用户名: 密码: 验证码:
微孔陶瓷过滤法控制燃煤窑炉黑烟污染的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国大气颗粒物污染比较严重,其中形成可吸入颗粒物主要为工业烟尘与工业粉尘。燃煤电站、燃煤工业锅炉、燃煤炉窑等是烟尘的主要排放源。随着工业燃煤的消耗量不断增加,烟气中不容易沉降的超细粉尘与炭黑颗粒对大气环境污染越来越严重。因此,本文针对工业窑炉黑烟通过微孔陶瓷过滤器除尘过程的影响因素和过滤特性进行研究和模拟,这对工业高温烟气净化处理及环境保护具有重大理论和现实意义。
     本课题主要研究内容及研究结果包括:
     (1)对陶瓷过滤器和炭黑的物理化学性质进行研究分析,确定微观结构,调查陶粒滤料的孔隙特征和炭黑颗粒的微观表征,计算得出陶粒颗粒粒径公式以及孔径与粒径的关系式。对炭黑颗粒进行表征测试,分析炭黑的主要化学组成,确定炭黑颗粒粒径分布。
     (2)对陶瓷过滤器进行数值和实验研究。通过建立过滤器模型,进行网格独立性验证,并进行CFD仿真研究。分别模拟计算了在多孔介质五种不同孔隙率条件下的入口气速与设备进出口压降的关系。由实验数据与CFD仿真曲线的对比可知,实验数据在仿真曲线两侧呈聚类变化趋势,即RNG k-ε仿真结果基本与实际变化规律相符合。利用CFD模型计算陶瓷过滤器除尘效率,将仿真结果与实验数据比较,结果显示模型计算与实验测试相吻合,这说明CFD模型能够很好地预测洁净陶瓷管的过滤。
     (3)对陶瓷过滤时粉饼坍塌对压降的影响进行研究,提出了一个粉饼坍塌模型,综合考虑聚团间松驰因子、聚团的分形维数、聚团大小(包括聚团的粒径分布及累积筛下质量平均中位径)以及聚团配位数对孔隙率的联合影响,进而得出这些参数对过滤压降的联合影响。通过设计新颖的反演方法,模型的配位数与松驰因子可以通过实验和反演的方法得到,分形维数通过场发射电镜图的二值图由计盒数方法计算得到,聚团直径通过统计电镜照片由Rosin-Rammler拟合计算得出,从而计算出粉饼的聚团间孔隙率、聚团内孔隙率、粉饼总孔隙率以及压降随浮动参数变化的规律,将压降梯度的计算结果与实验值相比较,结果表明该坍塌粉饼过滤模型要远比没有坍塌的粉饼过滤模型更加接近真实值,从而证实了本模型的有效性。因此,考虑了配位数的粉饼坍塌模型由于高精度以及计算简单,在预测粉饼的压降时具有很好应用潜力。
     (4)建立了一个预测过滤效率与压降损失的非稳态过滤的数值建模,并通过实验进行统计分析,由此预测粉尘沉降与脱落对压降的影响。并且设计一种新颖的悬挂装置来通过实验测定比截留量随时间的变化,从而可以得出压降随比截量的变化规律,进而得出压降随时间的瞬态变化规律,将所得结果与模型预测数据进行比较,结果显示陶瓷过滤元件的各种基本参数(包括陶瓷过滤滤管的初始孔隙率、陶瓷材料自然颗粒粒径、管壁厚度)和不同的操作条件(包括过滤操作风量、过滤入口含尘浓度)都对过滤过程中粉尘的沉积量有很大的影响,从而对过滤压降也有很大的影响。为进一步研究在反吹清灰的作用下连续过滤过程中粉尘沉降与脱落的动态过程,在多次清灰循环过程中测试了陶瓷过滤元件上的比截留量与压降的变化情况。最后,通过对动态过程的研究,分析了采用不同规格的陶瓷元件的过滤系统的清灰效率,以此来评价在初始阶段与稳定阶段的清灰特征。
     (5)采用表面过滤理论对陶瓷过滤器的除尘性能进行研究,通过模拟分析粉尘在陶瓷管壁累积过程中过滤效率的时间特性以及在不同的浓度与风量条件下各种陶瓷管的初始除尘效率与稳定除尘效率,对陶瓷过滤器的除尘性能进行研究。
     (6)通过建立脉冲反吹清灰过滤模型,对压降进行面积分率加权处理,通过Matlab编程对陶瓷过滤器的脉冲清灰过滤进行计算,分析粉饼覆盖面积分率与过滤清灰循环的关系。结果表明,随着吹脱循环次数的增加,陶瓷管粉尘附着容量越来越小,使得每进入下一轮循环后过滤粉尘沉积的增量变少,从而使得清灰操作后粉饼面积分率的增量也就相应地变小。对不同的粉饼覆盖面积分率时瞬态渗滤速度的时间变化规律进行分析,结果表明单位面积粉饼质量越小,渗滤速度随时间减小得越剧烈,相反,单位面积粉饼质量越大,渗滤速度随时间减小得越平缓。
Air pollution is quite serious in China today due to high total particle pollution exhaust emission level. Actually, the inhalable particulates are mainly composed of industrial smoke and fly dust. General speaking, the principal particle pollution emission sources mainly come from coal-fired power plants, industrial coal-fired boilers, and coal-fired furnaces. As the coal consumption is growing rapidly, the ultrafine dust and carbonblack particles hard to deposit are increasingly polluting the atmosphere. In the present work, several numerical models on the purification of industrial black smoke with porous ceramic filter were conducted to investigate the effect of dust deposit on filtration process, which is of great importance for smoke purification in high-temperature condition.
     The major focuses and research findings of this paper are as follows:
     (1) The physicochemical properties of ceramic material and carbonblack dust were investigated and their microstructures were characterized correspondingly. The particle size ceramic material was expressed by the deduced formulas and the size distribution of carbonblack particles was fitted to acquire the equivalent mean diameter. Simultaneously, the chemical compositions of those materials were tested by the X-ray diffractometer.
     (2) The CFD simulation and experimental investigation were performed for the ceramic filter in high temperature. The Pro/Engineering software was employed to establish the3-dimensional model of ceramic filter, and the corresponding model mesh was created by the Gambit software. In order to validate the model mesh, the grid independent validation was conducted by Richardson interpolation method. Finally,5specifications of porosities were applied to calculate the relationship between inlet flow velocity and filtration pressure drop. The results show that the simulated curves are in agreement with the experimental data, indicating that the CFD simulation can well predict the filtration process with clean ceramic filter.
     (3) A cake collapse model was proposed to investigate the effect of fractal compression on cake porosity by taking the combined effect of relaxation ratio, fractal dimension, aggregate size, and coordination number into account. Subsequently, the effect of those variables on cake pressure drop was derived using the porosity function. Furthermore, a novel inversion method was designed to acquire the real coordination number and the corresponding relaxation ratios for the model. Through the analysis of binary images of field emission scanning electron micrographics (FE-SEMs), the fractal dimension was calculated with the fitting logarithmic pixel values by a box-counting dimension method. The aggregate size was obtained by Rosin-Rammler fitting of the statistical aggregate size in the FE-SEMs. Hence, the independence of inter-and intra-aggregate porosity, cake porosity and cake pressure drop on the fractal dimension and relaxation ratio for the reverse-calculated coordination number. By comparison, it is found that the model predictions with consideration of cake collapse are more close to the experimental data than the model without considering the cake collapse. Due to high-accuracy and simple computation, this model displays a great application potential in the prediction of cake pressure drop.
     (4) An unsteady model on dust deposit was established to predict the change of pressure drop with the specific deposit. Thus, the effect of dust deposit and detachment on the pressure drop was predicted. By calculation, it is evident that the basic parameters (such as primary porosity, diameter of ceramic granular, and vessel thickness), and operation conditions (operation flow rate and ambient concentration) have great influence in the dust deposit, resulting in the effect on pressure drop. To further study the dynamic process during filtration with cleaning, the changes of specific deposit and pressure drop in many cleaning-filtration cycles were researched, and the corresponding cleaning efficiencies of ceramic filters with different specifications of ceramic vessels were analyzed for assessing the cleaning profiles in the early and steady stages.
     (5) To study the collection performance of ceramic filter, a filtration model with application of cake surface theory was established. By analyzing the dust accumulation process, the time-independent collection efficiency, and the primary and steady collection efficiency under different ambient concentration and filtration filow rate were investigated.
     (6) A pulse-jet cleaning and filtration model was proposed by using the weighted area fraction assumption. With the utilization of Matlab software, the pulse-jet cleaning and filtration procedure was calculated by a program to acquire the relationship between area fractions and cleaning-filtration cycle. The results show that as the cycle number increases, the capture capability of filtration media increasingly becomes weaker and the increment of dust deposit in the next cycle become smaller, resulting in the decrease of the increment of area fraction. For different dust area fractions, the analysis of instantaneous weighted filtration velocity with time was conducted. It is found that the smaller mass per unit area caused the sharp decrease of filtration, and vice versa.
引文
[1]李珊红.新型伞形罩洗涤器的实验和数值模拟研究:[湖南大学博士学位论文].长沙:湖南大学环境科学与工程学院,2008,1-2
    [2]国家统计局.中国统计年鉴.北京:中国统计出版社,2010
    [3]党小庆:大型电除尘器和袋式除尘器气流分布数值模拟与应用研究:[西安建筑科技大学博士学位论文].西安:西安建筑科技大学环境与市政工程学院,2008,1-20
    [4]国家环境保护总局.2009年中国环境状况公报.http://www.sepa.gov.cn/gzfw/xzzx/wdxz/,2010,5-51
    [5]苏俊林,罗小金,矫振伟等.燃用生物质颗粒燃料锅炉的燃烧及排放特性.吉林大学学报(工学版),2010,40(4):953-958
    [6]国家环境保护总局.2008年全国环境统计概要.http://www.sepa.gov.cn/gzfw/xzzx/wdxz/,2010,4-49
    [7]王世潭.粉尘尘源分布规律初探.矿业快报,2005,8:17-18
    [8]王丽平.湿法控制工业燃煤陶瓷窑炉黑烟的新方法研究.[湖南大学硕士论文].长沙.湖南大学环境科学与工程学院,2004,1-15.
    [9]张楚莹,王书肖,赵瑜等.中国人为源颗粒物排放现状与趋势分析.环境科学,2009,30(7):1881-1887
    [10]李怡,朱彤.大气颗粒物致机体损伤的OH自由基机制.生态毒理学报.2007,2(2):142-149
    [11]刁永发,沈猛,顾平道等.燃煤可吸入颗粒物及重金属汞控制技术研究进展.东华大学学报(自然科学版),2010,36(1):75-80
    [12]李建行,李香兰,彭海军等.电视胸腔镜诊治肺内不明结节108例临床总结.疑难病杂志,2010,09(11):853-854
    [13]徐维并.大气细颗粒物与人体健康.现代仪器,2002,6:9-10
    [14]郑学敏,周连碧,代宏文.无土植被防止杨山冲尾矿库粉尘污染.有色金属,2003,55(1):126-129
    [15]向晓东.现代除尘理论与技术.北京:冶金工业出版社,2002,107-159
    [16]付海明.纤维过滤介质非稳态过滤压力损失的研究.纺织学报,2009,30(4):15-18
    [17]李海霞:高温陶瓷过滤器内气固两相流动特性的数值模拟.[中国石油大学博士学位论文].北京:中国石油大学机电工程学院,2007,1-22
    [18]向晓东.烟尘纤维过滤理论、技术及应用.北京:冶金工业出版社,2007,20-151
    [19]冯胜山,许顺红,刘庆丰等.高温废气过滤除尘技术研究进展.工业安全与环保,2009,35(1):6-9
    [20]高铁瑜:先进燃煤联合循环高温陶瓷过滤器研究.[西安交通大学博士学位论文].西安:西安交通大学能动学院,2003,17-62
    [21]姬忠礼.高温陶瓷过滤元件的研究进展.化工装备技术,2000,20(3):1-5
    [22]Chen S E, Nishiham Y, Yue P. Axial and transverse characterizations of ceramic candle filters. Fuel,2008,87:2807-2816
    [23]Zhang W, Li C T, Wei X X, etc. Effects of Cake Collapse Caused by Deposition of Fractal Aggregates on Pressure Drop during Ceramic Filtration. Environmental Science & Technology,2011,45(10):4415-4421.
    [24]费继友,高铁瑜,姚玉鹏等.烛状陶瓷过滤元件过滤流动特性试验研究.大连铁道学院学报,2006,27(4):31-34
    [25]姬忠礼,丁富新,孟祥波等.陶瓷过滤器滤管外瞬态流场.化工学报,2000,51(2):165-168
    [26]李守巨,刘迎曦,孙伟等,多孔材料孔隙尺寸对渗透系数影响的数值模拟.力学与实践,2010,32(4):12-17
    [27]Vanosdell D W. Flow resistance of filter dust deposits formed under the influence of a surface electric field, [dissertation]. Raleigh:North Carolina State University,1987, 32-48.
    [28]Williams C E, Hatch T, Greenburg L. Determination of cloth area for industrial filters. Heating, piping, and air conditioning,1940,12:259-261
    [29]刘鹏,刘国荣.滤饼颗粒物性对滤饼特性影响的分析.过滤与分离,2009,19(2):31-33
    [30]徐新阳,罗蒨.滤饼的可压缩性与滤饼比阻的研究.金属矿山,2001,306(12):34-42
    [31]许莉,李文革,鲁淑群等,过滤理论与滤饼结构的研究.流体机械,2000,28(10):10-13
    [32]Chang J C S, Foarde K K, VanOsdell D W. Assessment of fungal (Penicillium chrysogenum) growth on three HVAC duct materials, Environment International,1996, 22(4):425-431
    [33]王福军.计算流体动力学分析:CFD软件原理与应用.北京:清华大学出版社,2004,210-221
    [34]高博禹,彭仕宓,龚宏杰等.油气储层流动单元划分标准的探讨.中国矿业大学学报,2005,34(1):82-86
    [35]Rudnick S. N. Fundamental factors governing specific resistance of filter dust cakes. [dissertation]. Boston:school of public health, Harvard University,1978,67-112
    [36]李明春,田彦文,翟玉春.柱坐标下多孔介质反应体系传递过程的研究.东北大 学学报(自然科学版),2006,27(11):1247-1250
    [37]李明春,田彦文,翟玉春.非热平衡多孔介质内反应与传热传质耦合过程.化工学报,2006,57(5):1079-1083
    [38]Happel J. Viscous flow relative to arrays of cylinders. AIChE Journal,1959,5(2): 174-177
    [39]Kuwabara S. The forces experienced by randomly distributed parallel circular cylinders of spheres in a viscous flow at small Reynolds numbers. Journal of the Physical Society of Japan,1959,14(4):527-532
    [40]Michael J M, Clyde O. Filtration-Princiles and Practices. New York and Basel:Marcel Dekker, Inc.,1987,177-192
    [41]Poon W S. Dust filtration and loading by fibrous and foam media, [dissertation]. Madison:The Faculty of the graduate school of the University of Minnesota,1997, 1-13
    [42]Davies, C. N. Air Filtration. London:Academic Press,1973,205-263
    [43]Fuchw N A, Kirsch A A. Studies on fibous aerosol filters Ⅱ:Pressure drops in systems of parallel cylinders. Annals of Occupational Hygiene,1967,10:22-23
    [44]Spielman L, Goren S L. Model for predicting pressure drop and filtration efficiency in fibrous media. Environmental Science & Technology,1968,2(4):279-287
    [45]Monson D R. A filter pressure loss model for uniform fibers in aerosols. New York: Elsevier Science Publishing Company, Inc.,1984,551-554
    [46]Jackson G., James D. The permeability of fibrous porous media. Canadian Journal of Chemical Engineering,1996,64(6):364-374
    [47]Faghri M, Rao N. Numerical computation of flow and heat transfer in finned and unfinned tube banks. International Journal of Heat and Mass Transfer,1987,30(2): 363-372
    [48]Fardi B, Liu B. Efficiency of fibrous filters with rectangular fibers. Aerosol Science and Technology,1992,17(1):45-58
    [49]Fardi B., Liu B. Flow field and pressure drop of filters with rectangular fibers. Aerosol Science and Technology,1992,17(1):36-44
    [50]Liu B Y, Kellogg R B. Discontinuous Solutions of Linearized, Steady-State, Viscous, Compressible Flows. Journal of Mathematical Analysis and Applications,1993,180(2): 469-497
    [51]黄斌,姚强,赵海亮等.飞灰在单纤维上形成颗粒链的生长和形貌.清华大学学报(自然科学版),2006,46(5):662-665
    [52]王启燕,高鸿恩,何启梅.颗粒床过滤中的惯性碰撞效应研究.环境科学与技术, 2006,29(10):30-31
    [53]田利伟,张国强,于靖华等,颗粒物在建筑围护结构缝隙中穿透机理的数学模型.湖南大学学报(自然科学版),2008,35(10):11-15
    [54]吴晋沪,王洋.移动床除尘过程数学模型建立及机理讨论.燃料化学学报,2002,30(3):218-222
    [55]杨荆泉,田涛.驻极体过滤材料及其在空气净化领域的应用.环境与健康杂志,2009,26(8):743-745
    [56]支学艺,江小华,唐敏康.高压静电场中粉尘静电力及收集的研究.金属矿山,2009,393(3):159-162
    [57]苏小红,付海明.浅析袋式除尘器孔隙率与过滤特性之间的关系.建筑热能通风空调,2006,25(2):100-103
    [58]钟璟.陶瓷微滤膜过滤超细粉体系的分析.涂料工业,2005,35(9):33-36
    [59]孟祥波,姬忠礼.陶瓷过滤器脉冲反吹过程中流动参数的测量与分析.石油大学学报(自然科学版),1999,23(5):57-59
    [60]姬忠礼,孟祥波.脉冲反吹过程中陶瓷过滤器滤管内流场的测定与分析.石油大学学报(自然科学版),2000,24(3):73-75
    [61]姬忠礼,彭书,陈鸿海等.陶瓷过滤器脉冲反吹全过程的瞬变流场计算.化工学报,2003,54(1):35-41
    [62]蔡飞鹏,姬忠礼.陶瓷过滤器脉冲反吹时滤管外压力波形的测定与分析.化工机械,2000,27(3):125-128
    [631郭建光,姬忠礼.陶瓷过滤器脉冲反吹系统的性能研究.动力工程,1999,19(5):394-398
    [64]王素华,姬忠礼,王树立.陶瓷过滤器脉冲反吹系统内流场的数值模拟.石油大学学报(自然科学版),2002,26(4):58-62
    [65]姬忠礼,陈鸿海,时铭显.陶瓷过滤器脉冲喷吹清灰系统动态模型.石油大学学报(自然科学版),2003,27(1):63-66
    [66]田贵山,叶继昌,徐廷相.陶瓷过滤器反向脉冲清洗控制方法的比较.煤炭学报,2001,26(5):547-550
    [67]Kurose R, Makino H, Hata M, etc. Numerical analysis of a flow passing through a ceramic candle filter on pulse jet cleaning. Advanced Powder Technology,2003,14(6): 735-748
    [68]Alessandrini F, Schulz H, Takenaka S, etc. Effects of ultrafine carbon particle inhalation on allergic inflammation of the lung. Journal of Allergy and Clinical Immunology,2006,117(4):824-830
    [69]Morawska L, Ristovski Z, Jayaratne E R, etc. Ambient nano and ultrafine particles from motor vehicle emissions:Characteristics, ambient processing and implications on human exposure. Atmospheric Environment,2008,42:8113-8138
    [70]Cheng Y H, Chao Y C, Wu C H, etc. Measurements of ultrafine particle concentrations and size distribution in an iron foundry. Journal of Hazardous Materials,2008,158: 124-130
    [71]Sun W, Hu Y H, Dai J P, etc. Observation of fine particle aggregating behavior induced by high intensity conditioning using high speed CCD. Transactions of Nonferrous Metals Society of China,2006,16(1):198-202
    [72]Yang Z G, Long S G.Damage analysis for particle reinforced metal matrix composite by ultrasonic method. Transactions of Nonferrous Metals Society of China,2006,16: s652-s655
    [73]Coury J R, Thambimuthu K V, Clift R. Capture and rebound of dust in granular bed gas filters. Powder Technology,1987,50(3):253-265
    [74]Podgorski A, Zhou Y, Bibo H, etc. Theoretical and experimental study of fibrous aerosol particles deposition in a granular bed. Journal of Aerosol Science,1996, (27) (1):479-480
    [75]Smid J, Peng C Y, Lee H T, etc. Hot gas granular moving bed filters for advanced power systems. Filtration & Separation,2004,41 (10):32-35
    [76]Hsiau S S, Smid J, Tsai S A, etc. Flow of filter granules in moving granular beds with louvers and sublouvers. Chemical Engineering and Processing,2008,47:2084-2097
    [77]Schmidt W. Interfacial drag of two-phase flow in porous media. International Journal of Multiphase Flow,2007,33:638-657
    [78]Kukreti A R, Rajapaksa Y. A numerical model for simulating two-phase flow through porous media. Applied Mathematical Modelling,1989,13(5):268-281
    [79]Yue X Y, E W N. Numerical methods for multiscale transport equations and application to two-phase porous media flow. Journal of Computational Physics,2005, 210:656-675
    [80]Munyakazi J B, Patidar K C, On Richardson extrapolation for fitted operator finite difference methods. Applied Mathematics and Computation,2008,201(1-2):465-480
    [81]Li S H, Li C T, Zeng G M, etc. Simulation and experimental validation studies on a new type umbrella plate scrubber. Separation and Purification Technology,2008,62(2): 323-329
    [82]Zerai B, Saylor B Z, Kadambi J R.. etc. Flow Characterization Through a Network Cell Using Particle Image Velocimetry. Transport in Porous Media,2005,60(2): 135-250
    [83]Jackson R. On the limit of bulk diffusion control and high permeability in porous catalyst pellets. Chemical Engineering Science,1974,29(6):1413-1419
    [84]Kim J H, Liang Y, Sakong K M, etc. Temperature effect on the pressure drop across the cake of coal gasification ash formed on a ceramic filter. Powder Technology,2008, 181(1):67-73
    [85]LI C T, Zhang W, W X X, etc. Experiment and simulation of micron-particles diffusion in porous ceramic vessel. Transactions of Nonferrous Metals Society of China,2010, 20(12):2358-2365
    [86]Park P K, Lee C H, Lee S. Permeability of Collapsed Cakes Formed by Deposition of Fractal Aggregates upon Membrane Filtration. Environmental Science & Technology, 2006,40 (8):2699-2705
    [87]Lee C, Kramer T A. Prediction of three-dimensional fractal dimensions using the two-dimensional properties of fractal aggregates. Advances in Colloid and Interface Science,2004,112(1-3):49-57
    [88]Veerapaneni S, Wiesner M R. Hydrodynamics of fractal aggregates with radially varying permeability. Journal of Colloid and Interface Science,1996,177:45-57
    [89]Zebel G. Coagulation of aerosols in aerosol science. New York:Academic Press Inc., 1966
    [90]Fuchs N A. The mechanics of aerosols. New York:The Macmillan Company, Pergamon Press, Inc.1964
    [91]Dennis, R. Handbook on aerosols. New York:A-energy Press Inc,1976
    [92]Cleaver J A S, Karatzas G, Louis S, etc. Moisture-induced caking of boric acid powder. Powder Technology,2004,146(1-2):93-101
    [93]Willett C D, Adams M J, Johnson S A, et al. Capillary bridges between two spherical bodies. Langmuir,2000,16,9396-9405
    [94]Xie H Y. The role of interparticle forces in the fluidization of fine particles. Powder Technology,1997,94,99-108
    [95]Neiva A C B, Jr G L. A procedure for calculating pressure drop during the build-up of dust filter cakes. Chemical Engineering and Processing,2003,42:495-501
    [96]Bushell G C, Yan Y D, Woodfield D, etc. On techniques for the measurement of the mass fractal dimension of aggregates. Advances in Colloid and Interface Science,2002, 95:1-50
    [97]Li X Y, Logan B E. Collision frequencies of fractal aggregates with small particles by differential sedimentation. Environmental Science & Technology,1997,31:1229-1236
    [98]Li X Y, Logan B E. Collision frequencies of fractal aggregates with small particles by turbulent fluid shear. Environmental Science & Technology,1997,31:1237-1244
    [99]Li X Y, Logan B E. Permeability of fractal aggregates. Water Research,2001,35: 3373-3380
    [100]Suzuki M, Kada H, Hirota M. Effect of size distribution on the relation between coordination number and porosity of spheres in a randomly packed bed. Advanced Powder Technology,1999,10(4):353-365
    [101]Georgalli G A, Reuter M A. Modeling the co-ordination number of a packed bed of spheres with distributed sizes using a CT scanner. Minerals Engineering,2006, 19(3):246-255
    [102]Rumpf H. Physical aspects of comminution and new formulation of a law of comminution. Powder Technology,1973,7(3):145-159
    [103]Shibata H, Mada J, Funatsu K. Prediction of drying rate curves on sintered spheres of glass beads in superheated steam under vacuum. Industrial & Engineering Chemistry Research,1990,29 (4):614-617
    [104]Nishino A. Contact number and porosity in randomly packed sphere mixtures of various sizes. Journal of the Society of Materials Science (Japan),1973,22:658-662
    [105]Mandelbrot B B. The Fractal Geometry of Nature. New York:W. H. Freeman, 1983
    [106]Mandelbrot B B. Chance and Dimension, Freeman (Eds):1977,365
    [107]Zhou W X, Sornette D. Numerical investigations of discrete scale invariance in fractals and multifractal measures. Physica A:Statistical Mechanics and its Applications,2009,388(13):2623-2639
    [108]Wu J. Hausdorff dimensions of bounded-type continued fraction sets of Laurent series. Finite Fields and Their Applications,2007,13(1):20-30
    [109]Paramanathan P, Uthayakumar R. Fractal interpolation on the Koch Curve. Computers & Mathematics with Applications,2010,59(10):3229-3233
    [110]Molerus O. Principles of flow in disperse systems. Chapman & Hall:London, U.K.,1993
    [111]Hwang K J, Liu H C. Cross-flow microfiltration of aggregated submicron particles. Journal of Membrane Science,2002,201:137-148
    [112]Ju J, Chiu M S, Tien C. Further work on pulse-jet fabric filtration modeling. Powder Technology,2001,118(1-2):79-89
    [113]Dittler A, Ferer M V, Mathur P, etc. Patchy cleaning of rigid gas filters-transient regeneration phenomena comparison of modeling to experiment. Powder Technology, 2002,124(1-2):55-66
    [114]Ergun S. Fluid flow through packed columns. Chemical Engineering Progress, 1952,48:89-94
    [115]Ju J, Chiu M S, Tien C. Multiple-Objective Based Model Predictive Control of Pulse Jet Fabric Filters. Chemical Engineering Research and Design,2000,78(4): 581-589
    [116]Leelapatra,W.; Kanchanasut, K.; Lursinsap, C. Displacement BDD and geometric transformations of binary decision diagram encoded images. Pattern. Recogn. Lett. 2008,29(4),438-456
    [117]Eivind, H.; Rene, O.; Lounes, T. Computational study of fluctuating motions of cluster structures in gas-particle flows. Int. J. Multiphas. Flow.2002,28:199-223
    [118]Li J, Du Q, Sun C. An improved box-counting method for image fractal dimension estimation. Pattern Recognition,2009,42(11):2460-2469
    [119]de Freitas N L, Goncalves J A S, Innocentini M D M, etc. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures:The filter collection efficiency, Journal of Hazardous Materials,2006,136:747-756
    [120]Al-Otoom A Y, Ninomiya Y, Moghtaderi B, etc. Coal Ash Buildup on Ceramic Filters in a Hot Gas Filtration System, Energy Fuels,2003,17:316-320
    [121]Xiong Z Y, Ji Z L, Wu X L, etc. Experimental and numerical simulation investigations on particle sampling for high-pressure natural gas. Fuel,2008,87: 3096-3104
    [122]Chuah T G, Withers C J J, Seville P K. Prediction and measurements of the pressure and velocity distributions in cylindrical and tapered rigid ceramic filters. Separation and Purification Technology,2004,40:47-60
    [123]Ji Z L, Li H X, Wu X L, etc. Numerical simulation of gas/solid two-phase flow in ceramic filter vessel. Powder Technology,2008,180:91-96
    [124]Ruiz J C, Blanc P, Prouzet E, etc. Solid aerosol removal using ceramic filters. Separation and Purification Technology,2000,19:221-227
    [125]Long W, Hilpert M A. Correlation for the Collector Efficiency of Brownian Particles in Clean-Bed Filtration in Sphere Packings by a Lattice-Boltzmann Method. Environmental Science & Technology,2009,43:4419-4424
    [126]Niven R K. Physical insight into the Ergun and Wen & Yu equations for fluid flow in packed and fluidised beds. Chemical Engineering Science,2002,57,527-534
    [127]Li S Q, Ding Y L, Wen D S, etc. Modelling of the behaviour of gas-solid two-phase mixtures flowing through packed beds. Chemical Engineering Science. 2006,61:1922-1931.
    [128]Cookson J T, Jr. Removal of submicron particles in packed beds. Environmental Science & Technology,1970,4:128-134
    [129]Zahradnik R L, Anyigbo J, Steinberg R A, etc. Simultaneous removal of fly ash and sulfur dioxide from gas streams by a shaft-filter-sorber. Environmental Science & Technology,1970,4:663-667
    [130]Santos A, Barros P H L. Multiple Particle Retention Mechanisms during Filtration in Porous Media, Environmental Science & Technology,2010,44:2515-2521
    [131]Thomas D, Penicot P, Contal P, etc. Clogging of fibrous filters by solid aerosol particles Experimental and modelling study, Chemical Engineering Science,2001,56: 3549-3561
    [132]Thomas D, Contal P, Renaudin V, etc. Modelling pressure drop in hepa filters during dynamic filtration. Journal of Aerosol Science,1999,30:235-246
    [133]Kim J, Tobiason J E. Particles in Filter Effluent:The Roles of Deposition and Detachment, Environmental Science & Technology.2004,38:6132-6138
    [134]Chi H C, Ji Z L, Sun D M, etc. Experimental Investigation of Dust Deposit within Ceramic Filter Medium during Filtration-Cleaning Cycles. Chinese Journal of Chemical Engineering,2009,17:219-225
    [135]Kamiya H, Deguchi K, Gotou J. Increasing phenomena of pressure drop during dust removal using a rigid ceramic filter at high temperatures. Powder Technology, 2001,118:160-165
    [136]Chen S C, Lee E K C, Chang Y I. Effect of the coordination number of the pore-network on the transport and deposition of particles in porous media, Separation and Purification Technology,2003,30:11-26
    [137]孔祥言.高等渗流力学.合肥:中国科技大学出版社,1999,13-46
    [138]Zamani A, Maini B. Flow of dispersed particles through porous media-deep bed filtration. Journal of Petroleum Science and Engineering,2009,69:71-88
    [139]Ives K J. Kinetics of the filtration of dilute suspensions. Chemical Engineering Science,1965,20:965-973
    [140]Bai R, Tien C. Effect of Deposition in Deep-Bed Filtration:Determination and Search of Rate Parameters, Journal of Colloid and Interface Science,2000,231: 299-311.
    [141]Maroudas A, Eisenklam P. Clarification of suspensions:a study of particle deposition in granular media, Chemical Engineering Science.1965.20:875-888
    [142]Dittler A, Ferer M V, Mathur P, etc. Patchy cleaning of rigid gas filters-transient regeneration phenomena comparison of modelling to experiment. Powder Technology, 2002,124:55-66
    [143]Al-Otoom A Y. Prediction of the collection efficiency, the porosity, and the pressure drop across filter cakes in particulate air filtration. Atmospheric Environment, 2005,39:51-57
    [144]蔡桂英,袁竹林.用离散颗粒数值模拟对陶瓷过滤器过滤特性的研究.中国电机工程学报,2003,23(12):204-207
    [145]Ranz W E, Wong J B. Impaction of dust and smoke particles, Industrial & Engineering Chemistry Research,1952,44:1371-1372
    [146]刘江红,潘洋.除尘技术研究进展.辽宁化工,2010,39(5):511-513
    [147]Alvin M A, Lippert T E, Lane J E. Assessment of porous ceramic materials for hot gas filtration applications. Ceramic Bull,1991,70 (9):1491-1498.
    [148]Eggerstedt P M, Zievers J F, Zievers E C. Choose the right ceramic for filtering hot gases. Chemical Engineering Progress,1993,89(1):62-69
    [149]de Freitas N L, Goncalves J A S, Innocentini M D M., etc. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures:The filter collection efficiency. Journal of Hazardous Materials,2006,136(3):747-756
    [150]Yoshiyuki Endo, Da-Ren Chen, David Y. H. Pui. Collection efficiency of sintered ceramic filters made of submicron spheres. Filtration & Separation,2002,39(2):42-47
    [151]迟化昌,姬忠礼,韦荣方.天然气用纤维过滤器非稳态性能实验研究.中国石油大学学报(自然科学版),2007,31(6):87-97
    [152]Davies C N. Air Filtration, Academic Press, New York,1993.
    [153]Ogawa A. Separation of particles from air and gases. CRC Press, Inc. Booa Raton, Florida,1984.
    [154]丁建东,唱鹤鸣,吉晓东等.空气过滤形成滤饼的模拟研究.过滤与分离,2009,19(1):13-14
    [155]Walata S A, Takahashi T, Tien C. Effect of particle deposition on granular aerosol filtration. A comparative study of methods in evaluating and interpreting experimental data. Aerosol Science & Technology,1986,5(1):23-37
    [156]Zhang W, Li C T, Wei X X, etc. Research of nanoparticles aerosol diffusion through ceramic porous medium. In:4th International Conference on Bioinformatics and Biomedical Engineering. Chendu,2010,1-4.
    [157]付海明.袋式除尘设备用表面过滤材料净化性能的模拟与实验研究.[东华大学博士学位论文].上海:东华大学环境科学与工程学院,2006,34-121
    [158]李海霞,姬忠礼,铁占续等.陶瓷过滤器脉冲清灰过程的数值模拟.中国石油大学学报(自然科学版),2009,33(5):130-134
    [159]徐海卫,李水清,宋蔷等.颗粒沉积量对细颗粒层清灰力和清灰效率的影响.过程工程学报,2009,9(5):848-853
    [160]Ravin, M D, Humphries W. Filtration & Separation,1988,201-207.
    [161]Achim Dittler, Martin V. Ferer, Pulkit Mathur, P. Djuranovic, Gerhard Kasper, Smith D H. Patchy cleaning of rigid gas filters—transient regeneration phenomena comparison of modelling to experiment. Powder Technology,2002,124:55-66
    [162]Ju J, Chiu M S, Tien C. A new pulse jet fabric filter. Journal of the Air & Waste Management Association,2000,50:600-612
    [163]赵培涛,葛仕福,黄瑛等.压滤式污泥过滤比阻测定方法.东南大学学报(自然科学版),2011,41(1):155-159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700