用户名: 密码: 验证码:
基于正负模糊系统的图像分类的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字图像处理技术随着计算机科学技术的发展和计算机网络的日益普及而迅速发展。图像分类作为其重要分支,为图像的进一步实验和研究提供了很多重要信息。图像分类技术是模式识别在数字图像处理领域的具体运用,其主要目的在于研制出能够代替人类来完成图像分类和识别任务的计算机智能系统。近些年来,人们在这方面做了很多努力,并取得了显著成效。目前主要的图像分类方法有支持向量机(SVM)、基于知识的图像分类法、模糊集理论、人工神经网络方法等。支持向量机在图像的应用也十分广泛,但是它的参数的选择将很大程度上影响到它的性能,而目前还没有十分完备的方法来确定参数;基于知识的图像分类方法主要是以专家的知识和经验为基础的图像分类方法,这种方法引起了很多科研人员的广泛关,但知识和经验大多属于特定的地域和时域,该方法需要解决的是如何使其具有自适应学习能力。模糊集方法有较强的灵活性以及适应性,能很好的处理模糊性问题,但其隶属的函数的选择主要由经验确定,这就导致该方法存在一定的主观性和盲目性。人工神经网络方法利用计算机模拟人类自主学习的过程,具有很强的非线性逼近能力,在信息处理和模式识别的过程中得到了广泛应用。
     当前,大部分基于模糊系统的图像分类算法都只利用了模糊系统中的正规则,然而负规则往往也提供了很多有用信息。本文着重讨论了正负模糊规则系统在图像分类上的应用。文中将正负模糊规则进行有效结合形成了正负模糊规则系统,提出三种抗噪性能和分类性能较好的正负模糊系统。本文的工作重点是:
     1、改进了一种正负模糊系统并将其用于图像分类,文中阐述了正负模糊规则相对于正模糊规则以及负模糊规则的优势,详细描述了正负模糊系统的结构、隶属度函数类型以及参数的调整方法,并通过一系列实验证明该方法不仅可以对遥感图像进行分类,而且可以对自然图像进行分类,同时具有较好的抗噪性。
     2、在此基础上,针对上述正负模糊系统中采用梯度下降法调整参数,导致学习速度慢、容易得到局部最优值等问题,引入了极限学习机(ELM)理论。这不仅有效避免了上述问题,而且在隐含层激励函数无限可微的情况下,可以对输入权值和隐含层阈值任意赋值。文中提出了基于ELM的正负模糊系统的图像分类,并结合遥感图像和自然图像进行了一系列实验。图像分类的结果表明,该方法不仅有较好的分类效果和抗噪效果,而且学习速度快、泛化性能好。
     3、极限学习机(ELM)是一种单隐含层前馈神经网络(SLFN)。为减少隐含层神经元个数,增加神经网络的灵活性,我们提出了隐含特征空间岭回归(HFSR)并将其拓展到多隐含层前馈神经网络(MLFN)。MLFN的HFSR的隐含层最后一层可以通过求Moore-Penrose伪逆的方法的获得,其他隐含层参数可以任意赋值,同时它具有ELM的学习速度快、算法简洁、网络只需训练一次的优点。文中提出了基于HFSR的正负模糊规则系统的极速图像分类。实验表明,文中方法除了有较好的图像分类效果,也有很好的抗噪性。
Digital image processing technology develops rapidly with the development of computer science and technology and the increasing popularity of computer networks. As an important branch of image processing, the image classification provides a lot of important information for further experiments and researches. The technology of image classification is a specific application of pattern recognition in the field of digital image processing; its main purpose is to develop a computer intelligent system which could replace human beings to complete the task of image classification and recognition. In recent years, people made many efforts in this regard and have achieved remarkable results. At present, the main method of image classification are support vector machine (SVM), knowledge-based image classification, fuzzy set theoryand artificial neural network method, etc. Support vector machine is widely used in image classification, but its performance is greatly affected by the parameters, and parameter selection method are not yet comprehensive or complete; Knowledge-based image classification methods based on expert knowledge and experience attract wide attention from many scientific researchers, while most of the knowledge and experience belong to a particular geographical and time domain, and self-learning is the problem need to be resolved; Fuzzy set method which has good flexibility and adaptability can well solve the ambiguity problem, but the choice of membership function mainly relies on experiences with great subjectivity and blindness; Artificial neural network method using computer to simulate self-learning process of human beings and of strong non-linear approximation capability, has been widely used in information processing and pattern recognition.
     Most of the current image classification algorithms only use the positive rules in fuzzy system, while negative rules also provide a lot of useful information. This paper focuses on the positive and negative fuzzy rule system and its application to image classification. Based on positive and negative fuzzy rule system which effective combinates of positive and negative fuzzy rules, we propose three positive and negative fuzzy system with anti-noise performance and better classification performance. This work will focus on:
     1, A kind of positive and negative fuzzy system for image classification is improved, which has obviously advantages compared to positive fuzzy rule systerm or negative fuzzy rule systerm. We detailly describe the structure, the type of membership functions and parameters’adjustment methods of positive and negative fuzzy system. A series of experiments show that this method with better noise immunity can classify not only remote sensing image, but also natural images.
     2, On this basis, since their method heavily suffers from the very slow learning speed for the training and easily falling in local minima of the cost function of the network which is realized using the feedforward neural network model which requires adjusting the weights in the gradient descent way, Extreme Learning Machine (ELM) theory is introduced. It is the effective way that can avoid the above problems and the input weights and hidden layer bias can be randomly assignment when the hidden layer activation function infinitely differentiable. In this paper, the positive and negative fuzzy system based ELM is proposed for image classification and a series of experiments are done on remote sensing images and natural images. Image classification results show that the method has better classification effect and anti-noise effect, and also has fast learning speed, generalization performance.
     3, The Extreme learning machine (ELM) is a single hidden layer feedforward neural network (SLFN). In order to reduce the number of nodes in the hidden layer and increase the flexibility of neural networks, we propose a hidden feature space ridge regression (HFSR) and expanse to a multi-hidden layer feedforward neural network (MLFN). The parameters in the last layer of hidden layers of the MLFN’s HFSR can be obtaned by Moore-Penrose generalized inverse method, and other parameters in hidden layer can be arbitrarily assigned while it is a simple and fast algorithm just like ELM which only needs to train one time. A positive and negative fuzzy rule system using ridge regression for extremely fast Image classification is proposed in the paper. A series of experiments show that the proposed method has better image classification results, and also has very good noise immunity.
引文
1.边肇祺,张学工等.模式识别[M].北京:清华大学出版社,2000
    2.杨光正,吴岷,张晓莉.模式识别[M].合肥:中国科技大学出版社,2003
    3. Nguyen T M, Wu Q M Jonathan. Fuzzy System with Positive and Negative Rules [C]// Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications,Washington DC,USA: IEEE Computer Society Press, 2008: 741– 746.
    4. Nakashima, T.; Nakai, G.; Ishibuchi, H. Credit assignment by fuzzy rule-based systems in fuzzy classifier ensembles [J]. 2003, 2: 664– 669
    5.姜三平.混合傅立叶-小波图像降噪及激光测速靶信号处理[D]. [博士学位论文].山西太原:中北大学,2008
    6. Tadjudin S, Landgrebe D A. Covariance estimation with limited training samples[J] Geoscience and Remote Sensing, IEEE Transactions on 1999, 37(4): 2113– 2118.
    7. Jarivs C H, Stuart N. The sensitivity of a neural network for classifying remotely sensed imagery [J]. omputers & Geosciences,1996, 22(9): 959-967.
    8.林剑. FastART模糊神经网络用于遥感图像监督分类的研究[中国图象图形学报],2002, 7A(12): 1263-1268.
    9.刘勇洪,牛铮,王长耀,基于MOSID数据的决策树分类方法研究与应用[J].遥感学报,2005, 9(4): 405-412
    10. McIver D K, Fried M A, Using prior probabilities in decision tree classification of remotely sensed data [J]. Remote sensing of environmentp,2002, 81: 253-261
    11.许磊.支持向量机和模糊理论在遥感影像分类中的应用[D].[硕士学位论文].江苏无锡:江南大学,2006
    12.雷文辉.基于支持向量机的语种识别研究[D].[硕士学位论文].合肥:中国科学技术大学,2009
    13. Szummer M.,Pieard 1L. Indoor-outdoor image classification[C]//In Proc.of IEEE Int.Workshop on Content-Based Access of Image and Video Database,1998, 42-51
    14. Vailaya A, Jain A,Zhang H.On Imge C1assification:City Vs.Landscape[A]. Workshop in Content-based Access to Image and Video Libraries[C],Santa Barbara,Califomia,1998:3-8.
    15. Vailaya A,Figueiredo Mo,Jain A,Zhang H.A Bayesian Framework for Semantic Classification of Outdoor vacation Imges [J].In:Proceedings of SPIE:Storage and Retrieval for Image and video DatabasesⅦ,San Jose,CA,USA,1999,3656:415-426.
    16. Lipson P,Grimson E,Sinha P.Configuration based scene classification and image indexing [J].In:Proceedings of the 16th IEEE Conference on Computer vision and Pattern Recognition’Puerto Rico,1997:1007~1010.
    17.蒋艳凰,周海芳,杨学军.基于纠错编码的CSNN及其在遥感图像分类中的应用[J].
    18.张向荣,谭山,焦李成.基于商空间粒度计算的SAR图像分类[J].计算机学报, 2007, 30(3): 483-490.
    19.秦磊,高文.基于内容相关性的场景图像分类方法计算机研究与发展[J]. 2009, 46(7): 1198-1205.
    20.付岩,王耀威,王伟强,高文. SVM用于基于内容的自然图像分类和检索[J].计算机学报,2003, 26(10):1261-1265.
    21.李大湘,彭进业,李展.集成模糊LSA与MIL的图像分类算法[J].计算机辅助设计与图形学学报,2011, 22(10): 1796-1802.
    22. Brin S, Motwani R, Silverstein C. Beyond market basket: Generalizing association rules to correlations[J].Proc. Of SIGMOD, 1997, 26(2):265-276.
    23. Wu, X., Zhang, C., Zhang, S.Efficient Mining both positive and negative association rules[J]. ACM Transactions on Information Systems, 2004, 22(3): 381-405.
    24. Nguyen T M, Wu J Q-M . A Combination of Positive and Negative Fuzzy Rules for Image Classification Problem [C]// Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications, Washington DC,USA: IEEE Computer Society Press, 2008: 741– 746
    25. Zadeh L A. Fuzzy sets [J].Information and Control, 1965, 8(3): 338—353.
    26. Zadeh L A, Fu K S. Fuzzy Sets and Their Applications To Cognition and Decision Processes [M]. Academic press, New York, 1975
    27. Takagi t, Sugeno M. Fuzzy Identification of systems and its Applications to Modelling and Control [J]. The IEEE Trans on Systems,Man and Cybernetics, 1 985, 15(1):116-163.
    28. Benz U C, Hofmann P, Willhauck G, Lingenfelder Iris, Heynen M. Multi-resolution, Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information. ISPRS Journal of Photogrammetry & Remote Sensing,2004, 58: 239~258
    29.阳松.面向对象的遥感影像的模糊分类:[硕士学位论文].徐州.中国矿业大学,2007
    30. Hathaway R J, Bezdek J C. Fuzzy C-Means Clustering of Incomplete Data [J]. IEEE Trans on System, Man and Cybernetics, 2001, 31(5): 735-744
    31. ZHU Dachang, FANG Yuefa. Adaptive control of parallel manipulator via fuzzy neural network algorithm [J]. Journal of Control Theory and Application, 2007, 5(3): 295-300.
    32. Udupa J K, Samarasekera S. Fuzzy connectedness and object definition: Theory, algorithm and applications in image segmentation [J]. Graphical Models and Image Processing, 1966, 58(3): 246-261
    33. Huang L K and Wang M J. Image thresholding by minimizing the measures of fuzziness [J]. Pattern Recognition,1995, 28(1): 41-51
    34.刘增良.模糊技术与神经网络技术选编[M].北京:北京航空航天大学出版社,1999. 9-36,81-92,153-168,267-286
    35. H. Drucker, W. Donghui, V.N. Vapnik. Support vector Machines for spam categorization [J]. IEEE. Trans. on Neural Networks, 1999, 10(5):1048-1054
    36. Vapnik V. Statistical Learning Theory [M]. Wiley. New York:Springer-Verlag, 1998
    37. Scholkopf B, Smola A. Learning With Kernels [M]. Cambridge.MA:MIT Press, 2002.
    38. N.Cristianini,J.Shawe-Taylor.An Introduction to Support Vector Machines[M]. Cambridge. U.K:Cambridge Univ Press, 2000
    39.高锦.基于SVM的图像分类[D]:[硕士学位论文].陕西西安:西北大学, 2010
    40.夏玫. BP神经网络泛化能力改进研究[D]:[硕士学位论文].山西太原:太原科技大学, 2009
    41.周开利,康耀红等.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社, 2006, 69-100
    42.骆剑承,周成虎.基于径向基函数(RBF)映射理论的遥感影像分类模型研究[J].中国图象图形学报, 2000, 5(2): 94~99
    43. Moody J, Darken C. Fast learning in networks of locally-tuned processing units [J]. Neural Computation, 1989, 1: 281-294
    44.隆金玲. SumofProduct神经网络和径向基函数神经网络的逼近能力研究[D]:[博士学位论文].山东大连:大连理工大学,2008
    45. Roy A,Govil S,Miranda R.A Neural Network Learning Theory and aPolynomial Time RBF Algorithm [J].IEEE Trans.On Neural Network, 1 997, 8(6): 1301-1313.
    46.梁明.面向对象的遥感影像模糊分类方法研究[D]:[硕士学位论文].陕西西安:西安科技大学,2008.
    47.赵春晖.基于神经网络的高光谱图像分类研究[D]:[硕士学位论文].黑龙江滨沈阳:哈尔滨工程大学, 2009.
    48.胡波.基于模糊RBF神经网络的人脸识别系统研究[D]:[硕士学位论文].湖南长沙:长沙理工大学,2010
    49. Kosko B. Fuzzy function approximation [J]. Proceedings of the International Joint Conference on Neural Networks, Baltimore, Maryland, 1992, 1: 209-213
    50. Kosko B. Fuzzy Systems as Universal Approximators [J]. IEEE Trans. On Computers, 1994, 43(11): 1329-1333
    51.张浩炯,余岳峰.王强.应用自适应神经模糊推理系统(ANFIS)进行建模与仿真[J].计算机仿真,2002, 19(4): 47-49
    52. Teng, W., Hsieh, M., Chen, M.On the mining of substitution rules for statistically dependent items[A]. Proceedings 2002 IEEE International Conference on Data Mining. ICDM 2002[C]. 2002.442-449
    53. Savasere, A., Omiecinski, E., Navathe, S.Mining for strong negative associations in a large database of customer transactions[A]. Proceedings 14th International Conference on Data Engineering[C]. 1998.494-502
    54. Abe S, Thawonmas R. A fuzzy classifier with ellipsoidal regions[J].IEEE Transactions on Fuzzy Systems 1997, 5(3): 358-368
    55. Gonzalez A, Perez R. Completeness and consistency conditions for learning fuzzy rules[J]. Fuzzy Sets and Systems, 1998, 96: 37-51
    56. Ishibuchi H, Nozaki K, Tanaka H. Distributed representation of fuzzy rules and itsapplication to pattern classification[J].Fuzzy Sets and Systems, 1992, 52: 21-32
    57. Ishibuchi H, Nakashima T. Effect of rule weights in fuzzy rule-based classification systems[J].IEEE Trans. on Fuzzy Systems, 2001, 9(4): 506-515
    58. Mandai D P, Murthy C A, Pal S K. Formulation of a multivalued recognition system [J]. IEEE Transactions on Systems, Man, and Cybernetics ,1992,22 (4): 607-620
    59. Pal S,Manda D P. Linguistic recognition system based on approximate reasoning [J]. Information Sciences, 1992, 61(1-2): 135-161
    60. Ishibuchi H,Yamamoto T. Rule weight specification in fuzzy rule-based classification systems [J]. IEEE Transactions on Fuzzy Systems,2005, 13(6): 428- 435
    61. Jacobs R A. Increased rates of convergence through learning rate adaptation [J]. Neural Networks, 1998, 1(4): 295-307
    62.陈建杰,叶智宣.多分类SVM主动学习及在遥感图像分类中的应用[J].测绘科学,2009,34(4): 97-100
    63.任建峰,李云涛,郭雷.基于多类神经网络机的自然图像分类[J].西北工业大学学报,2004, 22(4): 431-434
    64. Huang Guang-Bin, Zhu Qin-Yu, Siew Chee-Kheong. Extreme learning machine: Theory and applications[J]. Neurocomputing , 2006, 70: 489–501
    65. Huang Guang-Bin, Chen Yan-Qiu, Babri, HA. Classification ability of single hidden layer feedforward neural networks [J]. IEEE Transactions on Neural Networks, 2000, 11(3): 799-801
    66. Bartlett P L.For valid generalization. the size of weights is more important than the size of networks[J].Advances in Neural Information Processing Systerm, 1996, 9(1): 134-140.
    67. Guo Yanhui, Cheng H D. New neutrosophic approach to image segmentation[J].Pattern Recognition, 2009, 42: 587-595
    68.李祚泳,汪嘉杨,郭淳.PSO算法优化BP网络的新方法及仿真实验[J].电子学报, 2008, 36(11): 2225-2228
    69. Li Jia. Linear Ridge Regression, and Principal Component Analysis [EB/OL]. (2008.9.4). http:// www.stat.psu.edu/~jiali/course/stat597e/notes2.
    70. Tutz G, Binder H. Boosting ridge regression [J].Computational Statistics & Data Analysis,2007, 51(12): 6044-6059
    71. Wang Yongqiao; Wang Shouyang; Lai K K. A new fuzzy support vector machine to evaluate credit risk [J].2005, 13(6): 820–831
    72.王士同,钟富礼.最小学习机[J].江南大学学报(自然科学版),2008, 9(5): 505-510

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700