用户名: 密码: 验证码:
纤维改性中间相沥青基泡沫炭的制备及其结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中间相沥青基泡沫炭具有低密度、热导率高、热稳定性好、耐腐蚀性能,热膨胀系数低等一系列优良特性,是一种极具发展潜力的新型炭材料。但泡沫炭的强度较低,限制了其应用。因此,如何提高其强度并保持其较高的热导率是当前亟待解决的问题。本文以日本三菱公司的萘基中间相沥青为原料,采用高温自发泡法制备泡沫炭。研究了不同压力下的恒压发泡工艺、中间相沥青预氧化处理对中间相沥青基泡沫炭的结构和性能的影响;在中间相沥青中分别添加聚丙烯腈基炭纤维、聚丙烯腈基预氧丝和碳纳米管,系统地考察了纤维种类、纤维长度、原料配比和不同石墨化温度对泡沫炭的微观结构、力学性能和导热性能的影响。主要研究结论如下:
     1.当恒压发泡压力较低时,泡沫炭的孔泡结构以开孔为主;随着发泡压力的升高,泡沫炭的开孔逐渐减少,炭泡沫和石墨泡沫的抗压强度均逐渐增加,而石墨泡沫的热导率和比热导率呈现了先增加后减小的趋势。当发泡压力为7MPa时,石墨泡沫的热导率和比热导率达到最大值,分别为61.0W/m K和93.1(W/m K)/(g/cm3),高于传统导热材料(铜和泡沫铝)的比热导率。
     2.随着预氧化时间的延长,炭泡沫和石墨泡沫的体积密度和抗压强度逐渐增加,当预氧化时间为6h时,炭泡沫和石墨泡沫的体积密度和抗压强度达到最大值,分别为1.07g/cm3、1.23g/cm3、12.07MPa和9.06MPa。
     3.添加炭纤维粉较添加短切炭纤维对泡沫炭的的抗压强度和热导率的改善更加明显。纤维与炭基体之间的应力石墨化作用能提高基体的微区石墨化度。使其微晶尺寸增大,热导率提高。当炭纤维粉含量为6wt%时,石墨泡沫的抗压强度和热导率分别为6.7MPa和83.OW/m K,较纯石墨泡沫的热导率(39.2W/m K)提高一倍。随着石墨化温度的提高(2000℃-2500℃),石墨泡沫的微晶尺寸进一步增大,热导率显著提高,抗压强度降低。
     4.添加预氧丝粉较添加短切预氧丝对泡沫炭的的抗压强度和热导率的改善程度更加明显。预氧丝粉与炭基体之间的应力石墨化作用有利于提高炭基体的石墨化度,明显改善石墨泡沫的热导率。预氧丝粉含量为2wt%时,石墨泡沫的抗压强度为7.7MPa。随着石墨化温度的提高(2000℃-2500℃),预氧丝粉含量为2wt%的石墨泡沫材料的抗压强度降低,石墨微晶尺寸La和Lc明显增加,体积密度和热导率增加。石墨化温度为2500℃时,石墨泡沫的热导率达到71.8W/m K。
     5.适量的碳纳米管能均匀分散在炭基体中,碳纳米管与基体之间的良好界面结合显著改善了炭泡沫的力学性能,碳纳米管的含量为2wt%时,炭泡沫抗压强度最大,为11.5MPa。碳纳米管能促进石墨微晶尺寸的生长,提高其热导率,2500℃高温热处理后,碳纳米管含量为1wt%的石墨泡沫材料的微晶尺寸La和Lc有较大增加,热导率提高,为78.2W/m K,但抗压强度下降。
Mesophase pitch-based carbon foam possessed excellent properties such as low density, high thermal conductivity, excellent thermal stability, corrosion resistance, low coefficient of thermal expansion. It was a kind of promising carbon material. However, the strength of carbon foam is low, which limited its application. To enhance the strength without decreasing its high thermal conductivity was our aim. In this work carbon foam was fabricated by foaming at high temperature. Mesophase pitch was used as precursor. Investigations were carried out to determine the effects of constant autoclave pressure and preoxidation of pitch on the structure and properties of carbon foam. PAN-based carbon fiber, PAN-based preoxidized fiber and carbon nanotubes were respectively added into mesophase pitch. The influence of kinds of fiber, fiber length, mass ration between mesophase pitch and fiber, different graphite temperature on microstructure, strength properties and thermal conductivities was discussed. The results were summarized as follows.
     1.Carbon foam had high open porosity under low foaming pressure. The open porosity was decreased when the foaming pressure was increased. Both of the compressive strength of carbon foam and graphite foam was improved. The thermal conductivity and specific conductivity tend to decrease while they were increased at first. When the pressure was7MPa, the thermal conductivity and specific thermal conductivity reached61.0W/m K and93.1W/m K respecitvely. The specific thermal conductivity was higher than conventional radiater (copper and aluminum foam).
     2.The bulk density and compressive strength of carbon foam and graphite foam was increased with the extension of oxidation time. The maximal values reacehd1.07g/cm3,1.23g/cm3,12.07MPa and9.06MPa when the oxidation time was6h.
     3.The addition of carbon fiber powder could improve the compressive strength and thermal conductivity. While the addition of short carbon fiber had less effects in improving these properties.The stress-introduced graphitization between fiber and carbon matrix can improve the graphitization in micro-aera. The microcrystalline value was increased. The thermal conductivity was also improved. When the carbon fiber powder content was6wt%, the maximal value of compressive strength of graphite foam was6.7MPa. The thermal conductivity of graphite foam reached83W/m K, which was a times of that of graphite foam. The microcrystalline value was further increased with the increasing of temperature(2000℃~2500℃). The thermal conductvity was improved, while the compressive strength was decreased.
     4.The addition of PAN-based preoxidized fiber powder could improve the compressive strength and thermal conductivity. While the addition of short carbon fiber had less effects in improving these properties. The stress-introduced graphitization between fiber and carbon matrix can improve the graphitization degree and thermal conductivity.When the preoxidized fiber powder content was2wt%, the microcrystalline value was further increased with the increasing of temperature(2000℃~2500℃), and the compressive strength was decreased. Both of the bulk density and thermal conductivity were increased. The thermal conductivity reached71.8W/m K at2500℃
     5.Moderate amount of CNTs could be dispersed uniformly in carbon matrix. CNTs could form good interfaces with carbon matrix, and improve the mechanical properties.The compressive strength of carbon foam reached11.5MPa when the CNTs content was2wt%. CNTs could promote the increasing of microcrystalline of graphite, which inproved the thermal conductivity. La and Lc values were increased obviously when the graphite foam contain lwt%CNTs was heat treated at2500℃. The thermal conductivity reached78.2W/m K, while the compressive strength decreased.
引文
[1]Klett J W, Hardy R, Romine E, et al. High-thermal-conductivity, mesophase-pitch-derived carbon foams:effect of precursor on structure and properties. Carbon,2000,38(7):953-973
    [2]Klett J W. Process for making carbon foam. USP 6033506; 2000
    [3]Klett J W. Pitch-based carbon foam and composites. USP 6261485; 2001
    [4]Klett J W, Mcmillan A D, Gallego N C. The role of structure on the thermal properties of graphitic foams. Journal of materials science,2004,39(11):3659-3676
    [5]王曾辉,高晋生著.碳素材料.上海:华东化工学院出版社,1991.39-41
    [6]李同起.碳质中间相结构的形成及其相关材料的应用研究:[博士学位论文]天津:天津大学,2005
    [7]Zimmer J E, White J L. Disclination structure in carbonaceous mesophase and graphite. Aerospace report,1976:1-5
    [8]Fitzer E. Carbon fibers and their composites. New York:Springer-Verlag,1985
    [9]Mochida I, Shimizu K, Korai Y, et al. Preparation of mesophase pitch from aromatic hydrocarbons by the aid of HF/BF3. Carbon,1990,28(2-3):311-319
    [10]肖正浩,周颖,肖南.泡沫炭的研究进展.化工进展,2008,27(4):473-477
    [11]王妹先.中间相沥青基泡沫炭的制备及性能研究:[博士学位论文].天津:天津大学,2005
    [12]成会明,刘敏,苏革,等.泡沫炭概述.炭素技术,2009,19(3):30-32
    [13]王小宪,李铁虎,魏宏艳,等.泡沫炭的制备和性能.材料导报,2005,19(5):11-13
    [14]张宏波,罗瑞英,刘涛,等.碳泡沫的结构及性能.炭素技术,2005,24(1):21-25
    [15]陈文.碳泡沫及石墨泡沫在航空上的应用.航空维修与工程,2005,3:33-35
    [16]陈亚.铅酸电池用沥青基炭泡沫集流体的制备及应用研究:[博士学位论文].长沙:中南大学,2008
    [17]Qu J, Blau P J, Klett J W, et al. Sliding friction and wear characteristics of novel graphitic foam materials. Tribology letters,2004,17(4):879-885
    [18]Coursey J S, Kim J, Boudreaux P J. Performance of graphite foam evaporator for use in thermal management. Journal of electronic packing,2005,127(2):127-134
    [19]Yu Q J, Straatman A G, Thompson B E. Carbon foam finned tubes in air-water heat exchangers. Applied thermal engineering,2006,26(2-3):131-143
    [20]Zhu X W, Jiang D L. Improvement in the Strut Thichness of Reticulated Porous Ceramic. J. Am. Ceram. Soc,2001,84(7):1654-1656
    [21]李娟,王灿,詹亮.预氧化对中间相沥青基泡沫炭结构和性能的影响机制研究.无机材料学报,2009,24(2):315-317
    [22]Li S Z, Guo Q G, Song Y, et al. Carbon foam with high compressive strength derived from mesophase pitch treated by toluene extraction. Carbon,2007,45(14): 2843-2845
    [23]Gaies D, Faber K T. Thermal properties of pitch-derived graphite foam. Carbon, 2002,40(7):1137-1140
    [24]林雄超,王永刚,杨慧君,等.CVI改性泡沫炭的研究.炭素技术,2007,26(5):1-4
    [25]陈峰,张红波,熊翔,等CVD PyC对炭泡沫结构及性能的影响.无机材料学报,2008,23(6):1184-1188
    [26]Thomas B, Khalid L. Novel high strength graphitic foams. Carbon,2006,44(8): 1548-1559
    [27]William F, Dinesh K S. Effects of carbon nanofibers on cell morphology, thermal conductivity and crush strength of carbon foam. Carbon,2010,48(1):68-80
    [28]Zhu J J, Wang X Y, Guo L F, et al. A graphite foam reinforced by graphite particles. Carbon,2007,45(13):2547-2550
    [29]Wang X Y, Zhong J M, Wang Y M, et al. A study of the properties of carbon foam reinforced by clay. Carbon,2006,44(8):1560-1564
    [30]闫曦,史景利,宋燕,等.掺杂粒子Ti对石墨泡沫炭导热性能的影响.第八届全国新型炭材料学术研讨会论文集.中国桂林:中国科学院山西煤炭化学研究所,2007.310-313
    [31]Li S Z, Guo Q G, Song Y, et al. Effects of pitch fluoride on the thermal conductivity of carbon foams derived from mesophase pitch. Carbon,2010,48(4): 1316-1318
    [32]闵振华,许德平,曹敏,等.表面活性剂对炭素泡沫结构与性能的影响.材料研究学报.2007,21(5):523-530
    [33]Cao M, Zhang S, Wang Y G. Influence of preparation conditions on the pore structure of carbon foam. New Carbon Materials,2005,20(2):134-138
    [34]Wang M X, Wang C Y, Li T Q, et al. Preparation of mesophase-pitch-based carbon foams at low pressures. Carbon,2008,46(1):84-91
    [35]Chen C, Kennel E B, Stiller A H, et al. Carbon foam derived from various precursors. Carbon,2006,44(8):1535-1543
    [36]闫曦,史景利,宋燕,等.中间相沥青基泡沫炭的制备及性能.宇航材料工艺,2006,36(2):56-59
    [37]沈曾民,戈敏,迟伟东,等.中间相沥青基炭泡沫体的制备、结构及性能.新型炭材料,2006,21(3):193-201
    [38]李四中.中间相沥青泡沫炭结构演化形成机制及其结构调控研究:[博士学位论文].北京:中国科学院研究生院,2009
    [39]安秉学,李同起,王成扬.发泡条件对中间相沥青基泡沫炭形成的影响.炭素技术,2005,24(6):1-4
    [40]Cao M, Zhang S, Wang Y G. Influence of preparation conditions on the pore structure of carbon foam. New Carbon Materials,2005,20(2):134-138
    [41]李娟,王灿,詹亮,等.预氧化对中间相沥青基泡沫炭结构和性能的影响机制研究.无机材料学报,2009,24(2):315-319
    [42]张怀平,刘春林,吕春祥,等.空气氧化法制备的煤焦油沥青的性质研究.新型炭材料,2000,15(3):43-46
    [43]Gallego N C, Burchell T D, Klett J W. Iffradiation effects on graphite foam. Carbon,2006,44(4):618-628
    [44]Beechem T, Lafdi K, Elgafy A. Bubble growth mechaism in carbon foams. Carbon,2005,43(5):1055-1064
    [45]Mesalhy O, Lafdi K, Elgafy A. Carbon foam matrices saturated with PCM for thermal protection purposes. Carbon,2006,44(10):2080-2088
    [46]Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase materials as alternative materials for space and space and terrestrial thermal energy stprage applications. Carbon,2008,46(1):159-168
    [47]Maslov K, Kinra V K. Damping capacity of carbon foam. Materials Science and Engineering A,2004,367(1-2):89-95
    [48]Ge M, Shen Z, Chi W, et al. Anisotropy of mesophase pitch-derived carbon foams. Carbon,2007,45(1):141-145
    [49]Gallego N C, Klett J W. Carbon foams for thermal management. Carbon,2003, 41(7):1461-1466
    [50]Leong K C, Jin L W. Study of highly conductive graphite foams in thermal management applications. Advanced Engineering Materials,2008,10(4):338-345
    [51]Klett J W, Trammell M, Parametric investigation of a graphitic foam evaporator in a thermosyphon with fluorineat and a silicon CMOS chip. IEEE transactions on device and materials reliability,2004,41:626-637
    [52]http://www.bylm.net/forum/read-htm-tid-241140.html.
    [53]Dudney N J, Tiegs T N, Kiggans J O, et al. Graphite foams for lithium-ion battery current collectors. ECS Transactions,2007,27(3):23-28
    [54]http://www.cfoam.com/battery.htm.
    [55]Yang J, Shen Z M, Hao Z B. Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core. Carbon,2004,42(8-9):1882-1885
    [56]Iwasshita N, Park C R, Fujimoto H, et al. Procedure for the measurements of lattice parameters and crystallite sizes of carbon materials by X-ray diffraction. Carbon,2004,42(3):705-714
    [57]Takahashi H, Kuroda H, Akamatu H. Correlation between stacking order and crystallite dimensions in carbons. Carbon,1964,2(1):232-433
    [58]邹林华,黄启忠,邹志强.炭/炭复合材料石墨化度的研究.炭素,1998,16(1):8-11
    [59]陈洁.C/C复合材料的导热性能研究:[博士学位论文].长沙:中南大学,2009.
    [60]陈锋.中间相沥青基炭泡沫的制备及应用:[硕士论文].长沙:中南大学,2008.
    [61]钟继明,王新营,郁铭芳,等.石墨化碳泡沫导热性能研究.材料导报,2006,20(21):268-270.
    [62]李平.中间相沥青基泡沫炭的制备及性能研究:[硕士论文].大连:大连理工大学,2005.
    [63]彭鹏.石墨泡沫的制备及分析研究:[硕士论文].重庆:重庆大学,2006.
    [64]孙大航,刘贵山,邱介山.磷酸盐浸渍泡沫炭的抗氧化性能研究.硅酸盐通报,2006,25(6):38-42
    [65]王松,谢凯,洪晓斌.变压发泡工艺对聚氨酯泡沫泡孔结构控制的研究.塑料科技,2001,29(4):7-10
    [66]Li S Z, Tian Y M, Zhong Y J. Formation mechanism of carbon foams derived from mesophase pitch. Carbon,2011,49(2):618-624
    [67]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1992.42-46
    [68]高晓晴,郭全贵,刘朗.高导热炭材料的研究进展.功能材料,2006,37(2):173-177
    [69]Savage G. Carbon carbon composites. London:Chapman & Hall,1993.309-317
    [70]Druma A M, Alam M K, Druma C. Analysis of thermal conduction in carbon foams. International Journal of Thermal Sciences,2004,43(7):689-695
    [71]王玉东.部分过渡金属化合物对催化氧化沥青性能的影响:[博士论文].北京:中国石油大学,2007
    [72]Yamaguchi C, Mondori J, Matsumoto A, et al. Air-blowing reactions of pitch:I. oxidation of aromatic hydrocarbons. Carbon,1995,33(2):193-200
    [73]水恒福,冯映桐.中间相沥青高温炭的氧化动力学研究.燃料与化工,2000,31(6):296-298
    [74]罗瑞盈.航空刹车及发动机用炭炭复合材料的研究应用现状.碳素技术,2001,4:27-29.
    [75]邓海金,李明,孙立,等.短切纤维炭/炭复合材料磁电阻特性研究.新型炭材料,2004,19(3):219-223
    [76]罗瑞盈.炭/炭复合材料制备工艺及研究现状.兵器材料科学与工程,1998,21(1):64-69
    [77]李贺军,李克智,张秀莲.我国炭/炭复合材料研究进展.炭素,2001,4:8-13
    [78]John D B. Carbon-carbon materials and composites. Noyes Publications,1993, 91-92
    [79]张晓虎,孟宇,张炜.炭纤维增强复合材料技术发展现状及趋势.纤维复合材料,2004,1:50-53.
    [80]赵稼祥.世界炭纤维现状与进展.玻璃钢复合材料,2003,2:40-43
    [81]Seong S K, Dong C P, Dai G L. Characteristic of carbon fiber phenolic composite for journal bearing materials. Composite Structures,2004,66(1-4):359-366
    [82]Krenkel W. Design of ceramic brake pads and disks. Ceramic Engineering and Science Proceeding,2002,23(3):319-329
    [83]Krenkel W, Berndt F. C/C-SiC composites for space applications and advanced friction systems. Material Science and Engineering A,2005,412(1-2):177-181
    [84]Schmid S, Beyer S, Knabe H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications. Acta Astronaut, 2004,55(3-9):409-420
    [85]贺福.炭纤维及其应用技术.北京:化学工业出版社,1994.43-45
    [86]高晓晴.高导热炭/炭复合材料的制备及其性能和结构的研究:[博士学位论文].北京:中国科学院研究生院,2005
    [87]Sihna S, Roy A K. Modeling and prediction of bulk properties of open-cell carbon foam. J. Mech. Phys. Solids,2004,52(1):167-191
    [88]Kwon Y W, Yoon S H, Sistare P J. Compressive failure of carbon-foams sandwich composites with holes and/or partial delamination. Compos. Struct,1997, 38(1-4):573-580
    [89]Neethling S J, Lee H T, Grassia P. The growth, drainage and breakdown of foams. Colloids and Surf. A,2005,26(1-3):184-196
    [90]Hutzler S, Cox S J, Wang G. Foam drainage in two dimensions. Colloids and Surf. A,2005,263(1-3):178-183
    [91]杨永岗,贺福,王茂章,等.炭纤维表面处理及其评价.材料研究学报,1996,10(5):460-466
    [92]翟更太,郝露霞,岳秀珍.表面氧化处理对炭纤维及炭/炭复合材料力学性能的影响.新型炭材料,1998,13(4):50-54
    [93]吴庆,陈惠芳,潘鼎.炭纤维表面处理综述.炭素,2000,3:21-25
    [94]Wu Z H, Pittman C U, Gardner S D. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon,1995,33(5): 597-605
    [95]李铁虎,杨峥,郑修麟,等.炭/炭复合材料中纤维和基体的结合强度与碳纤维表面状态的关系.炭素,1993,1:5-9
    [96]成会明,张名大,周本濂,等.短炭纤维/树脂炭复合材料石墨化行为的研究.炭素技术,1989,2:7-10
    [97]Hishiyama Y, Znagaki M, Kimura S, et al. Graphitization of carbon fiber/glassy carbon composites. Carbon,1974,12 (3):249-258
    [98]胡志强.无机材料科学基础教程.北京:化学工业出版社,2004:99-102
    [99]Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and relate carbonaceous materials:Spectral analysis and structural information. Carbon,2005,43:1731-1743
    [100]Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon,1995,33(11):1561-1565
    [101]乔生儒.复合材料细观力学性能.西安:西北工业大学出版社,1997:58-61
    [102]郭领军,李贺军,薛晖,等.短切炭纤维增强沥青基C/C复合材料的力学性能.新型炭材料,2006,21(1):36-42
    [103]唐纳德.R.阿斯克兰,材料科学与工程.北京:机械工业出版社,1988.69-70
    [104]李秀涛.多组元掺杂抗烧蚀炭材料制备、性能及结构的研究:[博士学位论文].北京:中国科学院研究生院,2006
    [105]于美杰.聚丙烯腈纤维预氧化过程中的热行为与结构演变:[博士学位论 文].山东:山东大学,2007
    [106]Coleman M M, Sivy G T. Fourier transform IR studies of the degradation of polyacrylonitrile copolymers-1:Introduction and comparative rates of the degradation of three copolemers below 200℃ and under recuce pressure. Carbon,1981,19: 123-126
    [107]Varma S P, Lal B B, Srivastava N K. IR studies on preoxidized PAN fibers. Carbon,1976,14(4):207-209
    [108]Raskovic V, Marinkovic S. Temperature dependence of processes during oxidation of PAN fibers. Carbon,1975,13(6):535-538
    [109]Zhang W, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon,2003,41(14):2805-2812
    [110]Mathur R B, Bahl O P, Mittal J, A new approach to thermal stabilization of PAN fibers. Carbon,1992,30(4):657-663
    [111]井敏.PAN基预氧丝在炭化过程中的工艺及物化行为研究.[博士学位论文].山东:山东大学,2008
    [112]钱志屏,泡沫塑料.北京:中国石化出版社,1998.31-32
    [113]Wu Q H, Wu J A. Introduction to polymer rheology. Beijing China:China Chemical Industry Press.1994.254-261
    [114]李丽娅,黄启忠,张红波.PAN基预氧丝炭化过程中的热收缩行为.炭素,2003.113:3-6
    [115]唐书贵,赵书经.PAN基预氧丝碳化过程中温度对其结构与性能的影响.高分子材料科学与工程,1993,2(1):65-69
    [116]Kearns. Pitch foams products. US patent 5961814,1999.
    [117]赵根祥,金允正,王健.硝酸法PAN基预氧丝在炭化期间分子结构的变化.高分子材料科学与工程,1995,11(1):46-49
    [118]Balasubramanian M, Jain M K, Bhattacharya S K. Conversion of acrylonitrile-based precursors to carbon fibers:Part 3 Thermooxidative stabilization and continuous, low temperature carbonization. Journal of Materials Science,1987, 22(11):3864-3872
    [119]Jain M K, Abhiraman A S. Conversion of acrylonitrile-based precursor fibers to carbon fibers Part I A review of the physical and morphological aspects. Journal of Materials Science,1987,22(1):278-300
    [120]Yu M, Wang C, Bai Y, et al. Evolution of tension during the thermal stabilization of polyacrylonitrile fibers under different parameters. Journal of Applied Polymer Science,2006,102(6):5500-5506
    [121]Ko T, Day T, Lin M. The effect of precarbonization on mechanical properties of final polyacrylonitrile-based carbon fibers. Journal of Materials Science Lettet,1993, 12(3):343-345
    [122]Zhou C, McGinn P J. The effect of oxygen on the processing of mesocarbon microbeads to high-density carbon. Carbon,2006,44(9):1673-81
    [123]Hoffmann W R, Huttinger K J. Modeling of the apparent viscosity of pitcher and mesophases at linear temperature increase up to 500 ℃. Carbon,1993,31(2): 263-268
    [124]宋永忠.中间相沥青基自烧结炭石墨材料的制备及其炭化机理研究:[博士学位论文].北京:中国科学院研究生院,2009
    [125]孙晓刚,曾效舒,程国安.碳纳米管的生产及应用.人工晶体学报,2001,30(4):398-403
    [126]Iijima S, Helical microtubules of graphitic carbon. Nature,1991,354:56-58
    [127]Ajayan P M. Nanotubes from Carbon. Chem. Rev.,1999,99:1787-1799
    [128]Salvetat J P, Briggs G A D, Bonard J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett,1999,82(5):944-947
    [129]Che J W, Cagin J, Goddard W A. Thermal conductivity of carbon nanotube. Nanotechnology,2000,11(2):65-69
    [130]Subramoney S. Novel nanocarbons-structure, properties and potential applications. Adv Mater,1998,10(15):1157-1171
    [131]Bonard J M, Croci M. Carbon nanotube films as electron field emitters,2002, 40(10):1715-1728
    [132]Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett,2001,87(21):2155021-2155024
    [133]Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett,2000,84(20):4613-4616
    [134]Dong S R, Tu J P, Zhang X B. An investigation of the sliding wear behaviour of Cu-matrix composite reinforced by carbon nanotubes. Mater Sci Eng A,2001, 313(1-2):83-87
    [135]隋刚,梁吉,朱跃峰,等.碳纳米管/天然橡胶复合材料的结构与性能.合成橡胶工业,2005,28(1):40-43
    [136]Lau K T, Hui D. The revolutionary creation of new advanced materials-carbon nanotube polymer composites. Comp Pt B:Eng,2002,33:263-277
    [137]Peigney A, Laurent C, Flahaut E, et al. Carbon nanotube in novel ceramic matrix mposites. Ceramics international,2000,26(6):677-683
    [138]Andrew R, Weisenberger M C. Carbon nanotube polymer Composites. Current in Solid State and Materials Science,2004,8(1):31-37
    [139]Arash M, Jafar J, Alireza K. Mechanical properties of multi-walled carbon nanotube/epoxy composites. Materials and Design,2010,31(9):4202-4208
    [140]Yeh M K, Tai N H, Lin Y J. Mechanical properties of phenolic-based nanocomposites reinforced by multi-walled carbon nanotubes and carbon fibers. Composites:Part A,2008,39(4):677-684
    [141]Yeh M K, Hsieh T H, et al. Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites. Materials Science and Engineering A 2008,483-484(289-292):289-292
    [142]Jonathan N C, Umar K, Werner J B, et al. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites. Carbon,2006,44(9): 1624-1652
    [143]Zhou Y X, Pervin F, Lewis L, et al. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Materials Science and Engineering A,2007,452-453(15):657-664
    [144]Fakhru'1-Razi A, Atieh M A, Girun N, et al. Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber. Composites Structures, 2006,75(1-4):496-500
    [145]Li G Y, Wang P M, Zhao X H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon,2005,43(6):1239-1245
    [146]Chen J, Xiong X, Xiao P. The effect of carbon nanotube growing on carbon fibers on the microstructure of the pyrolytic carbon and the thermal conductivity of carbon/carbon composites. Materials Chemistry and Physics,2009,116(1):57-61
    [147]Chen J, Xiong X, Xiao P. The effect of MWNTs on the microstructure of resin carbon and thermal conductivity of C/C composites. Solid State Sciences,2009, 11(11):1890-1893
    [148]Chen J, Xiong X, Xiao P. Thermal conductivity of unidirectional carbon/carbon composites with different carbon matrixes. Materials and Design,2009,30(4): 1413-1416
    [149]Lo'pez M A, Manchado, Valentini L, et al. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon,2005,43(7):1499-1505
    [150]Sandler J, Shaffer M S P, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer,1999,40(21):5967-5971
    [151]Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett.,1998,73(26):3842-3844
    [152]Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett.,2000, 76(20):2868-2870
    [153]Ajayan P M, Schadler L S, Giannaris S C, et al. Single-walled carbon nanotube-polymer composites:Strength and weakness. Adv. Mater.,2000,12(10): 750-753
    [154]Thostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites:A review. Compos. Sci. Technol.,2001, 61(13):1899-1912
    [155]Xiong J W, Zheng Z, Qin X M, et al. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon,2006,44(13): 2701-2707
    [156]Xu X B, Li Z M, Shi L, et al. Ultralight conductive carbon nanotube polymer composites. Small,2007,3(3):408-411
    [157]Lai M F, Li J, Yang J, et al. The morphology and thermal properties of multi—walled carbon nanotube and poly (hydroxybutyrate-co-hydroxyvalerate) composite. Polymer International,2004,53(10):1479-1484
    [158]林起浪,田鹏飞,陈杰林,李铁虎.添加碳纳米管对煤沥青成焦行为的影响.煤炭学报,2008,33(4):449-453
    [159]祖胜臻,迟伟东,沈曾民,等.碳纳米管/炭复合材料的制备及其性能的研究.炭素技术,2006,25(2):11-15
    [160]Qian D, Dichey E C. In-situ transimission electron microscopy of polymer-carbon nanotube composite deformation. Journal of Microscopy,2001, 204(1):39-45
    [161]Qian D, Dichey E C, Andrewa R, et al. Load transfer and derformation mechanisms in carbon-polystyrene composites. Appl. Phys. Lett.,2002,12(7):2868
    [162]胡平,范守善,万建伟.碳纳米管/UHMWPE复合材料的研究.工程塑料应用,1998,26(1):1-3
    [163]葛启录,雷廷权,周玉.晶须增韧复合材料机理的研究.材料科学进展,1992,6(2):180-184
    [164]尹洪峰,任耘,罗发.复合材料及其应用.西安:陕西科学技术出版社,2003:58-59
    [165]Suhr J, Koratkar N, Keblinski P, et al. Viscoelasticity in carbon nanotube composites. Nat. Mater.2005,4(2):134-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700