用户名: 密码: 验证码:
跨断层隧道地震反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震发生时,跨断层隧道一般会产生较严重的震害。本文以跨断层隧道为研究对象,从震害现象、震害产生的原因和抗震研究现状的总结入手,进行了跨断层隧道地震反应分析研究。本文主要工作成果有以下几个方面:
     1、断层位错作用下隧道结构的非线性反应分析。针对断层错动而引起的隧道衬砌破坏,研究了几种不同工况下隧道的非线性反应特性,主要得到以下研究结果:
     (1)长大跨断层山岭隧道在不同断层类型位错作用的研究表明:在相同的加载过程中,逆断层工况下隧道衬砌结构最先产生应力屈服,且逆断层引起的的屈服范围最大。正断层产生的破坏程度次之,而走滑断层产生的破坏程度最小。
     (2)选用不同刚度的围岩进行相同的加载过程分析表明:在强制位移荷载作用下,围岩为硬岩的工况下较软岩工况下隧道衬砌更容易产生破坏;从应力屈服范围来看,在同样的加载过程和衬砌条件下,软岩工况下隧道衬砌的底板和边墙的屈服范围大于硬岩工况,而两种工况下的顶板屈服范围相近。
     (3)取断层破碎带宽度分别为5米、20米和100米三种工况分别进行研究,通过计算、对比分析表明:随着断层宽度的增大,底板的应力屈服区域逐渐增大,但位于上盘的隧道高应力范围逐渐减小;在三种工况下,顶板的高应力区及应力屈服区均发生在断层范围内;边墙的高应力区和应力屈服区的范围均随着断层宽度的增大而增大。
     (4)综合总体分析可以发现,隧道衬砌的高应力区主要产生于上盘距断层90米至下盘距断层50米之间的范围内,在设计中应对该段给予更多的关注。
     2、以混凝土衬砌为研究对象,利用在混凝土中加入不同含量的引气剂计算了不同孔隙率情况下混凝土的不同拉、压损伤因子。针对不同裂纹的混凝土,可以利用该拟合结果得到混凝土的损伤情况,进而获取了损伤混凝土的应力应变本构。
     3、改进了Loland和Mazars损伤模型,给出了新的损伤模型。以未添加引气剂的混凝土为初始状态混凝土,利用室内试验对该混凝土的拉、压性能进行测试,得到该混凝土的拉、压应力应变关系。将拉、压应力应变曲线数据分别带入改进的损伤模型,得到了混凝土的拉、压损伤本构和混合损伤本构关系表达式。
     4、将利用试验结果推导得到的损伤本构嵌入MIDAS/GTS软件本构库,并利用混凝土标准试件单轴压缩试验初步验证了本构模型的正确性。
     5、利用MIDAS/GTS软件,采用本文研究建立的混凝土材料损伤本构模型,对跨断层隧道在地震动时程作用下的反应进行模拟、计算和分析,得到了隧道塑性区产生范围和规律;结合汶川地震中典型的隧道震害,对震害产生的原因进行了初步分析,同时也进一步验证了自定义损伤本构模型模拟地震荷载作用下隧道衬砌反应的适用性。
Generally, some serious damage may happen to the crossing-fault tunnel during earthquake. Based on conclusions of seismic damage phenomena and earthquake-resistant research status,the seismic behavior of crossing-fault tunnel is analyzed. Some conclusions have been achieved as follows:
     1)The non-linear behavior of long and big mountain tunnel are analyzed under some different conditions of fault movement.
     (a) Under the condition of different fault movement, during the same loading process,stress yielded first and yield scope is biggest under reverse fault condition, the damage extent is the second under the normal condition, and the smallest under the strike slip fault condition.
     (b) From the analysis of different rigidity of rocks, the results are showed as follows: With the fault movement, the tunnel lining is easier to be damaged under the condition of soft rock than under that of hard rock, compared the yield scope of the two conditions, that of the roof and side wall is bigger under soft rock condition than that under hard rock condition, and is similar at roof under the two conditions.
     (c) Different width of 5m, 20m, and 100m are studied to analyze the effect of different fault width to the tunnel lining under fault movement. With the bigger fault width, yield range of the bottom is increasing, but the high stress range in the active fault decreases, and both the high stress area and yield stress area at position of roof and side wall occur in the range of fault, and increasing with the increasing fault width. (d) Generally, the high stress area of tunnel lining is mainly from 90 meters in hanging wall to 50 meters in footwall around fault, which scope should be pay much more attention to in design.
     2) The porosity of concrete under different damage state is achieved by using different amount of air-entraining agent as concrete composion. The initial damage and peak damage of different concrete specimens with different porosity also can be got by tensile and compressive test. The relationship between porosity and damage of concrete can be showed by method of curve fitting. So the different damage state can be expressed by the porosity to describe concrete damage constitutive.
     3) A new damage model is got by improving Loland and Mazars damage model. Using concrete specimen of containing no air-entraining agent as initial damage state ,the relationship between stress and strain of compressive or tensile strength is achieved by concrete test. The concrete damage constitutive is deduced by the new damage model and relationship curve.
     4) The concrete constitutive which is deduced by experimental results is embedded in the constitutive library MIDAS/GTS, and the correctness of the new constitutive model is proved by comparing simulating and testing phenomena.
     5) The behavior of crossing-fault tunnel under time-history loads is simulated, computed and analyzed by using damage constitutive model and MIDAS/GTS software.
引文
[10]蒋华,蒋树屏,王晓雯,林义.断层带处公路隧道横断面抗震分析[J].隧道建设,2009,2(1):14-19.
    [20]朱长安.断层破碎带隧道地震动力响应分析[D].成都:西南交通大学,2009.
    [30]汤建良.高烈度地震区公路隧道抗震设防及减震措施的研究[D].重庆:重庆交通大学,2009.
    [41]张林.山岭隧道洞口段地震动力响应及抗减震措施研究[D].重庆:重庆交通大学,2010.
    [59]龚志红.国道318线黄草坪隧道抗震安全性评价研究[D].成都:成都理工大学,2007.
    [60]孙建春.山岭隧道仰坡地震动力响应及减震措施研究[D].成都:西南交通大学,2010.
    [70]张伟.大直径盾构隧道结构地震响应及减震措施研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2009.
    [84]林皋.地下结构抗震分析综述(下).世界地震工程,1990(3):1-10
    [90]吕和林.一种用于浅埋隧道抗震分析的拟静力数值方法[J].西南交通大学学报,1999,34(3):315-319.
    [10]潘昌实.隧道及地下结构物抗震问题研究概况[J].世界隧道,1996.
    [11]王琼,郭恩栋,杨丹等.走滑断层位移作用下山岭隧道非线性反应分析[J].地震工程与工程震动.
    [12]郑永来,杨林德,李文艺等.地下结构抗震[M].上海:同济大学出版社,2005.
    [13]张雨霆,肖明,左双英.基于单元重构的岩土工程复杂地质断层建模方法[J] .岩石力学与工程学报,2009,28(9):1848-1855.
    [14]周德培.强震区隧道洞口段的抗震性研究.西南(唐山)交通大学百年校庆论文集(土木工程分册).1996,4:206-210.
    [15]高峰,石玉成.隧道的两种减震措施研究[J].岩石力学与工程学报,2004,24(2):222-229.
    [16]高峰.地下结构动力分析若干问题研究[D].成都:西南交通大学,2003.
    [17]郑永德,杨林德.地下结构震害与抗震对策[J].工程抗震,1999(4):23-28.
    [18]张缄.隧道震害综述[J].铁道工程建设科技动态报告文集.中国铁道出版社,1993.
    [19]吕和林,张缄.地震R波对浅埋隧道的影响[C].成都:西南交通大学百年校庆论文集(土木工程分册),1996,4:190-195.
    [20]周德培.地铁抗震设计准则[J].现代隧道技术,1995(5):36-45.
    [21]王明年.高地震区地下结构减震技术原理的研究[J].成都:西南交通大学博士学位论文,1999.
    [22]林皋.中国地震工程研究进展[M].地震出版社,1992.
    [23]于翔,陈启亮,赵跃堂等.地下结构抗震研究方法及现状[J].解放军理工大学学报,20001(5):63-69.
    [24]高峰,关宝树.隧道地震反应分析中几种边界条件的比较[J].甘肃科学学报,2004,16(l):109-112.
    [25]朱合华,陶履彬.盾构隧道衬砌结构受力分析的梁一弹簧系统模型[J].岩土力学.1998,19(2):26-32.
    [26]杨军,尚吴.软土隧道地震反应的数值分析[J].建筑技术开发,2003,30(ll):26-27.
    [27]孙海涛,徐迎伍.软土地层中盾构隧道地震响应反应分析[J].勘察科学技术,2000,(l):10-14.
    [28]王秀英,刘维宁,张弥.地下结构震害类型及机理研究[J].中国安全工程学报,2003,13(11),55-58.
    [29]严松宏.地下结构随机动力响应分析及其动力可靠度研究[D].成都:西南交大,2003.
    [30]郑金龙,李海清,王联.都汶公路高速路段震后隧道恢复重建方案[J].西南公路,2008,4:125-129.
    [31]王志杰.地震区隧道洞口段减震模式研究[D].成都:西南交通大学,1996.
    [32]刘晶波,李彬,刘祥庆.地下结构抗震设计中的静力弹塑性分析方法[J].土木工程报,2007,7.
    [33]刘晶波,李彬,谷音等.地铁盾构隧道地震反应特性研究[J].现代隧道技术(增刊),2004,251-255.
    [34]陈健云,胡志强,林皋.超大型地下洞室群的三维地震响应分析[J].岩土工程学报.2001,,23(4),494-498.
    [35]陈健云,胡志强,林皋.超大型地下洞室群的随机地震响应分析[J].水利学报,2002,1,71-75
    [36]汤建良,高烈度地震区公路隧道抗震设防及减震措施的研究[D].重庆:重庆交通大学,2009.
    [37]郑永来,杨林德等.地下结构抗震[M].上海:同济大学出版社,2005.
    [38]赵宝友.大型岩体洞室地震响应及减震措施研究[D].大连:大连理工大学,2009.
    [39]邵根大,骆文海.强震作用下铁路隧道衬砌耐震性的研究[J].中国铁道科学,1992,12(2):92-108.
    [40]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993(4):l-7.
    [41]史常青.浅埋明挖地下铁道车站结构的抗震性能研究[D].成都:西南交通大学,1996.
    [42]南昆铁路8、9度地震隧道洞口及浅理大跨段新机构设计试验研究[R].铁道部第二勘侧设计院,1996.
    [43]周德培.震区隧道洞口段的动力特性研究[J].地震工程与工程振动,1998,l8(l):124-130.
    [44]杨林德,杨超,季倩倩等.地铁车站的振动台试验与地震响应的计算方法[J].同济大学学报,2003,31(10):1135-1140.
    [45]宫必宁,赵大鹏.地下结构与土动力相互作用试验研究[J].地下空间,2002,22(4):320-324.
    [46]吕涛.震作用下岩体地下洞宝响应及安全评价方法研究[D].武汉:中国科学院武汉岩土力学研究,2008.
    [47]郑永来,杨林德等.地下结构抗震[M].上海:同济大学出版社,2005.
    [48]李育枢.山岭隧道地震动力响应及减震措施研究[D].上海:同济大学土木工程学院,2006.
    [49]李斌.地铁地下结构抗震理论分析与应用研究[D].北京:清华大学,2005.
    [50]邵根大.城市地下结构的抗地震设计问题[D].铁道部科学研究院铁道建筑研究所,1985.
    [51]黄先锋.地下结构的抗震计算[J].铁道建筑,1999,6:3-6.
    [52]林皋.地下结构抗地震问题[C].第四届全国地震工程会议,1994.
    [53]孙超.地下结构抗震性能及分析方法研究[D].哈尔滨:中国地震局工程力学研究所,2009.
    [54]于翔,陈启亮,赵跃堂等.地下结构抗震研究方法及其现状[J].解放军理工大学学报,2005,l(5):63-69.
    [55]卢慈荣,蒋建群.地下隧道结构抗震分析综述[M].史佩栋编.浙江省建筑业行业协会地下工程分会,2003.
    [56]梁建文,张浩,Leevw.地下双洞室在sv波入射下动力响应问题解析解[J].振动工程学报,2004,17(2):132-140.
    [57]梁建文,张浩,Leevw.平面P波入射下地下洞室群动应力集中问题解析解[J].岩土工程学报,2004,26(6):815-819.
    [58]李建波.结构地基动力相互作用的时域数值分析方法研究[D]大连:大连理工大学,2005.
    [59]林皋.地下结构抗震分析综述(上)[J].世界地震工程,1990,6(2):1-10.
    [60]黄胜,高烈度地震下隧道破坏机制及抗震研究[D],武汉:中国科学院武汉岩土力学研究所,2010
    [61]刘晶波,吕彦东.结构一地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1999,31(3):55-64.
    [62]陈磊,陈国兴,李丽梅.近场和远场地震动作用下双层竖向重叠地铁隧道地震反应特性[J].中国铁运科学,2010,31(l):79-86.
    [63]刘文韬.岩石含损伤本构模型和地下爆炸效应研究[D].合肥:中国科学技术大学,2003.
    [64]隋斌,朱维申,李晓静.地震荷载作用下大型地下洞室群的动态响应模拟[J].岩土工程学报,28(12):187-182.
    [65]王如宾,徐卫亚,石崇等.高地震烈度区岩体地下洞室动力响应分析[J].岩石力学与工程学报2008,28(3):569-575.
    [66]陶连金等.在地震载荷作用下的节理岩体地下洞室围岩稳定性分析[J].中国地质灾害与防治学报,1998,9(1):32-40.
    [67]张楚汉,刘海笑.层状与各向异性介质波动问题的时域边界元法及工程应用[J].重庆建筑大学学报,2000,22(6):100-104.
    [68]丁伯阳,宋新初,袁金华.饱和土隧道内集中荷载作用下振动位移反应的Green函数解答[J].工程力学,2009,26(6):153-157.
    [69]胡聿贤,地震工程学[M].北京:地震出版社,2002.
    [70]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [71]尚小江,邱峰,赵海峰等.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2008.
    [72] JTG D70—2004[s].公路隧道设计规范.
    [73]李德武.断层破碎带隧道衬砌受力特性研究[D]兰州:兰州交通大学,2005.
    [74]阮燕.高掺量粉煤灰混凝土的孔结构研究,粉煤灰综合利用,2003,2:23-26.
    [75]陈健中.用吸水动力学法测定混凝土的孔结构参数,[J].兰州大学出版社,2005.
    [76]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996,06.
    [77]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [78] Toshihiko, NaonobuT, Katsumis, etal [M]. Dynamic response of twin circular tunnels during earthquakes. Equehi RT Dames, Moore. Proeeedingsof the4th US-Japan Workshop Prevention for lif eline Systems. Washington:US Government Printing Offiee,1992
    [79] HamadaH,KitaharaM. Earthquakeobservation and BIE analysis on dynamie behavioro frock cavern[C]. Numerical Methodsin Geomeehanics. Preoeeedings of the Fifthhit Cmational Confereneeon Numetieal Methodsin Geomechanics. Nagoyav1-5APRIL 1985 1525-1532
    [80] M,Leeds, DJ.Effeetsof. Eartllquakes on Tutnnels[J]. Paer Presentedat the RAND Seeond ProteetiveConstrUetionSymPosiumMareh,1959:24-26.
    [81] ASCE. Earthquake damage evaluation and designeon siderations for underground dstruetures[J]. Ameriean Soeiety of CivilEngineers, LosAngelesseetion,1974.
    [82] Dowding C.H.,RozenA. Damage to rock tunnels from earthquake shaking [J]. Geoteeh.Eng.Div, ASCE104(GTZ),1978:175-191.
    [83] SharmaS,JuddR.J. Undergroundopening damage from earthquakes[J]. Engineering Geology,1991,30:263-276.
    [84] PowerM,RasidiD,KanesbiroJ.Seismievulnerabilityoftuunels一revisited[C]. L.Oxedimir, Ed., Proceedings of the North Ameriean Turmeling Conferenee. Long Beaeh CAUSA ElsevieY, 1998.
    [85] HamadaH,HitaharaM. Earthquake observation and BIE analysis on dynamic behavior of rock cavern[C]. Proeeedings of the Fifth Intemationa lConfereneeon Numerieal Methodsin Geomeehanies.Nagoya,1985.VOI.3:1525-1532.
    [86] ASCE. Earthquake damage evaluation and designe on siderations for undergro undstruetures[J] Ameriean Soeiety of CivilEngineers,LosAngelesseetion,1974.
    [87] ShunzoOkamoto. Introduetion to Earthquake Engineering[M], 2nd Edition .Tokyo: University of TokyoPress,1984.
    [88] GotoY,MatsudaY,EjiriJ,etal. Influenee of Distanee between JuxtaPosed Shield Tunnels on their Seismie ResPonse[C]. Proe.gth world Conference on EarthquakeEng.Tokyo-Kyoto,JaPan,1988.
    [89] Youssef MA Hashash,Jeffray J Hook,Birger Sehmidt,Johnl-ChiangYao. Seismic design and Analysis of underground structures[J].Tunneling and Underground Space Teehnology , 2001,16(4):247-293.
    [90] Newmark NM. Problem sinwavepropagation in5011 and roek[J]. Proceedings of the Internation SymPosium on Wave-propagation and DynamieProPerties of Eartll Materials. 1968.
    [91] Idriss IM,Sun JI"SHAKEgl : A computer program for conducting equivalent linear seismic Response analysis of horizontally layeredsoil deposits”.User’s Guide, California: University of Califomia,Davis,1992.
    [92] Lysmer J.FLUSH-a computer program for approximate 3D analysis of soil structure interaction problems[R].Berkeley:EERC,University of Califomia,1975.
    [93] Bardet JP.LINOS-a Non-linear Finite Element program for Geomeehanics and Geotechnic Engineering,User’s Manual.University of southern California, LosAngeles, CA.1991.
    [94] Bardet JP,Ichii K,Lin CH.EERA-A Computer Program for Equivalent-linear Earthquake site ResPonse Analysis of Layered Soil Deposits [D],User’s Manual.University of Southern California,Los Angeles,CA.2000.
    [95] ThomsR,KueselF.ASCE,Earthquake designeriteria for subways[J]. Joumal of the Struetural Division Proeeeding softhe Ameriean Society of Civil Engineers, 1969, (6):1213-1231.
    [96] Monsees JE,Merritt JL. Seismic modeling and design of under ground struetures[J]. Numerieal Method In Geomechanics. Innsbruck,1833-1842,1991.
    [97] Shukla DK,Rizzo PC, StePhenson DE. Earthquake load analysis of tunnels and shafts[C]. Proeeeding of The 7th World Confereneeon Earthquake Engineering. 1980, (8):20-28.
    [98] JOHN C M S,ZAHRAH T F.A. seismie design of undergrounds truetures[J]. Tunnelling and Underground SpaceTechnology, 1987,2(2):165-197.
    [99] Pao Yih-Hsing, Mao Chao-Chow. Diffraction of Elastic waves and Dynamic Stress Coneentrations[M]. Crane,Russak&Company Ine. NewYork,U.S.A,1972.
    [100] Lee V M,Tfrifunae M D. Response of tunnels to incident SH wave[J]. Journal of Engineering Mechanies, ASCE. 1979,105(4):643-659.
    [101] Wong K C, Shah A H,Datta, S K. Diffraction of elastic waves in half-space. Analytical and numeric Solutions[J]. Bulletin of the Seismological Soeiety of Ameriea, 1985, 75:69-92.
    [102] Luco J E, Debarris F C P. Dynarnic displacements and stresses in the vieinity of a cylindrieal cavity Embedded in a half space[J]. Earthquake Eng.Struct.Dyn., 1994, 23:321-340.
    [103] Lee V M,Karl J.On. deformation of near a cireular underground cavity subjeeted to ineident plane P wave[J]. European Journal of Earthquake Engineering, 1993, 7(l):29-36.
    [104] Davis C A,Lee V M,Bardet J P. Transverse response of underground cavities and Pipes to ineident SV waves[J]. Earthquake Engineering and Structural Dynamie. 2001,30 (3):383-410.
    [105] Navarro C. Effect of adjoining strctures on seismic response of tummels[J]. Numer.Anal.Methods Gemeeh. 1992, Vol.16:797-814.
    [106] Shunzo Okamoto. Introduction to Earthquake Engineering[M]. 2nd Edition. Tokyo: University of TokyoPress,1984.
    [107] Wolf P.Soil structure-interaction analysis in time domain[M]. Switzerl and Prenfee Hall, 1988.
    [108] Wolf J,Song C M. Dynamie-stiffness matrix of ungrounded soil by finite element multi-cell Cloning[J]. EarthquakeEng.Struet.Dyn.,1994,23(3):232-250.
    [109] DasguPta G A.Afinite element for mulation for unbounded homogeneous continua[J].J.of Appl. Meeh.,ASME.1982,49:136-140.
    [110] Nakamura N A. Praetical method to transform frequency dependent impedance to time Domain[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(2):217-231.
    [111] Nakamura N. Improved methods to transform frequency-dependent complex stiffness to time domain[J]. Earthquake Engineering and Structural Dvnamies. 2006, 35(8):1037-1450.
    [112] T.Krauthammera and Y Chen. Soil-structure interface effects on dynamic interaetion analysis of reinforced concrete life lines[J]. soil Dynamies and Earthquake Engineering, 1998,8(l):32-42.
    [113] A.Szavits-Nossan, M.S.Kovaeevie. Modeling of an anchored diaphragm wall[J]. Flac and Numerieal Modelingin Geomeehanies, 1999:451-458.
    [114] Cundall, P.A.(1971). A computer model for simulating progressive,largescale movements in block roeksystems[J]. Proceedings of Symposium of international Soeiety of Roek Meehanies, Nancy, II-8.
    [115] J.Dominguez. Boundry elements in dynamies[M]. Computational Meehanies Publications, Elsevier Applied Seienee, 1993.
    [116] Manolis G D, Beskos D E.Boundary Element Methods in Elasto dynamies[M]. London:Unwin Hyman, 1988.
    [117] Rkaesh Kuma and B.Bhattacharjee. Porositypore sized istribution and insitu strength of conerete[J], C.C.R,2003,pp155-164.
    [118] Cai jun Shi. Strength, pore strueture and permeabi1ity of a1kali-aetivatedslag mortars[J]. C.C.R,12,1996,pp1789-1799
    [119] L.Tnag.et.A new approaeh to the determination of pore distributionby penetrating ehloridesinto conerete[J], C.C.R,1995,vol.25,No.4,pp695-701
    [120] V T Ngala , C L Page. Effects carbonation on pore structure and diffusional properties of hydrated cement pastes [J]. Cement and Concrete Research, 1997, 27 (7):995-1007.
    [121] VTNgala, C L Page , L J Parrott , etal. Diffusion in cementitious materials ilfurther investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30% PFA plastes [J]. Cement and Concrete Research, 1995,25(4):819-826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700