用户名: 密码: 验证码:
用于药物输送的静电纺纳米管/聚乳酸—羟基乙酸复合纳米纤维的制备、表征、缓释行为及药物生物活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电纺丝技术是一种简单、有效的制备超细纤维的方法。通常情况下,静电纺可生物降解和生物相容性的高聚物纳米纤维支架具有纤维尺寸可控、极大的比表面积、高孔隙率和三维网状结构等特点,能够从生物功能和结构方面很好地模拟天然细胞外基质,可以为细胞的粘附和生长提供良好的体外环境,从而为细胞-支架三维网络组织的构建提供了很好的条件。静电纺纳米纤维不仅可以用于组织工程支架,同时也是一种良好的药物载体。
     本文旨在开发一种能够应用于组织工程和药剂科学的静电纺纳米纤维支架材料。针对传统的聚合物纳米纤维机械强度低,常见的纳米颗粒、脂质体、胶束等药物剂型以及某些静电纺纳米纤维载药剂型存在突释现象,以及纳米管载药体系非器件化等问题,首次提出了用纳米管载药后与静电纺丝技术相结合的方法,制备了静电纺纳米管/高聚物双载体纳米纤维药物缓释系统,可以很好地解决这几方面的问题。
     本文主要以可生物降解和生物相容性的高聚物聚乳酸-羟基乙酸(PLGA)为静电纺纤维基质,埃洛石纳米管(HNTs)和多壁碳纳米管(MWCNTs)为药物载体,抗生素类药物盐酸四环素(TCH)和抗肿瘤药物盐酸阿霉素(DOX)为两种模型药。首先用HNTs和CNTs分别负载TCH和DOX,然后通过静电纺丝的方法将载药纳米管TCH/HNTs、 DOX/CNTs与PLGA溶液混合,制备静电纺TCH/HNTs/PLGA及DOX/CNTs/PLGA双载体纳米纤维载药体系。
     对于静电纺TCH/HNTs/PLGA载药体系的研究,我们首先制备了静电纺PLGA纤维、HNTs/PLGA复合纳米纤维,分析研究了HNTs的加入对PLGA纤维的形貌、直径、孔隙率、机械性能、热学性能、内部结构的影响。结果表明,HNTs可以成功地负载到PLGA纤维的内部,HNTs的加入对纤维的形貌、纤维毡的孔隙率及PLGA的内部结构没有明显的影响。而纤维直径随HNTs含量的增加而增加。另外,少量HNTs(1%~3%)的加入使纤维的机械性能大大提高,并且PLGA的热稳定性也因HNTs的增加而有少量增加。因此,静电纺HNTs/PLGA复合纳米纤维支架具备的较细的纤维直径、高孔隙率、增强的机械性能,为构建组织工程支架奠定了很好的基础。
     构建一个纳米纤维组织工程材料,评价材料的生物相容性是非常关键的一步。我们通过MTT法和SEM法检验了L929小鼠成纤维细胞在静电纺PLGA及HNTs/PLGA纳米纤维支架上粘附、增殖的情况以及细胞生长的形貌,从而评价材料的体外生物相容性。另外,通过模拟细胞培养的过程,研究了掺杂HNTs的静电纺PLGA支架对蛋白的吸附情况。结果表明,静电纺PLGA和HNTs/PLGA纳米纤维支架具有良好的体外生物相容性。L929小鼠成纤维细胞在PLGA基静电纺纤维支架上表现出与在ECM中相似的显型形状。另外,HNTs/PLGA纤维支架比PLGA有更好的吸附蛋白的能力,从而有利于细胞的粘附和增殖。综合静电纺HNTs/PLGA复合纳米纤维增强的机械性能,良好的生物相容性,该三维多孔纤维支架材料将会在组织工程和药剂科学方面具有很好的应用前景。
     MTT比色法是一种评价材料生物相容性常用的方法。但有时会出现生物相容性良好的材料MTT甲躜OD值较低的现象,针对这一问题我们提出了MTT法表征静电纺PLGA基纤维支架材料的生物相容性时可能存在伪阴性偏差的假设。我们通过静电纺PLGA基支架材料吸附MTT甲臜染料的实验证实了这一假设,并对MTT材料生物相容性实验数据进行了校正。结果表明,PLGA基纤维支架存在很明显的吸附甲臜的能力,HNTs/PLGA及CNTs/PLGA复合纤维比PLGA纤维能更好地促进细胞的粘附、增殖。该实验结果可能对多种多孔支架材料的其它比色法实验也有一定的参考价值。
     在静电纺HNTs/PLGA纤维的基本性能表征的基础上,我们制备了静电纺TCH/HNTs/PLGA双载体复合纳米纤维毡,研究了该载药纤维的形貌、直径、机械性能、体外生物相容性、药物释放行为以及药物的抑菌活性。结果表明,TCH/HNTs/PLGA复合载药纤维仍可以保持增强的机械性能,对L929小鼠成纤维细胞仍然具有良好的体外生物相容性。TCH/HNTs载药粉末和TCH/PLGA混纺载药纳米纤维都存在明显的初始突释现象。而TCH/HNTs/PLGA双载体纳米纤维载药体系具有很好的持续释放效果,可以很好地延缓TCH/HNTs粉末载药体系的药物释放。并且,TCH/HNTs/PLGA载药纤维毡对金黄色葡萄球菌(S. aureus)有很好的抑菌活性。因此,该载药纤维毡在伤口包覆、术后防粘连防感染方面有很好的应用价值。不仅可以用于药物缓释,同时又可以作为功能型组织工程支架。
     静电纺DOX/CNTs/PLGA纳米纤维载药体系是一种抗肿瘤药物剂型。我们研究了静电纺CNTs/PLGA纤维及DOX/CNTs/PLGA载药纤维的形貌、机械性能、内部结构等。另外,研究了DOX/CNTs/PLGA载药纤维的缓释行为及药物抗肿瘤活性等。结果表明,静电纺DOX(1,2%)/CNTs/PLGA纤维与CNTs/PLGA一样可以增强PLGA纤维的机械性能。缓释实验表明,DOX/CNTs/PLGA载药纳米纤维具有良好的持续释放效果,不仅可以延缓DOX/CNTs粉末载药体系的药物释放,同时又实现了DOX/CNTs载药体系的器件化。静电纺DOX/CNTs/PLGA及DOX/PLGA载药纤维释放的药物具有良好的抗肿瘤活性。总之,静电纺DOX/CNTs/PLGA复合纳米纤维抗肿瘤载药体系在药物控释领域具有巨大的应用潜质。
Electrospinning is a simple and effective method for fabricating ultrafine fibers. Generally, electrospun biodegradable and biocompatible polymeric nanofibrous scaffolds with controllable diameters, high specific surface and porosity and three dimensional network structures, have the ability to closely mimic the biological function and structure of nature extracellular matrix (ECM). And electrospun nanofibrous scaffolds could provide favorable environment for cell adhesion, migration and growth, thus a three dimensional fiber/cell integrated network could be constructed due to cell-cell and cell-matrix interaction. Beyond the application of electrospun nanofibers in tissue engineering, the application in drug delivery is another direction.
     The objective of this research is to develop electrospun nanofiber-based scaffolding materials for both tissue engineering and pharmaceutical sciences. Traditional polymer nanofibers lack enough mechanical strength and often have a burst release profile when drug molecules are incorporated within the nanofibers. In addition, the formulation of drug-loaded nanotubes (multiwalled carbon nanotubes (MWCNTs) or halloysite nanotubes (HNTs)) is not in the status of device but often presented as powders. Therefore, we combined drug-loaded nanotubes and electrospinning to improve the mechanical properties of the fibers, to develop a double-container drug delivery system, and to avoid the burst release of the incorporated drugs.
     In this study, poly(lactic-co-glycolic acid)(PLGA) is used as the electrospinning fibrous matix. Tetracycline hydrochloride (TCH) and Doxorubicine hydrochloride (DOX) used as model drugs were loaded into or onto HNTs and CNTs, respectively. Then, the drug-loaded TCH/HNTs and DOX/CNTs with optimized encapsulation efficiency were mixed with PLGA polymer solution for subsequent electrospinning to form nanotube/polymer double-container composite nanofibrous drug delivery system.
     Firstly, the main research is about the electrospun TCH/HNTs/PLGA nanofibers. Electrospun PLGA nanofibers and HNTs/PLGA composite nanofibers were fabricated, and the affection of the doped HNTs into PLGA on the morphology, structure, fiber diameter, porosity, mechanical and thermal properties was investigated. The results showed that HNTs were successfully incorporated into PLGA fibers, and the incorporation of HNTs did not significantly influence the morphology, structure and porosity of PLGA fibers. While the fiber diameters were increased with the quantity of the doped HNTs. Importantly, the mechanical properties of PLGA fibrous mats were significantly improved and the thermal properties were slightly enhanced with the incorporation of HNTs. All these properties give the priority for the application in tissue engineering.
     A key step to develop a nanofibrous scaffold for tissue engineering is to evaualte the biocompatibility of the materials. The adhesion and proliferation of L929mouse fibroblast cells cultured on both PLGA and HNT-doped PLGA fibrous scaffolds were compared through MTT assay of cell viability and SEM observation of cell morphology. And protein adsorption behavior on nanofibrous scaffolds was investigated. Similar to electrospun PLGA nanofibers, HNTs-doped PLGA nanofibers were able to promote cell attachment and proliferation and fibroblasts displayed a phenotypic shape, suggesting that the incorporation of HNTs within PLGA nanofibers does not compromise the biocompatibility of the PLGA nanofibers. In addition, compared with PLGA, HNTs-doped PLGA scaffolds allow more protein adsorption, which is favorable for cell adhesion and proliferation. The developed electrospun HNT-doped composite fibrous scaffold may find applications in tissue engineering and pharmaceutical sciences.
     As a popular method, MTT colorimetric assay is often used to evaluate the viability of cells cultured onto various fibrous tissue engineering scaffolds. While sometimes the cell viability determined from MTT assay is relatively lower than other characterization method, which probably due to the strong dye sorption capability of porous scaffolding materials. Therefore, we proposed that the OD values obtained from MTT assay likely has a false negative result. In this study, the adsorption of MTT formazan onto porous electrospun PLGA based nanofibrous mats was investigated. We show that PLGA, and the HNTs-or CNTs-doped PLGA nanofibers display appreciable MTT formazan dye sorption, corresponding to35.58~50.23%deviation from the real cell viability assay data. By quantifying the MTT formazan dye sorption amount, the MTT assay data could be rectified to reflect the real cell viability. Our study provides a general insight into the deviation and rectification of MTT cell viability assay, which is likely applicable to other colorimetric assays of different porous scaffolding materials for various biomedical applications.
     On the basis of previous characterization of electrospun PLGA and HNTs/PLGA nanofibers, electrospun TCH/HNTs/PLGA double container drug delivery systems were fabricated. The morphology, structure, fiber diameter, mechanical properties, in-vitro biocompatibility, drug release behavior and antibacterial activity of the drug-loaded composite nanofibrous mats were investigated. The results showed that the mechanical properties of TCH/HNTs/PLGA fibers were also improved by comparing with PLGA fibers. And drug-loaded fibrous mats had good compatibility for the adhesion and proliferation of L929mouse fibroblasts. Compared with drug-loaded TCH/HNTs and TCH/PLGA nanofibers with obvious burst release, electrospun TCH/HNTs/PLGA double container nanofibrous drug delivery system prolonged the release rate of the drug and appreciably eliminated the initial burst release, and sustained release was obtained for more than one month. The TCH-medicated HNTs/PLGA scaffolds displayed effective activity to inhibit the growth of S. aureus both in liquid medium and on solid medium in vitro. These medicated PLGA-based electrospun scaffolds hold a promising potential in wound dressing applications and in preventing in vivo postsurgical adhesions and infections.
     Electrospun DOX/CNTs/PLGA drug-loaded nanofibrous mat is an antitumer formulation. For this formulation, the morphology, structure, and mechanical properties of electrospun CNTs/PLGA composite nanofibers and DOX/CNTs/PLGA drug-loaded nanofibers were investigated. Similar to electrospun CNTs/PLGA composite nanofibrous mats, DOX (1,2%)/CNTs/PLGA drug-loaded nanofibrous mats could improve the mechanical properties of PLGA fibers. In addition, DOX/CNTs/PLGA double container nanofibrous drug delivery system prolonged the release rate of drug-loaded DOX/CNTs and appreciably eliminated the initial burst release, and sustained release was obtained. The DOX/CNTs/PLGA and DOX/PLGA drug-loaded scaffolds displayed effective anticancer bioactivity on KB cells. In summary, this drug delivery system with controllable release will find various applications in cancer treatment area.
引文
[1]Goldberg M, Langer R. Nanostructured materials for applications in drug delivery and tissue engineering [J]. J. Biomater. Sci. Polym. Ed.,2007,18: 241-268.
    [2]Sill TJ, von Recum HA. Electrospinning:Applications in drug delivery and tissue engineering [J]. Biomaterials,2008,29(13):1989-2006.
    [3]贾伟,高文远.药物控释新剂型[M].北京:化工工业出版社,2005.
    [4]纳蓉,张强华.高分子载体在药物控释体系中的应用[J].淮阴工学院学报,2004,13(5):81-83.
    [5]Sokolsky-Papkov M, Agashi K, Olaye A, et al. Polymer carriers for drug delivery in tissue engineering [J]. Adv. Drug Delivery Rev.,2007,59(4-5): 187-206.
    [6]陈志祥,张田高.生物降解高分子材料在医药领域中的应用[J].化学推进剂与高分子材料,2005,(01):31-34.
    [7]王改娟,周志平等.药物缓释用生物降解性高分子载体材料的研究[J].弹性体,2008,18(4):63-66.
    [8]Kim K, Luu Y, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds [J]. J. Control. Release 2004,98(1):47-56.
    [9]Edwards DA, Hanes J, Caponetti G, et al. Large porous particles for pulmonary drug delivery [J]. Science,1997,276(5320):1868-1871.
    [10]Singh M, Shirley B, Bajwa K, et al. Controlled release of recombinant insulin-like growth factor from a novel formulation of polylactide-co-glycolide microparticles [J]. J. Control. Release 2001,7021-28.
    [11]Jeong B, Bae YH, Lee DS, et al. Biodegradable block copolymers as injectable drug-delivery systems [J]. Nature,1997,388(6645):860-862.
    [12]Mason MN, Metters AT, Bowman CN, et al. Predicting Controlled-Release Behavior of Degradable PLA-b-PEG-b-PLA Hydrogels [J]. Macromolecules, 2001,34(13):4630-4635.
    [13]Hagan SA, Coombes AGA, Garnett MC, et al. Polylactide-Poly(ethylene glycol) Copolymers as Drug Delivery Systems.1. Characterization of Water Dispersible Micelle-Forming Systems [J]. Langmuir,1996,12(9):2153-2161.
    [14]Kenawy E-R, Bowlin GL, Mansfield K, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend [J]. J. Control. Release,2002,81(1-2):57-64.
    [15]Langer R, Vacanti JP. Tissue engineering [J]. Science,1993,260(5110): 920-926.
    [16]丑修建,陈庆华.组织工程支架材料的研究进展[J].中国陶瓷,2004,40(6):9-13.
    [17]吴林波,丁建东.组织工程三维多孔支架的制备方法和技术进展[J].功能高分子学报,2003,16(1):91-96.
    [18]Palecek SP, Loftus JC, Ginsberg MH, et al. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness [J]. Science, 1997,385:537-540.
    [19]Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering [J]. Colloid Surf. B-Biointerfaces 2004,39(3):125-131.
    [20]Stevens MM, George JH. Exploring and engineering the cell surface interface [J]. Science,2005,310(5751):1135-1138.
    [21]王海宁,万怡灶,李健等.纳米纤维组织工程支架及其纳米效应研究进展[J].材料导报,2007,21(4):13-17.
    [22]Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology:Designing the next generation of tissue engineering scaffolds [J]. Adv. Drug Deliver. Rev. 2007,59(14):1413-1433.
    [23]Li W-J, Mauck RL, Tuan RS. Electrospun Nanofibrous Scaffolds:Production, Characterization, and Applications for Tissue Engineering and Drug Delivery [J]. J. Biomed. Nanotechnol.,2005,1:259-275.
    [24]Hua FJ, Kim GE, Lee JD, et al. Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid-liquid phase separation of a PLLA-dioxane-water system [J]. J. Biomed. Mater. Res.,2002,63(2): 161-167.
    [25]Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method [J]. Biomaterials,1999,20(19): 1783-1790.
    [26]Ma PX, Zhang R, Xiao G, et al. Engineering new bone tissue in vitro on highly porous poly(a-hydroxyl acids)/hydroxyapatite composite scaffolds [J]. J. Biomed. Mater. Res.,2001,54(2):284-293.
    [27]Yang F, Murugan R, Ramakrishna S, et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering [J]. Biomaterials, 2004,25(10):1891-1900.
    [28]Zhang S. Fabrication of novel biomaterials through molecular self-assembly [J]. Nat. Biotech.,2003,21(10):1171-1178.
    [29]Hartgerink JD, Beniash E, Stupp SI. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers [J]. Science,2001,294(5547):1684-1688.
    [30]Hong Y, Legge RL, Zhang S, et al. Effect of Amino Acid Sequence and pH on Nanofiber Formation of Self-Assembling Peptides EAK16-Ⅱ and EAK16-Ⅳ [J]. Biomacromolecules,2003,4(5):1433-1442.
    [31]Hwang W, Marini DM, Kamm RD, et al. Supramolecular structure of helical ribbons self-assembled from a beta-sheet peptide [J]. J. Chem. Phys.,2003, 118(1):389-397.
    [32]Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity [J]. Phil. Mag.,1882,14:184-186.
    [33]Zeleny J. The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces [J]. Phys. Rev., 1914,3(2):69-91.
    [34]Formhals A. Process and apparatus for preparing artificial threads [P]. U. S. Patent No.1975,504,1934.
    [35]Taylor G. Disintegration of water drops in an electric field [J]. Proc. R. Soc. Lond. A.,1964,280:383-397.
    [36]Taylor G. Electrically Driven Jets [J]. Proc. Roy. Soc. Lond. A.,1969,313: 453-475.
    [37]Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electro spinning of nanofibers [J]. J. Appl. Phys.,2001,90(9): 4836-4846.
    [38]Li D, Xia YN. Electrospinning of nanofibers:Reinventing the wheel? [J]. Adv. Mater.,2004,16(14):1151-1170.
    [39]Vonnegut B, Neubauer RL. Production of monodisperse liquid particles by electrical atomization [J]. J. Colloid Sci.,1952,7(6):616-622.
    [40]Drozin VG. The electrical dispersion of liquids as aerosols [J]. J.Colloid Sci., 1955,10(2):158-164.
    [41]Simons HL. Process and Apparatus for Producing Patterned Nonwoven Fabrics [P]. U. S. Patent No.3,280,229,1966.
    [42]Baumgarten PK. Electrostatic spinning of acrylic microfibers [J]. J. Colloid Interface Sci.,1971,36(1):71-79. [43] Huang ZM, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Compos. Sci. Technol.,2003,63(15):2223-2253. [44] Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers [J]. J. Electrostat.,1995,35:151-160. [45] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning [J]. Nanotechnology,1996,7:216-223. [46] Reneker DH, Yarin AL, Fong H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning [J]. J. Appl. Phys., 2000,87(9):4531-4547.[47]张锡伟,夏禾,徐纪钢等.静电纺丝法纺制纳米级聚丙烯腈纤维毡[J].塑料,2000,29(2):16-19.[48] 袁晓燕,董存海,赵瑾等.静电纺丝制备生物降解性聚合物超细纤维[J].天津大学学报,2003,6:51-53.[49] 覃小红,王新威,胡祖明等.静电纺丝聚丙烯腈纳米纤维工艺参数与纤维直径关系的研究[J].东华大学学报,2005,31(6):16-21.[50] 黄美荣,李新贵,曾剑峰等.导电聚合物纳米纤维的成型[J].现代化工2002,22(12):10-13.[51] 赵敏丽,隋刚,邓旭亮等.静电纺丝法纺制聚乳酸纳米纤维无纺毡[J].合成纤维工业,2006,29(1):5-7.[52] 姚永毅,朱谱新,叶海等.静电纺丝法和气流静电纺丝法制备聚砜纳米纤维[J].高分子学报,2005,5:687-692.[53] Wang Z-G, Xu Z-K, Wan L-S, et al. Nanofibrous Membranes Containing Carbon Nanotubes:Electrospun for Redox Enzyme Immobilization [J]. Macromol. Rapid Commun.,2006,27(7):516-521. [54] Xu X, Zhuang X, Chen X, et al. Preparation of Core-Sheath Composite Nanofibers by Emulsion Electrospinning [J]. Macromol. Rapid Commun., 2006,27(19):1637-1642. [55] Zhang Y, Huang Z-M, Xu X, et al. Preparation of Core-Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning [J]. Chem. Mater.,2004,16(18):3406-3409. [56] Buer A, Ugbolue SC, Warner SB. Electrospinning and properties of some nanofibers [J]. Text. Res. J.,2001,71(4):323-328. [57] Bhardwaj N, Kundu SC. Electrospinning:A fascinating fiber fabrication technique [J]. Biotechnol. Adv.,2010,28(3):325-347.
    [58]Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning [J]. Curr. Opin. Colloid Interface Sci.,2003,8(1):64-75.
    [59]Bognitzki M, Frese T, Steinhart M, et al. Preparation of fibers with nanoscaled morphologies:electrospinning of polymer blends [J]. Polym. Eng. Sci.,2001, 41(6):982-989.
    [60]Warner SB, Buer A, Grimler M, et al. A fundamental investigation of the formation and properties of electrospun fibers [R]; 1999. Report nr M98-D01. p 1-10.
    [61]Adomaviciute E, Milasius R. The influence of applied voltage on poly(vinyl alcohol) (PVA) nanofibre diameter [J]. Fibres Text. East. Eur.,2007,15(5-6): 69-72.
    [62]Chong EJ, Phan TT, Lim IJ, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution [J]. Acta Biomater.,2007,3(3):321-330.
    [63]Deitzel JM, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles [J]. Polymer,2001, 42(1):261-272.
    [64]Liu H, Hsieh Y-L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate [J]. J. Polym. Sci. Pt. B-Polym. Phys.,2002,40(18): 2119-2129.
    [65]McKee MG, Wilkes GL, Colby RH, et al. Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters [J]. Macromolecules,2004,37(5):1760-1767.
    [66]Sukigara S, Gandhi M, Ayutsede J, et al. Regeneration of Bombyx mori silk by electrospinning--part 1:processing parameters and geometric properties [J]. Polymer,2003,44(19):5721-5727.
    [67]Gupta P, Elkins C, Long TE, et al. Electrospinning of linear homopolymers of poly(methyl methacrylate):exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent [J]. Polymer, 2005,46(13):4799-4810.
    [68]Haghi AK, Akbari M. Trends in electrospinning of natural nanofibers [J]. Phys. Status Solidi A-Appl. Mat.,2007,204(6):1830-1834.
    [69]Tan SH, Inai R, Kotaki M, et al. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process [J]. Polymer,2005,46(16): 6128-6134.
    [70]Sukigara S, Gandhi M, Ayutsede J, et al. Regeneration of Bombyx mori silk by electrospinning. Part 2. Process optimization and empirical modeling using response surface methodology [J]. Polymer,2004,45(11):3701-3708.
    [71]Larrondo L, Manley RSJ. Electrostatic fiber spinning from polymer melts. Ⅱ. Examination of the flow field in an electrically driven jet [J]. J. Polym. Sci. Polym. Phys. Ed.,1981,19(6):921-932.
    [72]Deitzel JM, Kosik W, McKnight SH, et al. Electrospinning of polymer nanofibers with specific surface chemistry [J]. Polymer,2002,43(3): 1025-1029.
    [73]Buchko CJ, Chen LC, Shen Y, et al. Processing and microstructural characterization of porous biocompatible protein polymer thin films [J]. Polymer,1999,40(26):7397-7407.
    [74]Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning [J]. Polymer,1999,40(16):4585-4592.
    [75]Kim K-H, Jeong L, Park H-N, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration [J]. J. Biotechnol,2005, 120(3):327-339.
    [76]Hohman MM, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets. Ⅱ. Applications [J]. Phys. Fluids,2001,13(8):2221-2236.
    [77]Zhang C, Yuan X, Wu L, et al. Study on morphology of electrospun poly(vinyl alcohol) mats [J]. Eur. Polym. J.,2005,41(3):423-432.
    [78]Pham QP, Sharma U, Mikos AG. Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds:Characterization of Scaffolds and Measurement of Cellular Infiltration [J]. Biomacromolecules,2006,7(10): 2796-2805.
    [79]Hayati I, Bailey AI, Tadros TF. Investigations into the mechanisms of electrohydrodynamic spraying of liquids:I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization [J]. J. Colloid Interface Sci.,1987,117(1):205-221.
    [80]Zong X, Kim K, Fang D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes [J]. Polymer,2002,43(16): 4403-4412.
    [81]Huang L, Nagapudi K, Apkarian RP, et al. Engineered collagenPEO nanofibers and fabrics [J]. J. Biomater. Sci. Polym. Ed.,2001,12:979-993.
    [82]Demir MM, Yilgor I, Yilgor E, et al. Electrospinning of polyurethane fibers [J]. Polymer,2002,43(11):3303-3309.
    [83]Megelski S, Stephens JS, Chase DB, et al. Micro-and Nanostructured Surface Morphology on Electrospun Polymer Fibers [J]. Macro molecules,2002, 35(22):8456-8466.
    [84]Lee JS, Choi KH, Ghim HD, et al. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning [J]. J. Appl. Polym. Sci.,2004,93(4):1638-1646.
    [85]Mo XM, Xu CY, Kotaki M, et al. Electrospun P(LLA-CL) nanofiber:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation [J]. Biomaterials,2004,25(10):1883-1890.
    [86]Yordem OS, Papila M, Menceloglu YZ. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter:An investigation by response surface methodology [J]. Mater. Des.,2008,29(1):34-44.
    [87]Yuan X, Zhang Y, Dong C, et al. Morphology of ultrafine polysulfone fibers prepared by electrospinning [J]. Polym. Int.,2004,53(11):1704-1710.
    [88]Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers:preliminary study on polystyrene [J]. Polym. Int.,2004, 53(11):1851-1859.
    [89]Zuo W, Zhu M, Yang W, et al. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning [J]. Polym. Eng. Sci.,2005,45(5):704-709.
    [90]Geng X, Kwon O-H, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution [J]. Biomaterials,2005,26(27):5427-5432.
    [91]Ki CS, Baek DH, Gang KD, et al. Characterization of gelatin nanofiber prepared from gelatin-formic acid solution [J]. Polymer,2005,46(14): 5094-5102.
    [92]Zhao Z, Li J, Yuan X, et al. Preparation and properties of electrospun poly(vinylidene fluoride) membranes [J]. J. Appl. Polym.Sci.,2005,97(2): 466-474.
    [93]Shin YM, Hohman MM, Brenner MP, et al. Experimental characterization of electrospinning:the electrically forced jet and instabilities [J]. Polymer,2001, 42(25):09955-09967.
    [94]Zussman E, Theron A, Yarin AL. Formation of nanofiber crossbars in electrospinning [J]. Appl. Phys. Lett.,2003,82(6):973-975.
    [95]Kameoka J, Craighead HG. Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning [J]. Appl. Phys. Lett.,2003,83(2):371-373.
    [96]Sell S, Barnes C, Smith M, et al. Extracellular matrix regenerated:tissue engineering via electrospun biomimetic nanofibers [J]. Polym. Int.,2007, 56(11):1349-1360.
    [97]Huang Z-M, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Compos. Sci. Technol.,2003,63(15):2223-2253.
    [98]Kumbar SG, Nukavarapu SP, James R, et al. Recent patents on electrospun biomedical nanostructures:an overview [J]. Biomed. Eng.,2008,1: 68-78.
    [99]Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine Electrospun Polyamide-6 Fibers:Effect of Solution Conditions on Morphology and Average Fiber Diameter [J]. Macromol. Chem. Phys.,2004,205(17): 2327-2338.
    [100]Li D, Xia Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning [J]. Nano Lett.,2004,4(5):933-938.
    [101]Li M, Mondrinos MJ, Gandhi MR, et al. Electrospun protein fibers as matrices for tissue engineering [J]. Biomaterials,2005,26(30):5999-6008.
    [102]Kumbar SG, Nukavarapu SP, James R, et al. Electrospun Poly(lactic acid-co-glycolic acid) Scaffolds for Skin Tissue Engineering [J]. Biomaterials, 2008,29(30):4100-4107.
    [103]Stitzel J, Liu J, Lee SJ, et al. Controlled fabrication of a biological vascular substitute [J]. Biomaterials,2006,27(7):1088-1094.
    [104]Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering [J]. Biomaterials,2005,26(15):2603-2610.
    [105]Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nano fiber scaffold by electrospinning and its potential for bone tissue engineering [J]. Biomaterials, 2003,24(12):2077-2082.
    [106]Riboldi SA, Sampaolesi M, Neuenschwander P, et al. Electrospun degradable polyesterurethane membranes:potential scaffolds for skeletal muscle tissue engineering [J]. Biomaterials,2005,26(22):4606-4615.
    [107]裴国献.组织工程学—21世纪面临的机遇与挑战[J].国际骨科学杂志,2006,27(1):2-4.
    [108]Bhattarai N, Edmondson D, Veiseh O, et al. Electrospun chitosan-based nanofibers and their cellular compatibility [J]. Biomaterials,2005,26(31): 6176-6184.
    [109]Rho KS, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers:Effects on the behavior of normal human keratinocytes and early-stage wound healing [J]. Biomaterials,2006,27(8):1452-1461.
    [110]Neeta LL, Ramaseshan R, Li B, et al. Fabrication of nanofibers with antimicrobial functionality used as filters:protection against bacterial contaminants [J]. Biotechnol. Bioeng.,2007,97(6):1357-1365.
    [111]Tan K, Obendorf SK. Fabrication and evaluation of electrospun nano fibrous antimicrobial nylon 6 membranes [J]. J. Membr. Sci.,2007,305(1-2): 287-298.
    [112]Kim SJ, Nam YS, Rhee DM, et al. Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane [J]. Eur. Polym. J.,2007, 43(8):3146-3152.
    [113]Qin X-H, Wang S-Y. Filtration properties of electrospinning nanofibers [J]. J. Appl. Polym. Sci.,2006,102(2):1285-1290.
    [114]Shin C, Chase GG. Water-in-oil coalescence in micro-nanofiber composite filters [J]. AIChE J.,2004,50(2):343-350.
    [115]Schreuder-Gibson H, Gibson P, Senecal K, et al. Protective textile materials based on electrospun nanofibers [J]. J. Adv. Mater.,2002,34(3):44-55
    [116]Liu Y, Liu H, Qian J, et al. Feature of an amperometric ferrocyanide-mediating H2O2 sensor for organic-phase assay based on regenerated silk fibroin as immobilization matrix for peroxidase [J]. Electrochim. Acta,1996, 41(1):77-82.
    [117]Zhang Y-Q, Zhu J, Gu R-A. Improved biosensor for glucose based on glucose oxidase-immobilized silk fibroin membrane [J]. Appl. Biochem. Biotechnol., 1998,75(2):215-233.
    [118]Wang X, Drew C, Lee S-H, et al. Electrospun Nano fibrous Membranes for Highly Sensitive Optical Sensors [J]. Nano Lett.,2002,2(11):1273-1275.
    [119]Wang X, Kim Y-G, Drew C, et al. Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors [J]. Nano Lett.,2004,4(2):331-334.
    [120]Chen J, Miao Y, He N, et al. Nanotechnology and biosensors [J]. Biotechnol. Adv.,2004,22(7):505-518.
    [121]Ramanathan K, Bangar MA, Yun M, et al. Bioaffinity Sensing Using Biologically Functionalized Conducting-Polymer Nanowire [J]. J. Am. Chem. Soc.,2004,127(2):496-497.
    [122]Kim J, Grate JW, Wang P. Nanostructures for enzyme stabilization [J]. Chem. Eng. Sci.,2006,61(3):1017-1026.
    [123]Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications [J]. Polymer,2008,49(26):5603-5621.
    [124]Ignatova M, Stoilova O, Manolova N, et al. Electrospun microfibrous poly(styrene-alt-maleic anhydride)/poly(styrene-co-maleic anhydride) mats tailored for enzymatic remediation of waters polluted by endocrine disrupters [J]. Eur. Polym. J.,2009,45(9):2494-2504.
    [125]Huang X-J, Yu A-G, Xu Z-K. Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application [J]. Bioresource Technol.,2008,99(13):5459-5465.
    [126]Xu X, Ren G, Cheng J, et al. Layer by layer self-assembly immobilization of glucose oxidase onto chitosan-graft-polyaniline polymers [J]. J. Mater. Sci., 2006,41(10):3147-3149.
    [127]何铁石,周正发,任凤梅等.聚合物静电纺丝技术在催化材料制备中的应用研究进展[J].高分子材料科学与工程,2009,25(6):150-153.
    [128]Liu Z, Sun DD, Guo P, et al. An Efficient Bicomponent TiO2SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method [J]. Nano Lett.,2006,7(4):1081-1085.
    [129]Watthanaarun J, Supaphol P, Pavarajarn V. Photocatalytic Activity of Neat and Silicon-Doped Titanium(IV) Oxide Nanofibers Prepared by Combined Sol-Gel and Electrospinning Techniques [J]. J. Nanosci. Nanotechnol.,2007, 7:2443-2450.
    [130]Patel AC, Li S, Wang C, et al. Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications [J]. Chem. Mater. 2007,19(6):1231-1238.
    [131]Zhang TZ, Ge LQ, Wang X, et al. Hollow TiO2 containing multilayer nanofibers with enhanced photocatalytic activity [J]. Polymer,2008,49(12): 2898-2902.
    [132]Ignatious F, Baldoni JM. Electrospun Pharmaceutical Compositions [P]. U. S. Patent No.2003/0017208 A1,2001.
    [133]Zeng J, Xu X, Chen X, et al. Biodegradable electrospun fibers for drug delivery [J]. J. Control. Release,2003,92(3):227-231.
    [134]Verreck G, Chun I, Rosenblatt J, et al. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer [J]. J. Control. Release,2003,92(3):349-360.
    [135]Brewster ME, Verreck G, Chun I, et al. The use of polymer-based electrospun nanofibers containing amorphous drug dispersions for the delivery of poorly water-soluble pharmaceuticals [J]. Pharmazie,2004,59(5):387-391.
    [136]Xu X, Yang L, Wang X, et al. Ultrafine medicated fibers electrospun from W/O emulsions [J]. J. Control. Release,2005,108(1):33-42.
    [137]Xu X, Chen X, Xu X, et al. BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells [J]. J. Control. Release, 2006,114(3):307-316.
    [138]Xie J, Wang C-H. Electrospun Micro-and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in Vitro [J]. Pharmaceutical Research,2006, 23(8):1817-1826.
    [139]王波,齐宏旭,胡平.电纺丝纳米纤维载药与药物的控制释放[J].新材料产业,2007,(3):66-73.
    [140]Casper CL, Yamaguchi N, Kiick KL, et al. Functionalizing Electrospun Fibers with Biologically Relevant Macromolecules [J]. Biomacromolecules,2005, 6(4):1998-2007.
    [141]Jiang H, Hu Y, Zhao P, et al. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning [J]. J. Biomed. Mate. Res. B,2006,79B(1):50-57.
    [142]Zeng J, Aigner A, Czubayko F, et al. Poly(vinyl alcohol) Nanofibers by Electrospinning as a Protein Delivery System and the Retardation of Enzyme Release by Additional Polymer Coatings [J]. Biomacromolecules,2005,6(3): 1484-1488.
    [143]Nie H, Soh BW, Fu Y-C, et al. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery [J]. Biotechnol. Bioeng.,2008,99(1): 223-234.
    [144]Luu YK, Kim K, Hsiao BS, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers [J]. J. Control. Release,2003,89(2):341-353.
    [145]Liang D, Luu YK, Kim K, et al. In vitro non-viral gene delivery with nanofibrous scaffolds [J]. Nucl. Acids Res.,2005,33(19):1-8.
    [146]Bolgen N, Vargel I, Korkusuz P, et al. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions [J]. J. Biomed. Mater. Res. B,2007,81B(2):530-543.
    [147]Loscertales IG, Barrero A, Guerrero I, et al. Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets [J]. Science,2002,295(5560):1695-1698.
    [148]Huang Z-M, He C-L, Yang Z, et al. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning [J]. J. Biomed. Mater. Res. A, 2006,77A(1):169-179.
    [149]Jiang H, Hu Y, Li Y, et al. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents [J]. J. Controll. Release,2005,108(2-3):237-243.
    [150]Diaz JE, Barrero A, Marquez M, et al. Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning [J]. Adv. Funct. Mater.,2006,16(16):2110-2116.
    [151]Xu X, Chen X, Ma P, et al. The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning [J]. Eur. J. Pharm. Biopharm.,2008,70(1):165-170.
    [152]Xu X, Chen X, Wang Z, et al. Ultrafine PEG-PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity [J]. Eur. J. Pharm. Biopharm.,2009,72(1):18-25.
    [153]Qi H, Hu P, Xu J, et al. Encapsulation of Drug Reservoirs in Fibers by Emulsion Electrospinning:Morphology Characterization and Preliminary Release Assessment [J]. Biomacromolecules,2006,7(8):2327-2330.
    [154]Yang Y, Li X, Cui W, et al. Structural stability and release profiles of proteins from core-shell poly (DL-lactide) ultrafine fibers prepared by emulsion electrospinning [J]. J. Biomed. Mater. Res. A,2008,86A(2):374-385.
    [155]Liao Y, Zhang L, Gao Y, et al. Preparation, characterization, and encapsulation/release studies of a composite nanofiber mat electrospun from an emulsion containing poly(lactic-co-glycolic acid) [J]. Polymer,2008, 49(24):5294-5299.
    [156]Zheng C, Qiu L, Zhu K. Novel polymersomes based on amphiphilic graft polyphosphazenes and their encapsulation of water-soluble anti-cancer drug [J]. Polymer,2009,50(5):1173-1177.
    [157]Zeng J, Yang L, Liang Q, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation [J]. J. Control. Release,2005,105(1-2):43-51.
    [158]何莉.静电纺载药聚乳酸超细纤维及其缓释性研究[D].苏州大学.2008.
    [159]Roseman TJ, Higuchi WI. Release of medroxyprogesterone acetate from a silicone polymer [J]. J. Pharm. Sci.,1970,59(3):353-357.
    [160]Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs [J]. J. Control. Release,1987,5(1):23-36.
    [161]Li W-J, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering [J]. J. Biomed. Mater. Res. Part A, 2002,60(4):613-621.
    [162]Butler DL, Goldstein SA, Guilak F. Functional tissue engineering:The role of biomechanics [J]. J. Biomech. Eng.-Trans. ASME 2000,122(6):570-575.
    [163]Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties [J]. Biomaterials,2003,24(13):2161-2175.
    [164]Carlisle CR, Coulais C, Guthold M. The mechanical stress-strain properties of single electrospun collagen type I nanofibers [J]. Acta Biomater.,2010,6(8): 2997-3003.
    [165]Jeong JS, Moon JS, Jeon SY, et al. Mechanical properties of electrospun PVA/MWNTs composite nanofibers [J]. Thin Solid Films,2007,515(12): 5136-5141.
    [166]Zhang HL, Chen ZQ. Fabrication and Characterization of Electrospun PLGA/MWNTs/Hydroxyapatite Biocomposite Scaffolds for Bone Tissue Engineering [J]. J. Bioact. Compat. Polym.,2010,25(3):241-259.
    [167]Lee YH, Lee JH, An I-G, et al. Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds [J]. Biomaterials,2005,26(16):3165-3172.
    [168]Ma Z, Kotaki M, Yong T, et al. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering [J]. Biomaterials,2005,26(15): 2527-2536.
    [169]Liu M, Guo B, Du M, et al. Natural inorganic nanotubes reinforced epoxy resin nanocomposites [J]. J. Polym. Res.,2007,15(3):205-212.
    [170]Ye Y, Chen H, Wu J, et al. High impact strength epoxy nanocomposites with natural nanotubes [J]. Polymer,2007,48(21):6426-6433.
    [171]Pasbakhsh P, Ismail H, Fauzi MNA, et al. Influence of maleic anhydride grafted ethylene propylene diene monomer (MAH-g-EPDM) on the properties of EPDM nanocomposites reinforced by halloysite nanotubes [J]. Polym.Test., 2009,28(5):548-559.
    [172]Price RR, Gaber BP, Lvov Y. In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral [J]. J. Microencapsul.,2001,18(6):713-722.
    [173]Levis SR, Deasy PB. Characterisation of halloysite for use as a microtubular drug delivery system [J]. Int. J. Pharm.,2002,243(1-2):125-134.
    [174]Lvov Y, Shchukin DG, Mohwald H, et al. Halloysite Clay Nanotubes for Controlled Release of Protective Agents [J]. ACS Nano,2008,2(5):814-820.
    [175]Joussein E, Petit S, Churchman J, et al. Halloysite clay minerals -a review [J]. Clay Min.,2005,40:383-426.
    [176]You Y, Min B-M, Lee SJ, et al. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide) [J]. J. Appl. Polym. Sci.,2005,95(2):193-200.
    [177]Liu F, Guo R, Shen M, et al. Effect of Processing Variables on the Morphology of Electrospun Poly[(lactic acid)-co-(glycolic acid)] Nanofibers [J]. Macromol. Mater. Eng.,2009,294(10):666-672.
    [178]Vergaro V, Abdullayev E, Lvov YM, et al. Cytocompatibility and Uptake of Halloysite Clay Nanotubes [J]. Biomacromolecules,2010,11(3):820-826.
    [179]He C-L, Huang Z-M, Han X-J. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications [J]. J. Biomed. Mater. Res. A,2009, 89A(1):80-95.
    [180]Jose MV, Thomas V, Johnson KT, et al. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering [J]. Acta Biomater.,2009, 5(1):305-315.
    [181]Naebe M, Lin T, Staiger MP, et al. Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers:structure-property relationships [J]. Nanotechnology,2008,19(30):1-8.
    [182]Armentano I, Dottori M, Puglia D, et al. Effects of carbon nanotubes (CNTs) on the processing and in-vitro degradation of poly(DL-lactide-co-glycolide)/CNT films [J]. J. Mater. Sci.-Mater. Med.,2008,19(6): 2377-2387.
    [183]Chen F, Li XQ, Mo XM, et al. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix [J]. J. Biomater. Sci. Polym.Ed.,2008, 19(5):677-691.
    [184]Hamerli P, Weigel T, Groth T, et al. Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes [J]. Biomaterials,2003,24(22):3989-3999.
    [185]Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment [J]. J. Biomed. Mater. Res. A,2003,67A(2):531-537.
    [186]Jin H-J, Chen J, Karageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats [J]. Biomaterials,2004,25(6): 1039-1047.
    [187]Casarano R, Bentini R, Bueno VB, et al. Enhanced fibroblast adhesion and proliferation on electrospun fibers obtained from poly(isosorbide succinate-b-1-lactide) block copolymers [J]. Polymer,2009,50(26): 6218-6227.
    [188]Hiep N, Lee B-T. Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility [J]. J. Mater. Sci.-Mater. Med.,2010, 21(6):1969-1978.
    [189]Glicklis R, Shapiro L, Agbaria R, et al. Hepatocyte behavior within three-dimensional porous alginate scaffolds [J]. Biotechnol. Bioeng.,2000, 67(3):344-353.
    [190]Oh SH, Kang SG, Kim ES, et al. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method [J]. Biomaterials,2003, 24(22):4011-4021.
    [191]Wang DA, Williams CG, Li QA, et al. Synthesis and characterization of a novel degradable phosphate-containing hydrogel [J]. Biomaterials,2003, 24(22):3969-3980.
    [192]Liu Y, Cooper PR, Barralet JE, et al. Influence of calcium phosphate crystal assemblies on the proliferation and osteogenic gene expression of rat bone marrow stromal cells [J]. Biomaterials,2007,28(7):1393-1403.
    [193]Liu FJ, Guo R, Shen MW, et al. Effect of the Porous Microstructures of Poly(lactic-co-glycolic acid)/Carbon Nanotube Composites on the Growth of Fibroblast Cells [J]. Soft Mater.,2010,8(3):239-253.
    [194]Fang X, Xiao S, Shen M-W, et al. Fabrication and characterization of water-stable electrospun polyethyleneimine/polyvinyl alcohol nanofibers with super dye sorption capability [J]. J. Mater. Chem.,2011:DOI:10.1039/ C1030NJ00764A.
    [195]Fang X, Xiao S, Shen M-W, et al. Super Dye Removal Capability of Zero-Valent Iron Nanoparticle-Immobilized Electrospun Polymer Nanofibrous Membranes [J]. J. Mod. Text. Sci. Eng.,2010,1(1):1-10.
    [196]Casey A, Herzog E, Davoren M, et al. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity [J]. Carbon,2007,45(7):1425-1432.
    [197]Hash JH, Wishnick M, Miller PA. On the mode of action of the tetracycline antibiotics in Staphylococcus aureus [J]. J. Biol. Chem.,1964,239(6): 2070-2078.
    [198]Rang HP, Dale MM, Ritter JM, et al. Pharmacology [M].5th ed. New York: Churchill Livingstone,2003, p 446-451.
    [199]Veerabadran NG, Mongayt D, Torchilin V, et al. Organized Shells on Clay Nanotubes for Controlled Release of Macromolecules [J]. Macromol. Rapid Comm.,2009,30(2):99-103.
    [200]Kelly HM, Deasy PB, Ziaka E, et al. Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis [J]. Int. J. Pharm.,2004,274(1-2):167-183.
    [201]Abdullayev E, Price R, Shchukin D, et al. Halloysite Tubes as Nanocontainers for Anticorrosion Coating with Benzotriazole [J]. ACS Appl. Mater. Interfaces 2009,1(7):1437-1443.
    [202]He C-L, Huang Z-M, Han X-J. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications [J]. J. Biomed. Mater. Res. Part A,2009, 89A(1):80-95.
    [203]Boyle V, Fancher M, Ross RJ. Rapid, modified Kirby-Bauer susceptibility test with single, high-concentration antimicrobial disks [J]. Antimicrob Agents Chemother.,1973,3(3):418-424.
    [204]Chan C-M, Wu J, Li J-X, et al. Polypropylene/calcium carbonate nanocomposites [J]. Polymer,2002,43(10):2981-2992.
    [205]Lowy FD. Staphylococcus aureus Infections [J]. N. Engl. J. Med.,1998, 339(8):520-532.
    [206]Liu Z, Tabakman S, Welsher K, et al. Carbon nanotubes in biology and medicine:In vitro and in vivo detection, imaging and drug delivery [J]. Nano Res.,2009,2(2):85-120.
    [207]Portney NG, Ozkan M. Nano-oncology:drug delivery, imaging, and sensing [J]. Anal. Bioanal. Chem.,2006,384(3):620-630.
    [208]Ali-Boucetta H, Al-Jamal KT, McCarthy D, et al. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics [J]. Chem. Comm.,2008, (4):459-461.
    [209]Liu Z, Sun X, Nakayama-Ratchford N, et al. Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery [J]. ACS Nano,2007,1(1):50-56.
    [210]Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery [J]. Curr. Opin. Chem. Biol.,2005,9(6):674-679.
    [211]Kam NWS, Dai H. Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality [J]. J. Am. Chem. Soc.,2005,127(16): 6021-6026.
    [212]Kam NWS, Jessop TC, Wender PA, et al. Nanotube Molecular Transporters: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells [J]. J. Am. Chem. Soc.,2004,126(22):6850-6851.
    [213]Feazell RP, Nakayama-Ratchford N, Dai H, et al. Soluble Single-Walled Carbon Nanotubes as Longboat Delivery Systems for Platinum(IV) Anticancer Drug Design [J]. J. Am. Chem. Soc.,2007,129(27):8438-8439.
    [214]Allen BL, Kichambare PD, Gou P, et al. Biodegradation of Single-Walled Carbon Nanotubes through Enzymatic Catalysis [J]. Nano Lett.,2008,8(11): 3899-3903.
    [215]Klumpp C, Kostarelos K, Prato M, et al. Functionalized carbon nanotubes as emerging nano vectors for the delivery of therapeutics [J]. BBA-Biomembranes,2006,1758(3):404-412.
    [216]Kam NWS, Liu Z, Dai H. Carbon Nanotubes as Intracellular Transporters for Proteins and DNA:An Investigation of the Uptake Mechanism and Pathway [J]. Angew. Chem.-Int. Edit.,2006,118(4):591-595.
    [217]Pantarotto D, Briand J-P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes [J]. Chem. Commun.,2004, (1): 16-17.
    [218]Zhu XS, Geo QA, Shi XL, et al. Reinforcement of Electrospun Nonwovens [J]. Silk:Inheritance and Innovation-Modern Silk Road,2011,175-176:121-126.
    [219]Shao SJ, Zhou SB, Li L, et al. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers [J]. Biomaterials,2011,32(11): 2821-2833.
    [220]Liao H, Qi R, Shen M, et al. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds [J]. Colloid Surf. B-Biointerfaces,2011,84(2):528-535.
    [221]Riggio C, Ciofani G, Raffa V, et al. Combination of Polymer Technology and Carbon Nanotube Array for the Development of an Effective Drug Delivery System at Cellular Level [J]. Nanoscale Res. Lett.,2009,4(7):668-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700