用户名: 密码: 验证码:
矩形薄板振动的随机分岔和可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矩形薄板是一种在各工程领域中广泛应用的工程材料,它具有大变形,易发生颤振的特点。虽然国内外学者对矩形薄板的振动及动力学特性进行了大量的研究,但其研究主要集中在确定系统中。而薄板受到的外激励中有很多随机因素,因此用随机非线性动力学理论研究矩形薄板的非线性运行规律及动力学特性和控制策略是十分必要的。本文主要完成了以下工作:
     1、考虑外界随机激励对矩形薄板振动系统的影响,将外激励简化为高斯白噪声,利用弹性薄板理论和Galerkin方法建立了矩形薄板系统的随机非线性动力学模型,对该弱阻尼、弱激励的拟不可积Hamilton系统,首次运用拟不可积Hamilton理论和乘积遍历性定理计算了模型的Lyapunov指数,分析了系统的局部稳定性,通过对一维扩散过程的边界分析,得出该系统的全局稳定性条件;根据系统响应的联合概率密度和平稳概率密度以及不同参数条件,研究了该矩形薄板随机振动的随机Hopf分岔行为,并对分岔参数进行了分析,还通过数值仿真进行了验证。
     2、运用随机平均法,将Hamilton函数表示为一维扩散过程,建立了可靠性函数和“首次穿越”时间的概率密度所满足的BK方程。结合初始条件和边界条件得到了数值结果,还分析了“首次穿越”现象对系统性态的影响,给出了该系统发生首次穿越现象后的动力学行为。
     3、利用随机动态规划原理及随机平均法首次给出了以最大可靠性为目标的随机最优控制策略,说明了当控制力为有界函数时,随机最优控制即是Bang-Bang控制。并采用有限差分法对受控系统的可靠性函数、“首次穿越”损坏的概率密度函数所满足的偏微分方程进行了数值仿真。数值结果表明,随着控制约束力的增大,系统的安全性得到了增强,系统被破坏的可能性将会降低。
     4、综合应用随机平均法、随机稳定性及可靠性理论研究开了具有摩擦边界的矩形薄板的随机振动问题。
Rectengular thin plate is a kind of basic structure which is widely used in many engneering fields. Thin plate is easy to have big deformations and obvious vibration. Lots of researches have been done at home and abroad, but most of them focus on certainty system. It is necessary to discuss the character of rectengular thin plate vibration system in the frame of stochastic nonlinear dynamics theory for the external excitation is obviously stochastic excitation. This dissertation studies the complex nonlinear phenomenon in the semi-active suspension system and the control strategy using stochastic nonlinear dynamics theory. The main content is as follows:
     1. Applying the stochastic nonlinear dynamics theory to rectengular thin plate vibration system considering the impact of random factors. Simplifying in plate excitation as gauss white noise, establish v rectengular thin plate vibration system model based on stochastic nonlinear dynamics theory and Galerkin method, considering the law of force and acceleration. The max Lyapunov exponent is calculated by quasi non-integrable Hamiltonian theory and Oseledec multiplicative ergodic theory, the local stability conditions have been obtained; the global stability conditions have also been obtained by judging the modality of the singular boundary; the stochastic Hopf bifurcation is analyzed from the sharp change of stable and joint probability densities, and the parameter condition of stochastic Hopf bifurcation have been discussed through the numerical simulation.
     2. A two-dimension stochastic nonlinear dynamical model of rectengular thin plate vibration system has been presented considering the stochastic factor. The Hamilton function is described as one dimension diffusion process by using stochastic average method, the global stability conditions is also obtained by judging the modality of the singular boundary; the backward Kolmogorov equation for reliability function and the generalized Pontryagin equation for conditional moment of the first-passage time have been established, the numerical results are given according to the classification of boundary conditions and initial conditions of these two equations. At last, the charactor of first-passage on system had been analyzed.
     3. The optimal control strategy aimed to obtain the maximization of reliable function has been accessed by dynamic programming principles. The optimal control laws are“bang-bang”controls which are derived from the finit control force. Numerical simulations have been done with the backward Kolmogorov equation for reliability function and the generalized Pontryagin equation for conditional moment of the first-passage time which is under control by using finite difference method. The numerical results indicated that the security enhanced when the constrained control force increasd.
引文
[1] H.-N.Chu,G.,Herrmann,Influence of large amplitude on free flexural vibrations of rectangular relastic plates, Journal of Applied Mechanics. 1956,(23):532–540.
    [2] Yasuda,K,asano,T,Nonlinear forced oslations of a rectangular membrane with degenerate modes, Bulletin of JSME,1986,29:3090-3095
    [3] Holmes,P.J,Bifucation to divergence and flutter in flow-induced oscillations: A finite-dimensional analysis, Journal of soud and vibration , 1977,53(4):161-174.
    [4] Holmes,P.J., Marsden, J.E., Bifurcation to divergence and flutter in flow- induced oscillation: An finite-dimensional analysis , Journal of soud and vibration ,1978,53(4):367-384.
    [5] Holmes P.J.,Center manifolds, normal forms and bifurcations of vector fields with application to coupling between periodic and steady motions , Physica D:Nonlinear Phenomena, 1981,2(3): 449-481.
    [6] Yang X. L. , Sethna, P. R.,Local and global bifurcations in parametrically excited vibrations nearly square plates, Journal of Non-Linear Mechanics 1990, 26(2):199–220
    [7] Feng, Z. C. , Sethna, P. R., Global bifurcations in the motion of parametrically excited thin plate,Nonlinear Dynamics 4, 1993, 389–408.
    [8] Abe, A., Kobayashi, Y., Yamada, G., Two-mode response of simply supported, rectangular laminated plates, International Journal of Non-Linear Mechanics, 1998,33(4): 675–690
    [9] Chang, S. I., Bajaj, A. K., , Krousgrill, C. M., Non-linear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance, Nonlinear Dynamics,1993, 4(5):433–460
    [10] Popov, A. A., Thompson, J. M., Croll, J. G., Bifurcation analysis in the parametrically excited vibrationsof cylindrical panels, Nonlinear Dynamics 1998, 17(3): 205–225.
    [11] Sassi, S. , Ostiguy, G. L., Effects of initial geometric imperfections on the interaction between forced and parametric vibrations, Journal of Sound and Vibration, 1994, 178(1): 41–54.
    [12] Hadian, J., Nayfeh, A. H., Modal interaction in circular plates, Journal of Sound and Vibration, 1990, 142(2):279–292.
    [13] Nayfeh, T. A. and Vakakis, A. F., Subharmonic travelling waves in a geometrically non-linear circular plate, International Journal of Non-Linear Mechanics ,1994, 29(2):233–245.
    [14] Tian,W.M., Namachchivaya, N. S., and Bajaj, A. K., Non-linear dynamics of a shallow arch under periodic excitation I. 1:2 internal resonance, International Journal of Non-Linear Mechanics,1994, 29(3):349–366.
    [15] Tian,W.M., Namachchivaya, N. S., and Malhotra, N., Non-linear dynamics of a shallow arch under periodic excitation– II. 1:1 internal resonance, International Journal of Non-Linear Mechanics, 1994, 29(4): 367–386.
    [16] J. Chen,D.J Dawe,S.Wang, Nonlinear transient analysis of rectangular composite laminated plates, Composite Structures, 2000,(49):1129-139
    [17] M.Ganapathi,T.K.Varadan,B.S.Sarma,Nonlinear flexural vibrations of laminated orthotropic plates, Computers andStructures ,1991 (39) 685–688.
    [18] C.S.Chen,J.R.Hwang,J.L.Doong,Nonlinear vibration o faninitially stressed plate based on amodified plate theory, International Journal of Solids and Structures ,2001, (38):8563–8583
    [19] M. Amabili , S.Carra,Thermal effects on geometrically nonlinear vibrations of rectangular plates with fixed edges , Journal of sound and vibration, 2009,321:936-954.
    [20] S.J. Lee, J.N. Reddy, Non-linear response of laminated composite plates under thermomechanical loading ,International Journal of Non-linearMechanics, 2005 ,(40):971–985.
    [21] P.Ribeiro, Thermally in duced transitions to chaos in plate vibrations, Journal of Sound and Vibration . 2007 (299):314–330.
    [22] P.Ribeiro,E.Jansen,Non-linear vibrations of laminated cylindrical shallow shells under thermomechanical loading, Journal of Sound andVibration ,2008, (315):626–640.
    [23] L.Librescu,W.Lin,Non-linear response of laminated plates and shells to thermomechanical loading: implications of violation of interlaminar sheart raction continuity requirement, International Journal of Solid sand Structures 1999 (36):4111–4147.
    [24] Khasmiskii.R.Z., Stochastic Stability of Differential Equations, Alpen aan den Rijin, the Netherlands, Sijthoff and Noordhoff,1980.
    [25] Arnold L., Papanicolaou.G. , Wihstutz V., Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications, SIAM Journal of Applied Mechanics, 1986,46(3):427-450
    [26] Namachiwaya N.S., Roessel V. , Talwar S., Maximal Lyapunov exponent and almost-sure stability for coupled two degree of freedom stochastic systems, ASME Journal of Applied Mechanics,1994,61:446-452
    [27] Par doux E. , Wihstutz V., Lyapunov exponent and rotation number of two-dimensional linear stochastic systems with small diffusion, SIAM Journal of Applied Mechanics, 1988,48(2),442-457
    [28] Ariaratnam S.T. , Xie W.C., Lyapunov exponents and stochastic stability of coupled linear systems under real noise excitation, ASME Journal of Applied Mechanics,1992,59, 664-673
    [29] Namachchiwaya N Sri., Stochastic bifurcation, Applied Mathematics and Computation, 1990,38:101-159
    [30] V.S.Anishchenko, T.E.Vadivasova, G.I.Strelkova, G.A.Okrokvertskhov, Statistical properties of dynamical chaos, Mathematical Biosciences and Engineering, 2004,1(1), 161-184
    [31] C.Castillo-Chavez , B.Song, Dynamical Models of tuberculosis and their applications, Mathematical Biosciences and Engineering, 2004,1(2), 361-404
    [32] Walter, M., Recknagel, F., Carpenter, C., Bormans, M., Prediction Eutrophication Effects in the Burrinjuck Reservior (Australia) by Means of the Deterministic Model SALMO and the Recurrent Neural Network Model ANNA, Ecol. Modelling, 2000
    [33] Y.Kuang, J,Huisman , J.J.Elser, Stoichometric plant-herbivore models and their interpretation, Mathematical Biosciences and Engineering, 2004,1(2):215-222
    [34] R.López,-Ruiz , D.Fournier-Prunaret, Complex behavior in a discrete coupled logistic model for the symbiotic interaction of two species, MathematicalBiosciences and Engineering, 2004,1(2): 307-324
    [35] Kedai Xu , Stochastic pitchfork bifurcation , numerical simulations and symbolic calculations using MAPLE. Mathematics and Computers in Simulation 1995,38 :199-209
    [36] L. Arnold, K.D. Xu. Normal-Forms for random diffeomorphism . J.Dynamics Differential Equations, 1992,4 :445-483.
    [37] K.D.Xu, Bifurcations of random differential equations in dimension one [J]. Random Comput. Dynamics 1 (1992/1993) :277-305.
    [38] Zhang W , Li Z.M. Global Dynamics of a Parametrically and Externally Excited Thin Plate. Nonlinear Dynamics 24: 245-268, 2001.
    [39] .Hao Y.X, Chen L.H., Zhang W. et. Nonlinear oscillations, bifurcations and chaos offunctionally graded materials plate Journal of Sound and Vibration 312 (2008) 862–892
    [40] Yong-san Yoon , Hyuk Kim, Feedforword Neuro-Controlled Active Suspension Using Frequency and Time Mixed Shape Performance Index, Int.J. of Vehicle Design, 1996, 17(2): 63-81.
    [41]杨志安,非线性弹性地基上圆形薄板主参数共振-主共振研究,唐山学院学报2007:20(6):1-5.
    [42]赵雪娟,杨志安,温度场中非线性弹性地基上矩形薄板的1/3次亚谐共振.唐山学院学报.,2007, 20(6):8-11.
    [43]赵雪娟,杨志安,非线性弹性地基上矩形薄板受双频参数激励作用的非线性振动,应用力学学报.,2007, 24( 3):494-498.
    [44]杨志安,李文兰,Winkler地基上四边自由矩形薄板的亚谐共振与奇异性分析,机械强度.,2007,29(2):329-333
    [45]杨志安,韩彦斌,Winkler地基上材料非线性矩形薄板主参数共振研究.振动与冲击. 2007, 26(3):387-390.
    [46]杨志安,赵雪娟,席晓燕,非线性弹性地基上矩形薄板的非线性振动与奇异性分析,振动与冲击, 2006,25( 5):153-159.
    [47]袁鸿,李善倾,刘人怀, Pasternak地基上简支板振动问题的准格林函数方法.应用数学和力学, 2007,28(7):.162-179.
    [48]李善倾,袁鸿,王红,准格林函数方法在Winkler地基上简支多边形薄板振动问题中的应用,暨南大学学报,自然科学与医学版, 2007,28(3):757-762.
    [49]李善倾,袁鸿,简支多边形薄板振动问题的准格林函数方法,暨南大学学报,自然科学与医学版.,2007,28(1):36-39.
    [50]李善倾,求薄板自然频率的一种近似方法,山西建筑. 2005,31(14):.38-39。
    [51]胡宇达,李晶,导电薄板的磁弹性组合共振分析.应用数学和力学,2008, 29(8):954-966.
    [52]胡宇达,杜国君,王国伟,电磁与机械载荷作用下导电梁式板的超谐波共振,动力学与控制学报.,2004,2(4):35-38.
    [53]胡宇达,传导薄板的非线性磁弹性振动问题,工程力学,2001,18(4):89-94.
    [54]胡宇达,磁场中理想传导薄板的非线性振动一般方程.非线性动力学学报. 1999年6卷4期
    [55]胡宇达,杜国君,磁场环境下导电圆形薄板的磁弹性强迫振动,工程力学. 2007年,24(7):184-188.
    [56] W.Q.Zhu,Y.Q.Yang, Stochastic Averaging of Quasi- nonintegrable- Hamiltonian Systems, Journal of Applied Mechanics, 1997, 64,:975-984.
    [57] W.Q.Zhu, Z.L.Huang, Stochastic Averaging of Quasi- integrable- Hamiltonian Systems, Journal of Applied Mechanics, 1997, 64,:975-984.
    [58] W.Q.Zhu, Z.L.Huang, Suzuki, Stochastic Averaging and Lyaponov exponent of Quasi- partially integrable- Hamiltonian Systems, Internatonal Journal of Non-Linear Mechanics, 2002, (37):419-437.
    [59] W.Q.Zhu, Z.L.Huang, Stochastic Stability of Quasi-nonintegrable- Hamiltonian Systems,Journal of Sound and Vibration, 1998,218(5):769-789
    [60] W.Q.Zhu,Z.L.Huang,Stochastic Hopf bifurcation of Quasi-nonintegrable- Hamiltonian Systems, Internatonal Journal of Non-Linear Mechanics, 1999 (34):437-447.
    [61] Zhu W.Q, Z.L.Huang, Response and stability of strongly nonlinear oscillators under wide-band random excition, Internatonal Journal of Non-Linear Mechanics, 2001, (36):1235-1250.
    [62] Zhu W.Q,Deng M L, Z.L.Huang, First passage failure of quasi- integrable- Hamiltonian Systems, ASME Journal of Non-Linear Mechanics, 2002,69:274-282.
    [63] Gan C B, Zhu WQ, First passage failure of quasi- nonintegrable- HamiltonianSystems, ASME Journal of Non-Linear Mechanics, 2001,36:209-220.
    [64] Zhu W. Q, Ying, Z. G, Soong, T.T. An optimal nonlinear stochastic control strategy for randomly excited structural systems. Nonlinear Dynamics, 2001, 24: 31-51.
    [65] Zhu W. Q, Z.L.Huang, Deng M L, First passage failure and its feedback minimization of quasi- partly-integrable- Hamiltonian Systems, Internatonal Journal of Non-Linear Mechanics, 2004, 24: 31-51.
    [66]朱位秋,随机振动[M].北京:科学出版社, 1998
    [67]朱位秋,非线性随机动力学与控制—Hamilton理论体系框架,科学出版社,2003;
    [68]戎海武,徐伟,方同,二自由度耦合非线性随机系统的最大Lyapunov指数和稳定性,应用力学学报,1998,15(1):22-29
    [69]戎海武,孟光,徐伟,方同,二自由度耦合线性随机系统的最大Lyapunov指数和稳定性,应用力学学报,2000,17(3):46-53
    [70]戎海武,孟光,徐伟,方同,二阶随机参激系统的Lyapunov指数和稳定性,振动工程学报,2002,15(3):295-299
    [71]戎海武,方同,二阶线性随机微分方程的渐近稳定性,应用力学学报,1996,13(3):72-78
    [72]戎海武,王命宇,方同,二阶随机系统的Lyapunov指数与稳定性,振动工程学报,1997,10(2):213-218
    [73]徐伟,戎海武,方同,C r随机中心流形定理,应用力学学报,1997,14(3), 8-13
    [74]戎海武,徐伟,方同,随机分叉定义小议,广西科学,1997,4(1), 15-19
    [75]戎海武,孟光,王向东,徐伟,方同,FPK方程的近似闭合解,应用力学学报,2003,20(3), 95-98
    [76]戎海武,王命宇,方同,随机ARNOLD系统的稳定性与分叉,应用力学学报,1996,13(4),112-116
    [77]刘先斌,陈虬,陈大鹏,非线性随机动力系统的稳定性和分岔研究,力学进展,1996,26(4):437-452
    [78]刘先斌,陈大鹏,陈虬,实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ),应用数学和力学,1999,20(9):902-912
    [79]刘先斌,陈大鹏,陈虬,实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅱ),应用数学和力学,1999,20(10):997-1003
    [80]刘先斌,陈虬,陈大鹏,白噪声参激Hopf分叉系统的两次分叉研究,应用数学和力学,1997,18(9):779-788
    [81]刘先斌,陈虬,实噪声参激Hopf分叉系统研究,力学进展,1997,29(2):158-166
    [82]刘先斌,一类随机分叉系统概率1分叉研究,固体力学学报,2001,22(3):297-302
    [83]刘先斌陈大鹏,随机扰动的同宿分岔系统研究,固体力学学报,1998,19(1):26-32.
    [84]杨槐、朱华、褚亦清,一类非线性系统在随机激励下的分叉,应用力学学报,1993,10(4):69-71.
    [85]裘春航,吕和祥,蔡志勤,在哈密顿体系下分析非线性动力学问题,计算力学学报,2000,17(2):127-132.
    [86]王洪礼,许佳,葛根,机翼颤振的随机Hopf分岔研究,机械强度,2008,30(3):368-370.
    [87] Xu, Jia, Wang, Hongli, Zhu, Zhiwen, Ge, Gen. Research on optimal control of vehicle vibration based on semi-active suspension system, Proceedings of the 9th International Conference for Young Computer Scientists, ICYCS 2008, p 2835-2839, 2008
    [88] Xu, Jia, Wang Hongli, Zhu, Zhiwen, Ge, Gen.Research on random vibration control of vehicle based on semi-active suspension system, 2008 IEEE Vehicle Power and Propulsion Conference, VPPC 2008.
    [89] Xu, Jia, Wang, Hongli, Zhu, Zhiwen, Ge, Gen.Random vibration optimal control of vehicle based on semi-active suspension system. Proceedings - International Conference on Intelligent Computation Technology and Automation, ICICTA 2008, v 1, p 427-431, 2008
    [90] Dong-Wei Huang, Hong-Li Wang, Yu Qiao, Zhi-Wen Zhu, Stochastic Hopf Bifurcation of Four-wheel-steering System, Proceedings of the Fifth International Conference on Stochastic Structural Dynamics, Hangzhou, China, 2003,207-214
    [91]王洪礼,许佳,葛根,海洋生态非线性动力学模型的随机Hopf分岔,海洋通报,2008,27(3):38-42.
    [92]王洪礼,许佳,葛根,赤潮藻类非线性动力学模型的随机分岔,海洋通报,2008,27(2):37-42.
    [93]王洪礼,许佳,许晖,郭龙,赤潮藻类模型的非线性随机稳定性研究,青岛大学学报(自然科学版),2005,18(3) :30-32。
    [94]王洪礼,许佳,郭龙,许晖.海洋赤潮藻类的生态动力学稳定性研究,动力学与控制学报,2005,3(2) :40-43。
    [95]张志祥,随机扰动间断动力系统的极限性质及其应用,数学的实践与认识,2002,32(4):651-657.
    [96] Han, Hongehen, Wang, Hongli,Xu, Jia, Reliability analysis based on stochastic model of business cycle, 2008 IEEE Symposium on Advanced Management of Information for Globalized Enterprises, AMIGE 2008 - Proceedings, 2009, p 298-300.
    [97]曹庆杰,非线性系统随机振动与分叉理论研究,天津;天津大学,1991
    [98]廖晓昕,动力系统的稳定性和应用,国防工业出版社,2000.
    [99]郝柏林,从抛物线谈起——混沌动力学引论,上海科技教育出版社,1993年
    [100]陈予恕,唐云等,非线性动力学中的现代分析方法,科学出版社,2000年
    [101]陈予恕,非线性振动系统的分岔和混沌理论,高等教育出版社,1993年
    [102]王洪礼,张琪昌,非线性动力学理论及应用,天津科技出版社,2002年
    [103]张琪昌,王洪礼等,分岔与混沌理论及应用,天津大学出版社,2005
    [104]Robert JB,First passage probabliabity for nonlinear osalillatior, Journal of Engneering mechicas, ASCE, 1976,102:851-866.
    [105]Spanos PD, Survival probability of nonlinear oslators subjected to broad-band random disturbance, International Journal of nonlinear mechnicas, 1996, 17:303-317.
    [106]Ditlevsen O, Madsen HO, Structural Reliability Methods, John Wiley & Sons Ltd, Chichester,2004.
    [107]Veit Bayer,Christian Bucher, Important sampling for first passage problems of nonlinear structures, Prob Eng Mech,1999,14:27-32.
    [108]Madsen PH, Krenk S,An integral equation method for the first-passage problem in random vibration, Journal of applying Mechnicas, ASME,1984,51:674-679.
    [109]Chistein H. Conditional and joint faiure surface crossing of stochastic processes, Journal of Engneering mechicas, ASCE, 1992,118(9):1814-1839.
    [110]Winterstein SR, Nonlinear vibration models of extremes and fatigue, Journal of Engneering mechicas, ASCE, 1988,114(10):1772-1790.
    [111]Doering CR, Gadoua J C, 1992, Phys Rev Lett, 69:2318-2328.
    [112]Madureira A J R , Hanggi P , Wio H S 1996 Phys . Lett . A 241-248
    [113]Wang J , Cao L , Wu D J 2003 Phys . Lett . A 308: 23
    [114]Rice OC. Mathematical analysis of random noise. Bell Syst Tech J., 1945, 24: 146-156.
    [115]Langley R S. A first passage app roximation for normal stationary random p rocesses .Jourbal Sound and Vibration, 1988, 122 (2) : 261-275
    [116]Wen YK, Chen HC. System reliability under time2varying loads, Journal of Engneering Mech, ASCE, 1989, 115 (4) : 808-823.
    [117]Pearce HT, Wen YK. Stochastic combination of load effects. J Struct Engng, ASCE, 1984, 110 (7) : 1 613-1 629.
    [118]Rackwitz R. On the combination of non2stationary rectangularwave renewal p rocesses, Struct Safety, 1993, 13: 21-28
    [119]AndréT Beck, Robert EMelchers. On the ensemble crossing rate app roach to time variant reliability analysis of uncertain structures, Probab Eng, Mech, 2004, 19: 9-19
    [120]Novikova A, Melchersb R E, Shinjikashvilia E, et al. First passage time of filtered Poisson p rocesswith exponential shape function , Prob, EngngMech, 2005, 20: 57-65.
    [121]李桂青,欧进萍.非线性体系受平稳随机荷载的首次通过问题,地震工程与工程振动, 1982, 2 (3) : 43-58.
    [122]Liu Ning, Liu Guang Ting. Time2dependent reliability assessment formass concrete structures, Structural Safety, 1999, 21: 23-43.
    [123]NaessA. The response statistics of non2linear, second2order transformations to Gaussian loads, J. Sound Vib, 1987, 115 (1) : 103-129.
    [124]VeitBayer, Christian Bucher. Importance samp ling for the first passage p roblems of nonlinear structures, Probab. Eng, Mech, 1999, 14: 27-32
    [125]Engelund S, Rachwitz R. App roximations of first2passage times foe differentiable p rocesses based on higher2order threshold crossing. Prob.EngngMech, 1995, 10: 53-60
    [126]Madsen P H, Krenk S. An integral equation method for the first2passage problem in random vibration , J. App l. Mech, ASME, 1984, 51:674-679.
    [127]Chistein Hagen. Conditional and joint failure surface crossing of stochastic p rocesses, J. Eng. Mech, ASCE, 1992, 118 (9) : 1814-1839.
    [128]叶敏,肖龙翔.分析力学.天津,天津大学出版社,2001.167-170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700