-909.
    [121] Michel A. N., Ling Hou. Finite-time and practical stability of a class of stochastic dynamical systems [C]. Proceeding of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008, 3452- 3456.
    [122] Zhao P. Practical stability, controllability and optimal control of stochastic Markovian jump systems with time-delays [J]. Automatica, 2008, 44(12):3120-3125.
    [123] Anabtawi M.J., Sathananthan S. Quantitative analysis of hybrid parabolic systems with Markovian regime switching via practical stability [J]. Nonlinear analysis. Hybrid Systems, 2008, 2(3):980-992.
    [124] Dorato P. Short time stability in linear time-varying systems [C]. Proceedings of the IRE International Convention Record Part 4, 1961, 83-87.
    [125] Dorato P., Abdallah C., Famularo D. Robust finite-time stability design via linear matrix ineq- ualities [C]. In Proc. IEEE Conf. on Decision and Control, San Diego, CA, 1997.
    [126] Amato F., Ambrosino R., Ariola M. Finite-time stability analysis of linear discrete-time systems via polyhedral Lyapunov functions [J]. American Control Conference, Seatle, 2008, 1656-1660.
    [127] Bhat S. P., Bernstein, D. S. Finite-time stability of continuous autonomous systems [J]. SIAM Journal on Control and Optimization, 2000, 38 (3): 751-766.
    [128] Moulay E., Perruquetti W. Finite time stability of nonlinear systems [C]. Proceeding of the 42nd IEEE Conference on Decision and Control, Hawaii, USA, 2003, 3641-3646.
    [129] Orlov Y. Finite time stability and robust control synthesis of uncertain switched systems [J]. SIAM Journal on Control and Optimization, 2004, 43(4):1253-1271.
    [130] Sergey G.N., Wassim M.H. Finite-time stabilization of nonlinear impulsive dynamical systems [J]. Nonlinear analysis: Hybrid Systems, 2008, 2(3):832-845.
    [131] Kushner H. J. Finite time stochastic stability and the analysis of tracking systems [J]. IEEE Transactions on Automatic Control, 1966, AC-11(2):219-227.
    [132] Mastellone S., Dorato P., Abdallah C. T. Finite-Time Stability of Discrete-Time Nonlinear Sys- tems: Analysis and Design [C]. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004:2572-2577.
    [133] Ji Y., Chizeck H. Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control [J]. IEEE Transactions on Automatic Control, 1990, 35:777-788.
    [134] Fang Y., Loparo K. Stabilization of continuous-time jump linear systems [J]. IEEE Transacti- ons on Automatic Control, 2002, 47:1590-1603.
    [135] Shi P., Boukas E. Robust control for Markovian jumping discrete-time system [J]. Internation- al Journal of Systems Sciences, 1999, 30:787-797.
    [136] De Souza C. E. Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems [J]. IEEE Transactions on Automatic Control, 2006, 51(5):836-841.
    [137] Park B. G., Kwon W. H. Robust one-step receding horizon control of discrete-time Markovian jump uncertain systems [J]. Automatica, 2002, 38:1229-1235.
    [138] Hu L., Shi P., Huang B. Stochastic stability and robust control for sampled-data systems with Markovian jump parameters [J]. Journal of Mathematical Analysis and Applications, 2006, 313: 504-517.
    [139] Liu H. P., Boukas E. K., Sun F. et al. Controller design for Markovian jumping systems subject to actuator saturation [J]. Automatica, 2006, 42:459-465.
    [140] De Souza C. E., Fragoso M.D. H∞control for linear systems with Markovian jumping param- eters [J]. Control Theory and Advanced Technology, 1993, 9:457-466.
    [141] Boukas E.K., Shi P., Nguang S.K., Robust H∞control for linear Markovian jump systems with unknown nonlinearties [J]. Journal of Mathematical and Applications, 2003, 282:241- 255.
    [142] Zhong M., Lam J., Ding S. Robust fault detection of Markovian jump systems [J], Circuits Systems and Signal Processing, 2004, 23:387-407.
    [143] Liu H., Sun F., He K. Design of reduced-order H∞filter for Markovian jump systems with time delay [J], IEEE Transactions on Automatic Control, 2004, 51:607-612.
    [144] Xiong J., Lam J. Fixed-order robust H∞filter for Markovian jump systems with uncertain switching probabilities [J]. IEEE Transactions on Automatic Control, 2006, 54:1421-1430.
    [145] Xiao N., Gao Z. Robust fault detection for descriptor markovian jump systems [C]. Proceedin- gs of 6th IEEE International Conference on Control and Automation, Guangzhou, China, 2007, 835-840.
    [146] De Persis D., De Santis R., Morse S. Supervisory control with state-dependent dwell-time log- ic and constraints[J]. Automatica, 2004, 40:269-275.
    [147] Battilotti S., De Santis A. Dwell-time controllers for stochastic systems with switching Markov chain[J]. Automatica, 2005, 41:923-934.
    [148] Pan G., Bar-Shalom Y. Stabilization of jump linear Gaussian systems without mode observations [J]. International Journal of Control, 1996, 64:631-661.
    [149] Mao X., Yin G. G., Yuan C. Stabilization an destabilization of hybrid systems of stochastic dif- frential equations [J]. Automatica, 2007, 43{2}:264-273.
    [150] Dragan V., Morozan T. The linear quadratic optimization problems for a class of linear stocha- stic systems with multiplicative white noise and Markovian jumping [J]. IEEE Transactions on Automatic Control, 2004, 49(5):665-675.
    [151] Huang Y., Zhang W., Feng G. Infinite horizon H 2 /H∞control for stochastic systems with Markovian jumps [J]. Automatica, 2008, 44:857-863.
    [152] Feng J., Xu S. Robust H∞control with maximal decay rate for linear discrete-time stocha- stic systems [J]. Journal of Mathematical Analysis and Applications, 2009, 353(1):460-469.
    [153] Zhang W., Chen B. S., Tseng C. S. Robust H∞filtering for nonlinear stochastic systems [J]. IEEE Transactions on Automatic Control, 2005, 53(2):589-598.
    [154] Wei G., Wang Z., Shu H. Nonlinear H∞control of stochastic time-delay systems with Mark- ovian switching [J]. Chaos, Solitons & Fractals, 2008, 35:442-451.
    [155] Xia Y., Zhang J., Boukas E. K. Control for discrete singular hybrid systems [J]. Automatica, 2008, 44(10):2635-2641.
    [156] Boukas E. K. Stabilization of stochastic singular nonlinear hybrid systems [J]. Nonlinear Analysis. 2006, 64:217-228.
    [157] Dai L. Filtering and LQG problems for discrete-time stochastic singular systems [J]. IEEE Transactions on Automatic Control, 1989, 34(10):1105-1108.
    [158] Dong Y., Sun J. On hybrid control of a class of stochastic nonlinear Markovian switching syst- ems [J]. Automatica. 2008, 44(4):990-995.
    [159] Zhang H., Guan Z. H., Feng G. Reliable dissipative control for stochastic impulsive systems [J]. Automatica. 2008, 44(4):1004-1010.
    [160] Mellaert L. J.V., Dorato P. Numerical solution of an optimal control problem with a probability criterion [J]. IEEE Transactions on Automatic Control, 1972, 17(4):543-546.
    [161] Sathananthan S.; Keel LH. Optimal practical stabilization and controllability of systems with Markovian jumps [J]. Nonlinear Analysis, 2003, 54(6):1011-1027.
    [162] Sathananthan S.; Keel LH. Connective practical stabilization of large-scale decentralized cont- rolled stochastic systems [J]. Dynamics of continuous, discrete & impulsive systems. Series B, Applications & algorithms, 2004, 11{4-5}:569-588.
    [163] Zhao P. Practical stability, controllability and optimal control of stochastic Markovian jump systems with time-delays [J]. Automatica. 2008, 44(12):3120-3125.
    [164]胡适耕,黄乘明,吴付科.随机微分方程[M].北京:科学出版社, 2008.
    [165]张卓奎,陈慧婵.随机过程[M].西安:西安电子科技大学出版社, 2003.
    [166]林正炎,陆传荣,苏中根.概率极限理论基础[M].北京:高等教育出版社, 1999.
    [167] Brockett R. W. Lecture Notes on Stochastic Control, Harvard University [M]. Cambridge, MA, 1995.
    [168] Kushner H. I., Dupuis P. Numerical Methods for Stochastic Control Problems in Continuous Time [M]. New York: Springer-Verlag, 2001.
    [169] Klyatskin V. I. Dynamics of Stochastic Systems [M]. New York: Elsevier, 2005.
    [170] Florchinger P. Lyapunov-like techniques for stochastic stability [J]. SIAM Journal of Control Optimization, 1995, 33(4): 1151- 1169.
    [171] Costa O. L. V., Fragoso M. D. Stability results for discrete-time linear systems with marko- vian Jumping Parameters [J]. Journal of Mathematical Analysis and Applications, 1993, 179(1): 154– 178.
    [172] Farias D. P., Geromel J. C., Do Val J. B.R. et al. Output feedback control of markov jump linear systems in continuous-time [J]. IEEE Transcations on Automatic Control, 2000, 45(5): 944–949.
    [173] Yuan C., Lygeros J. Stabilization of a class of stochastic differential equations with markovi- an switching [J]. Systems & Control Letters, 2005, 54(9): 819-833.
    [174] Xie L., Souza C. E. D. Criteria for robust stability and stabilization of uncertain linear systems with time delay [J]. Automatica, 1997, 33(9): 1657-1662.
    [175] Lien C. H. New stability criterion for a class of uncertain nonlinear neutral time delay systems [J]. Internation Journal of System Science, 2001, 32(2): 215-219.
    [176] Ye H., Michel A. N., Hou L. Stability analysis of systems with impulse effects [J]. IEEE Transcations on Automatic Control, 1998, 43(12): 1719-1723.
    [177] Xie G., Wang L. Necessary and sufficient conditions for controllability and observability of switched impulsive control systems [J]. IEEE Transcations on Automatic Control, 2004, 49(6): 960-966.
    [178] Xie L. Output feedback H∞control of systems with parameter uncertainty [J]. International Journal of Control, 1996, 63(4): 741–750.
    [179] Sa?z?-Urra L, González-D?a?z H, Uriarte E. Proteins Markovian 3D-QSAR with spherically- truncated average electrostatic potentials [J]. Bioorganic & Medicinal Chemistry. 2005, 13(11): 3641-3647.
    [180] ?verby H. Traffic modelling of asynchronous bufferless optical packet switched networks [J]. Computer Communications. 2007, 30(6): 1229-1243.
    [181] Mariton M. Jump Linear Systems in Automatic Control[M]. New York: Marcel Dekker. 1990.
    [182] Dragan V, Morozan T. Stability and robust stabilization to linear stochastic systems described by differential equations with Markovian jumping and multiplicative white noise[J]. Stocha- stic Analysis and Applications. 2002, 20(1): 33-92.
    [183] Gao L.J., Wu Y. Q. Exponential stability of impulsive jump linear systems with Markov proce- ss [J]. Journal of Systems Engineering and Electronics, 2007, 18(2): 304-310.
    [184] Wu H.J. Sun J.T. p-Moment stability of stochastic differential equations with impulsive jump and Markovian switching[J]. Automatica. 2006, 42(10): 1753-1759.
    [185] Skorohod, A. V. Asymptotic methods in the theory of stochastic differential equations[M]. Pro- vidence, RI: American Mathematical Society. 2004.
    [186] Lipster R. S., Shiryayev A. N. Theory of Martingales [M]. Chichester, U.K.: Horwood. 1989.
    [187] Boukas E. K., Liu Z. K. Robust control of discrete-time Markovian jump linear system with mode-dependent time-delays[J]. IEEE Transactions on Automatic Control. 2001, 46(12): 1918 -1924.
    [188] Wang Z., Qian H., Burnham K. J. On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters[J]. IEEE Transactions on Automatic Control. 2002, 47(4):640–646.
    [189] Boyd S., El Ghaoui L., Feron, E., et al. Linear matrix inequalities in systems and control theo- ry[M]. Philadelphia, PA, USA: SIAM. 1994.
    [190] Rami M A, Chen X, Moore J B, et al. Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls[J]. IEEE Transactions on Auto- matic Control, 2001, 46(3): 428-440.
    [191] Hespanha J.P., A model for stochastic hybrid systems with application to communication netw- orks[J], Nonlinear Analysis, 2005, 62 :1353-1383.
    [192] Ishhara J Y, Terra M H. On the Lyapunov theorem for singular systems [J]. IEEE Transactions on Automatic Control. 2002, 47(11): 1926-1930.
    [193] Masubuchi I, Kamitane Y, Ohara A, Soda N. H∞control control for descriptor systems: a matrix inequalities approach [J]. Automatica. 1997, 33(4): 669-673.
    [194] Xu S, Lam J. Robust Control and Filtering of Singular Systems [M]. Berlin: Springer. 2006.
    [195] Fu Y., Duan G. Robust guaranteed cost observer for uncertain descriptor time-delay systems with Markovian jumping parameters [J]. Acta Automatica Sinica, 2005, 31(3): 149-153.
    [196] Xu S Y, Lam J. Robust stability and stabilization of discrete singular systems: an equivalent characterization [J]. IEEE Transactions on Automatic Control. 2004, 49(4): 568-574.
    [197] Zames G.. Feedback and optimal sensitivity: Model reference transformation, multiplicative seminorms, and approximative inverses [J]. IEEE Transactions on Automatic Control, 1981, 26(2): 301–320.
    [198] Doyle J.C., Glover K., Khargonekar P.P., et al. State-space solutions to standard H 2 and H∞problems [J]. IEEE Transactions on Automatic Control, 1989, 34(8): 831–847.
    [199] Isidori A., Astolfi A.. Disturbance attenuation and H∞control via measurement feedback in nonlinear systems [J]. IEEE Transactions on Automatic Control, 1992, 37(9): 1283–1293.
    [200] Xie L.. Output feedback H∞control of systems with parameter uncertainty [J]. International Journal of Control, 1996, 63: 741– 750.
    [201] Xie L., Fu M., de Souza.C.E. H∞control and quadratic stabilization of systems with parame- ter uncertainty via output feedback [J]. IEEE Transactions on Automatic Control, 1992, 37(8): 1253–1256.
    [202] Ravi R., Nagpal K. M., Khargonekar P. P. H∞control of linear time-varying systems: A state space approach [J]. SIAM Journal on Control and Optimization, 1991, 29(6):1394-1413.
    [203] Limebeer D., Anderson B., Khargonekar P. P.,et al. A game theoretic approach to H∞control for time-varying systems [J], SIAM Journal on Control and Optimization, 1992, 30(2):262- 283.
    [204] Sivashanka N., Khargonekar P. P. Characterization of the L2-induced norm for linear systems with jumps with applications to sampled-data systems [J]. SIAM Journal on Control and Opti- mization, 1994, 32(4):1128-1150.
    [205] Elsayed A., Grimble M.J.. A new approach to the H∞design of optimal digital linear filters [J]. IMA J. Math Control Info., 1989, 6:233-251.
    [206] Tseng C.-S., Chen B.-S. H∞fuzzy estimation for a class of nonlinear discrete-time dynamic systems [J]. IEEE Transactions on Signal Processing, 2001, 49(11):2605-2619.
    [207] Grimble M. J., El-Sayed A. Solution of the H∞optimal linear filtering problem for discrete- time systems [J]. IEEE Transactions on Acoustic, Speech, Signal Processing, 1990, 38(8):. 1092-1104.
    [208] McEneaney W. M. Robust/ H∞filtering for nonlinear systems [J]. Systems and Control Lett- ers, 1998, 33:315-325.
    [209] Yung C. F., Li Y. F., Sheu H. T. H∞filtering and solution bound for nonlinear systems [J]. International Journal of Control, 2001, 74:565–570.
    [210] Berman N., Shaked U. H∞nonlinear filtering [J]. Int. J. Robust and Nonlinear Control, 1996, 6: 281-296.
    [211] Hung J.-C., Chen B.-S. Genetic algorithm approach to speech fixed-order mixed H 2 /H∞optimal deconvolution filter designs [J]. IEEE Transactions on Signal Procesing, 2000, 48(12): 3451-3461.
    [212] Chen B.-S., Tsai C.-L., Chen Y.-F. Mixed H 2 /H∞filtering design in multirate transmulti- plexer systems: LMI approach [J]. IEEE Transactions on Signal Procesing, 2001, 49(11): 2693-2701.
    [213] Shen X., Deng L. A dynamic system approach to speech enhancement using the H∞filtering algorithm [J]. IEEE Transactions on Speech Audio Processing, 1999, 7(7):391-399.
    [214] Gershon E., Limebeer D. J. N., Shaked U., et al. Robust H∞filtering of stationary conti- nuous-time linear systems with stochastic uncertainties [J]. IEEE Transactions on Automatic Control, 2001, 46(11):1788–1793.
    [215] Hinrichsen D., Pritchard A. J. Stochastic H∞[J]. SIAM Journal of Control and Optimization, 1998, 36:1504–1538.
    [216] Zhang W., Chen B.-S. State feedback H∞control for a class of nonlinear stochastic systems [J]. SIAM Journal of Control and Optimization, 2006, 44(6):1973-1991.
    [217] Xu S., Chen T. Reduced-order H∞filtering for stochastic systems [J]. IEEE Transactions on Speech Audio Processing, 2002, 50(12):2998–3007.
    [218] Chen B.-S., Zhang W., Chen Y.-Y. On the robust state estimation of nonlinear stochastic systems with state-dependent noise [C]. in Proceeding of International Conference of Control Automation, Xiamen, China, 2002, 2299–2304.
    [219] Chen B.-S., Zhang W. Stochastic H 2 /H∞control with state-dependent noise [J]. IEEE Transactions on Automatic Control, 2004, 49(1):45–57.
    [220] Wonham W. M. Random differential equations in control theory [M]. Probabilistic Methods in Applied Mathematics, A. T. Bharucha Reid, Ed. New York: Academic, 1970, 2:131–212.
    [221]杨莹,李俊民,刘晓芬.脉冲随机混合系统的稳定性与鲁棒稳定性分析[J].控制与决策, 2008,23(5):555-559.
    [222]胡宣达.随机微分方程稳定性理论[M].南京:南京大学出版社,1986.
    [223] Driss M, Mohammed A H, Francois P. Robustness and optimality of linear quadratic controller for uncertain systems [J]. Automatica, 1996, 32(7): 1081-1083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700