用户名: 密码: 验证码:
立方氮化硼基陶瓷复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立方氮化硼基陶瓷复合材料以其特有的性能,在铁族元素及黑色金属材料的加工方面获得了愈来愈广泛的应用。本文系统研究了组成、原料及制备工艺对CBN基复合材料用结合剂性能和结构的影响,研究了表面处理状态对CBN材料本身性能的影响和对CBN复合材料结构性能的影响。并探索了用陶瓷结合剂CBN粉体制备微晶结构CBN磨料的工艺和磨料性能。
     研究结果表明:Li_2O对陶瓷结合剂耐火度降低的作用最强,其次是CaF_2、ZnO,MnO_2对耐火度的改变程度不大,而Fe_2O_3可以提高结合剂的耐火度。原料类型对陶瓷结合剂的性能具有明显影响。与氧化物原料相比,碳酸盐原料的添加可以降低陶瓷结合剂的耐火度;当添加原料的碳酸盐分解温度较低时,引入碳酸盐与引入氧化物的样品性能差别不大;当碳酸盐的分解温度在试样烧成温度附近时,碳酸盐原料向结合剂相引入气孔,使其性能下降;对比氢氧化物和碳酸盐原料,发现当氢氧化物的分解温度较低时,引入氢氧化物原料的样品性能较好。陶瓷结合剂制备工艺对其性能也有一定的影响。对于添加碳酸盐的陶瓷结合剂体系,预熔处理可以减少结合剂相中气孔的含量,提高试样的强度。对于添加氧化物的陶瓷结合剂体系,预熔处理是不必要的。
     对CBN磨料进行酸处理、碱处理及低温玻璃涂层处理。酸处理有利于提高CBN磨料的单颗粒抗压强度、冲击韧性及热稳定性,而碱处理使CBN磨料表面的缺陷暴露出来,降低CBN磨料的性能。选择已有的Ti镀层和刚玉涂层的CBN磨料与本实验中制备的涂覆玻璃相的CBN磨料进行对比,发现溶胶-凝胶法制备的低温玻璃涂层不仅提高CBN磨料的力学性能,还显著提高其耐热性,使其起始氧化的温度点提高了近100℃。同时玻璃涂层使CBN与陶瓷结合剂之间达到化学结合,显著改善了CBN基陶瓷复合材料的界面结合状态。以CBN超细粉为原料,以陶瓷结合剂为粘结相,采用无压烧结工艺制备出微晶CBN磨料。实验结果表明,试样结构致密、强度较高,其性能与单晶磨料接近。
Owing to high hardness, high strength and the other unique properties, CBN matrix ceramic composite is becoming one of the most potential tools in modern engineering applications. In this article, effects of additives, raw materials and preparation process on the properties of vitrified bond were studied. Surface treatment of CBN abrasive and preparation of microcrystalline CBN abrasive were also researched.
     The results indicated that Li2O was the most excellent element for decreasing refractoriness, and the following were CaF2 and ZnO. No obvious decreasing of refractoriness with addition of MnO2, whereas the refractoriness was increased with import of Fe2O3. Raw materials had notable effects on the performance of glass binder for CBN matrix ceramic composite. The results showed that the element in the form of carbonate was more beneficial to the refractoriness and fluidity of glass binder than that in the form of oxide. Moreover, if decomposition temperature of carbonate was lower, the mechanical property of specimens had no obvious difference with addition of carbonate or oxide. However, if carbonate was decomposed nearby the specimens’sintering temperature, the raw materials in form of carbonate did harm to improve the mechanical property of glass binder. Comparation between hydrate and carbonate, if decomposition temperature of hydrate was lower, raw materials in form of hydrate was more favorable to improve properties of glass binder than that in form of carbonate. Preparation processing had obvious influence on the properties of vitrified bond. The results indicated that premelting treatment was necessary for the glass binder with addition of carbonate. The porosity was reduced and the strength was increased with premelting processing.
     CBN abrasive particles were treated with acid or alkali and coated with low temperature glass coatings. The results were shown as follows: Acid treatment was beneficial to the single particle compressive strength, impact toughness and heat resistance of CBN abrasive grains. On the contrary, alkali treatment was harmful to the properties of CBN abrasive grains. CBN abrasive particles coated with low temperature glass coatings were compared with Ti coated CBN particles and corundum coated CBN particles. The results described that the sol-gel glass coating was excellent for oxidation protection of CBN abrasives because their beginning oxidizing temperature was higher about 100oC than that of uncoated CBN grains. The mechanical property of CBN abrasive particles was significantly increased with glass coatings. For the application of glass coated CBN abrasives to vitrified grinding wheels, it was evident that the glass coating provided high bonding strength between CBN abrasive grains and vitrified bond system.
     Microcrystalline CBN abrasive was prepared with ultrafine CBN powder as raw material and glass vitrified bond as binder sintering at pressureless processing. The results indicated that the microcrystalline CBN abrasive had dense structure and high strength. The property of the specimens was approaching to single crystal abrasive.
引文
[1] Wentorf R H, Synthesis of cubic form of boron nitride, J Chem Phys, 1961, 34: 809~812
    [2] Bundy F P, Wentorf R H, J Chem Phys, 1965, 38: 1144~1149
    [3] Mahar R L, Progress in CBN production grinding. Superabrasive’85, Society of Manufacturing Engineering OH, USA, 1985, 268
    [4]徐载熊, CBN砂轮磨削的发展动向,磨料磨具与磨削, 1989, 2(50): 20~23
    [5]方啸虎,超硬材料科学与技术(上),北京:中国建材工业出版社, 1998
    [6] Subramanian K, Lindsay R P, A systems approach for the use of vitrified bonded superabrasive wheels for precision production grinding, Journal of Engineering for Industry, 1992, 114(1): 41~52
    [7] Carius A, The cBN outlook, American Machinist, 1999, 143: 64
    [8] Verholen, Vitrified bond CBN wheels, Industrial Diamond Review, 1986, 6: 121~122
    [9]王艳辉,王明智,镀Ti立方氮化硼(cBN)与玻化SiO2-Na2O-B2O3结合剂的作用,无机材料学报, 1995, 3: 10~12
    [10] Jackson M J, Davis C J, Hitchiner M P, High-speed grinding with cBN grinding wheels-application and future technology, Journal of Materials Processing Technology, 2001, 110: 78~88
    [11] Zoya Z A, Krishnamurthy R, The performance of cBN tools in the machining of titanium alloys, Journal of Materials Processing Technology, 2000, 100: 80~86
    [12] Holcombe C E, Ceramic-bonded abrasive grinding tools, United States Patent, 5366524, 1994
    [13] Juchem H O, Cooley B A, Vitrified bond ABN tools and their advantages, Industrial Diamond Review, 1983, 43(499): 82~84
    [14] Jablonowski J, Making CBN easier to use, American Machinist & Automated Manufacturing, 1986, 130(1): 82~84
    [15] Navarro Nathan P, CBN and vitrified bond: a new focus, Machine and Tool Blue Book, 1986, 81(10): 51~52
    [16]孙大勇,先进制造技术,北京:机械工业出版社, 2000. 451~460
    [17]陈世平,曹建国,论先进制造技术与机械制造业,制造技术与机床, 2002, 2:5~7
    [18] Alan C C, Using CBN abrasives, Tooling & Production, 2000, 12: 45~49
    [19] Jin Y, Doh-Yoon K, Effect of glass composition on the strength of vitreous bonded CBN grinding wheels, Ceramics International, 1993, 19: 87~92
    [20] Barry T I, Ray L A, Morrel R, The strength of experimental grinding wheel materials including use of novel glass and glass-ceramic bonds, Trans J Britt Ceram Soc, 1980, 79: 139~145
    [21] Jackson M J, Mills B, Microscale wear of vitrified abrasive materials, Journal of Materials Sicence, 2004, 39: 2131~2143
    [22]王光祖,李刚,张相法,立方氮化硼合成与应用,郑州:河南科学技术出版社, 1995. 10
    [23]张爱碟,立方氮化硼及其应用,超硬材料, 1994, 4: 1~11
    [24] Zhang W J, Chong Y M, Bello I, et al, Nucleation, growth and characterization of cubic boron nitride (cBN) films, Journal of Physics D: Applied Physics, 2007, 40: 6159~6174
    [25] Solozhenko V L, H?usermann D, Mezouar M, et al, Equation of state of wurtzitic boron nitride to 66 GPa, Appl Phys Lett, 1998, 72: 1691~1693
    [26] Yoshida T, Vapour phase deposition of cubic boron nitride, Diamond Relat Mater, 1996, 5: 501~507
    [27] Novikov N V, Petrusha I A, Shvedov L K, et al, Abrupt irreversible transformation of rhombohedral BN to a dense form in uniaxial compression of CVD material, Diamond Relat Mater, 1999, 8: 361~363
    [28] Kurdyumov V, Solozhenko V L , Zelyavski W B, Lattice parameters of boron nitride polymorphous modifications as a function of their crystal-structure perfection, J Appl Crystallogr, 1995, 28: 540~545
    [29] Liu J, Vohra Y K, Tarvin J T, et al, Cubic-to-rhombohedral transformation in boron nitride induced by laser heating: In situ Raman-spectroscopy studies, Phys Rev B, 1995, 51: 8591~5894
    [30]王秦生,超硬材料制造,北京:中国标准出版社, 2002. 268~269
    [31]李志宏,陶瓷复合材料制造,北京:中国标准出版社, 2000
    [32] Devries R C, Cubic boron nitride: Hand book of properties, General Electric CRD Rept. No.72CRD178, June 1972
    [33] Chrenko R M, Strong H M, Physical properties of diamond, General Electric CRD Rept.No.75CRD089,Octorber 1975
    [34] Gardiner C F, Physical properties of super abrasives, Ceramic Bulletion, 1998, 67(6): 1006~1009
    [35]卡恩R W,哈森P,克雷默E J,材料科学与技术丛书之玻璃与非晶态材料.北京:科学出版社, 2001: 160~161
    [36]林宗寿,无机非金属材料工学,武汉:武汉工业大学出版社, 1998: 256~258
    [37] Balson, Vitreous bonded cubic boron nitride abrasive articles, Untied States Patent, 3986847, 1976-10-19
    [38] Bailey M W, Juchem H O, Characterization of ABN 800, Industrial Diamond Review, 1996, 56(568): 6~9
    [39] Jackson M J, Barlow N, mills B, The effect of bond composition on the strength of partially-bonded vitrified ceramic abrasives, Journal of materials science letters, 1994, 13: 1287~1289
    [40] Mcmillan P W,“Glass-ceramics”, 2nd Edn. Academic Press, London, 1979
    [41] Rawson H,“Glasses and their applications”Institute of Metals, London, 1991
    [42] Stainewicz B B, Majewska A K, Procyk B, The glasses of the PbO-ZnO- B2O3-SiO2 system with addition of microporous glasses as the components of binders for CBN tools, In: Proc 17th International Congress on Glass, Beijing,China.1995, 5: 441~446
    [43] Stainewicz B B, Majewska A K, Procyk B, Influence of crystallization of the glasses zincoborosilicatlead system on wettability of CBN grains, In: 2nd International Conference HTC-97, Krakow, Poland, 1997, 152~157
    [44] Procyk B, Stainewicz B B, Majewska A K, et al, Aluminoborosilicate glasses as vitrified binders for superhard grinding tools-selected physico-chemical properties, Inter Ceram, 2000, 49(5): 308~313
    [45] Cihon J A, Ehmann D W, Vitrified abrasive element, Unitied States Panent, 3847568. 1974, 12
    [46] Carman L A, Pantano C G, Water-vapor adsorption on calcium- boroaluminosilicate glass fibers, Journal of Non-Crystalline Solids, 1990, 120: 40~46
    [47] Yang J, Kim D Y, Kim H Y, Effect of glass composition on the strength of vitrous bonded CBN grinding wheels, Ceramics International, 1993, 19: 87~92
    [48]浙江大学,硅酸盐物理化学,北京:中国建筑工业出版社, 1980, 105~108
    [49] Kingery W D, Bowen H K, Uhlmann D R, Introduction to ceramics (Second Edition) New york: John wiley & Sons Inc.1976,100~108
    [50] Scholze H, Glass Nature Structure and Engineering, Springer-Verlag, Berlin, 1977, 110~136
    [51] Yokogawa M & YO. Kogawa K, Grinding Properties of borazon CBN wheels, Machine& Tool, 1985, 29 (5): 95~10
    [52] Anonymous, Understanding the vitreous bonded borazon CBN system, Generate Electric Superabrasives Report, Application Development Operations, Worthington. Ohio, 1988, 12~36.
    [53]张小富, Li2O在陶瓷结合剂中的作用,新技术新工艺-机械加工工艺与装备, 2001, 4: 24~24
    [54]侯永改,王改民,刘方晓,添加剂对低温陶瓷结合剂性能的影响,陶瓷研究, 2002, 17(3): 1~4
    [55]秦小梅,修稚盟,左良等,低熔可切削生物活性微晶玻璃的研究,无机材料学报, 2003, 18(6): 1158~116
    [56]董庆年,超硬材料陶瓷结合剂磨具,三磨科技, 1990, (3): 17~25
    [57]孙捷,田艳红,改进结合剂提高砂轮耐用度,轴承, 1994, (9): 19~21
    [58]张红霞,张小福,卢安贤,微晶玻璃在立方氮化硼砂轮结合剂中的应用研究,新技术新工艺-机械加工工艺与装备, 2006, 5: 56~58
    [59]李志宏,朱玉梅,袁启明,陶瓷结合剂CBN磨具强度的影响因素研究,硅酸盐通报, 2002, (5): 46~49
    [60]李志宏,董庆年,朱玉梅等,含CaO陶瓷结合剂的初步研究,磨料磨具与磨削, 1994, 5(83): 26~27
    [61]李志宏,朱玉梅,董庆年,含CaO陶瓷结合剂强度的研究,磨料磨具与磨削, 1995, 1(85): 22~27
    [62]朱玉梅,李志宏,张祥生等,磨喷油嘴陶瓷结合剂CBN砂轮的研制及应用,金刚石与磨料磨具工程, 1998, 5(107): 2~4
    [63]李志宏,朱玉梅,荆运洁,陶瓷磨具热膨胀系数测定条件研究,金刚石与磨料磨具工程, 2002, 4(130): 39~41
    [64] Li Z H, Zhu Y M, Wu X W, et al, Investigation on the preparation of vitrified bond CBN grinding tools, Key Engineering Materials, 2004, 259-260: 33~36
    [65]陈敢新,吕智, CBN砂轮陶瓷结合剂的研究进展,金刚石与磨料磨具工程, 2003, 5: 35~39
    [66]黄剑锋,溶胶-凝胶原理与技术,北京:化学工业出版社, 2005. 69~70
    [67]尹荔松,周歧发,唐新桂等,溶胶-凝胶法制备纳米TiO2胶凝过程机理的研究,功能材料, 1998, 30(4): 407~409
    [68]王恩信,材料化学原理,南京:东南大学出版社, 1997
    [69]陈宗淇,胶体化学,北京:高等教育出版社, 1984
    [70]李晓雷, La2NiO4系类钙钛矿薄膜的溶胶-凝胶法制备及氧敏特性的研究: [博士学位论文],天津;天津大学, 2002
    [71] Chen Y H, Multiple metal coated superabrasive grit and methods for their manufacture, United States Patents, 5024680, 1991-06
    [72]于升学,邵光杰,韩树民,人造金刚石控制增量化学镀镍工艺的研究,材料保护, 1998, 31(3): 20~22
    [73] Zhu Y F, Wang L, Yao W Q, et al, The interface diffusion and and reaction between Cr layer and diamond particle during metallization, Applied Surface Science, 2001, 171: 143~150
    [74]余家国,程蓓,叶晓川等,金刚石颗粒表面化学镀镍及其在树脂磨具中的应用,机械工程材料, 1997, 21(1): 27~29
    [75]胡余沛,王改民,陈方平等,金刚石化学镀镍增重量的定量控制,金刚石与磨料磨具工程, 1997, (4): 2~4
    [76]王静,吴惠枝,范雄,金刚石表面真空蒸镀铬钦工艺及其效果的研究,广东有色金属学报, 1996, 6: 57~62
    [77]王岚,高学绪,金刚石-钛界面的扩散,硅酸盐学报, 1998, 26(2): 270~273
    [78] Grishachev V F, Maslov V T, Vesna V T, et al, Metallization of diamonds in a gaseous atmosphere of molybdenum chlorides, Soviet Powder Metallurgy and Metal Ceramies, 1984, 23(4): 286~290
    [79] Aleshin V G, Vesna V T, Maslov V T, et al, Gas-phase deposition of titanium coatings on grains of cubic boron nitride, Soviet Powder Metallurgy and Metal Ceramies, 1991, 30(4): 297~300
    [80] Chuprina V G, Umanskii V P, Lavrincnko I A, X-ray study of the proeess of formation of titanium coatings on diamond, Soviet Progress in Chemistry, 1983,49(4): 16~19
    [81] Lee S T, Modifying the surface of diamond particles, United States Patent, 4063907, 1977-12
    [82] Breval E, Cheng J P, Agrawal D K, Development of titanium coatings on particulate, Journal of the American Ceramic Society, 2000, 83(8): 2106~2108
    [83] Bailey M W, Collin W D, Beers D, Titanized metal bond diamond grit and related investigations into the sawing of stone and conerete, Industrial Diamond Review, 1978, (1): 8~13
    [84]林增栋,金刚石表面金属化技术,中国专利, 858310286
    [85] Huzinec G M, Andrews R M, Bieniasz C P, Metal-coated superabrasive material and methods of making the same, United States Patent, 20080187769A1, 2008-08-07
    [86]王艳辉,金刚石磨料表面镀钛层的制备、结构、性能及应用: [博士学位论文],秦皇岛;燕山大学, 2002
    [87]臧建兵,赵玉成,王明智等,超硬材料表面镀覆技术及应用,金刚石与磨料磨具工程, 2000, (117)3: 8~12
    [88] Chuprina V G, Shalya I M, Umanskii V P, Oxidation of nickel-molybdenum coatings on diamond, Soviet powder metallurgy and metal ceramics, 1991, 30(40): 308~312
    [89] Chuprina V G, Shurkhal V V, An X-ray diffraction study of molybdenum coatings on diamond in the presence of nickel, Soviet Powder Metallurgy and Metal Ceramics, 1989,27(11): 917~921
    [90] Volk G P, Lavrinenko I A, Chuprina V G, et al, Kinetics and mechanism of formation of molybdenum coatings applied to diamond by reactive deposition in a finely divided metallizing agent, Soviet Powder Metallurgy and Metal Ceramics, 1984, 23(2): 129~132
    [91] Chuprina V G, Volk G P, Lavrinenko I A, et al, X-ray diffraction study of molybdenum coatings on diamond powders, Soviet Powder Metallurgy and Metal Ceramics, 1979, 18(8): 575~577
    [92]臧建兵,王艳辉,王明智, Ti、Mo、W、Cr及其合金镀层与超硬磨料之间结合性能的研究,金刚石与磨料磨具工程, 1997, 2(98): 6-9
    [93]苏堤,吕海波,李应成,金刚石表面金属包渗处理研究,新技术新工艺, 1997, (5): 40~41
    [94]段隆臣,陈裕康,杨凯华,金刚石表面真空盐浴镀覆金属的试验研究,探矿工程, 1999, (3): 49~50, 52
    [95]汤小文,刘清友,金刚石盐浴镀钨,西南石油学院学报, 1998, 20(4): 63~65
    [96]胡国荣,刘业翔,杨建红等,金刚石表面化学复合镀Ni-Ti-RE,中南工业大学学报, 1999, 30(2): 145~147
    [97]汤小文,人造金刚石盐浴渗钛,金属热处理, 1999, (5): 22~22, 27
    [98]王明智,王艳辉,赵玉成等,超硬磨料表面镀覆(涂覆)的种类、方法及用途(I),金刚石与磨料磨具工程, 2004, 143 (5): 68~72
    [99] Carius A, Super coatings for superabrasives, Cutting Tool Engineering, 1997,49(6): 40~46
    [100] Harry F R, Rocky R, Ohio, Method of forming titanium coating on refractory body, United States Patent, 2746888, 1956-07-22
    [101] Noel J P, Metal coating of abrasive particles, United States Patent, 4399167, 1983-08-16
    [102] Roger M E , Edward J C , David E S, Multi-layer metal coated diamond abrasives with an electrolessly deposited metal layer, United States Patent, 5232469, 1993-08-03
    [103] Alan C C, Connors R, Process for making coated abrasives for grinding wheels, United States Patent, 5306318, 1994-04-26
    [104] Bradley R K, Daniel R R, Coated abrasives for abrasive tools, European Patent, 0786506B1, 2003-04-23
    [105] Minyoung L, Lawrence E S, Hibbs J, Modifying the surface of cubic boron nitride particles, United States Patent, 4011064, 1977-03-08
    [106]王明智,臧建兵,王艳辉,立方氮化硼表面镀Ti及其与金属粘结剂的作用.中国有色金属学报, 1997, 7(2): 104~106
    [107] Ding W F, Xu J H, Shen M, et al, Solid-state interfacial reactions and compound morphology of cBN grain and surface Ti coating, Vacuum, 2006, 81: 434~440
    [108]王艳辉,王明智,温熙宇, Nb镀层对c-BN-玻化陶瓷结合剂界面成分结构的影响,材料研究学报. 1995, 9(5): 446~449
    [109]张明,臧建兵,王明智等, Mo涂层的立方氮化硼(cBN)与玻化陶瓷复合烧结体的研究,人工晶体学报, 1995, 25(1): 23~28
    [110]王艳辉,臧建兵,王明智, Cr镀层对立方氮化硼(cBN)-玻化陶瓷复合材料界面成分、结构的作用,复合材料学报, 1996, 13(1): 50~54
    [111]王光祖,院兴国,超硬材料,郑州:河南科学技术出版社, 1996
    [112]赵玉成,臧建兵,王明智,刚玉涂覆的超硬磨料,金刚石与磨料磨具工程, 1999, 5(113): 6~7
    [113]赵玉成,臧建兵,王明智,刚玉涂覆的金刚石树脂砂轮的制造及其应用,金刚石与磨料磨具工程, 2001, 6(126): 12~13
    [114] Koopman P, Lewiston N Y, Coated abrasive grian, United States Patent, 3269815, 1966-08-30
    [115] Wilfred F M, Mich J F, Thermosetting resin-bonded abrasives containing cubic boron nitride grains with a borosilicate coating thereon, United States Patent,3576610, 1971-04-27
    [116] Philippe D S P, Refractory metal oxide coated abrasives and grinding wheels made therefrom, European Patnet, 0400322, 1995-01-11
    [117] Thomas J C, Coating for improved retention of CBN in vitreous bond matrices, United States Patent, 5300129, 1994-04-05
    [118]刘志甫,徐晓伟,李玉萍,立方氮化硼低压合成研究现状,材料导报, 2000, 14(6): 28~29
    [119]于美燕,崔得良,李凯等,水热法合成立方氮化硼微晶,化学学报, 2005, 63(10): 909~912
    [120] Yang G W, Wang J B, Liu Q X, Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching, J Phys Condensed Matter, 1998, 10(35): 7923~7927
    [121] Yang G W, Wang J B, Carbon nitride nanocrystals having cubic structure using pulsed laser induced liquid-solid interfacial reaction, Appl Phys A: Materials Science and processing, 2000, 71(3): 343~344
    [122]王金斌,刘秋香,杨国伟,高等学校化学学报, 1998, 19: 17~19
    [123]钟向丽,王金斌,张灿云等,液-固界面反应法制备c-BN纳米晶,功能材料, 2004, 35(2): 186~187
    [124] Ichida Y, Kishi K, Suzuki M, et al, Grinding characteristics of polycrystalline CBN abrasive grits having an ultrafine crystal structure, Trans Japan Soc Mech Eng, 1996, 62(595): 1169~1175
    [125] Ichida Y, Kishi K, The development of nanocrystalline CBN for enhanced superalloy grinding performance, ASEM Journal of Manufacturing Science and Engineering, 1997, 119: 110~117
    [126] Yoshio I,用超细CBN磨料磨削耐热合金,金刚石与磨料磨具工程, 2004, (5): 31~36
    [127]茅宏逵,王德宪,熔融-急冷玻璃与溶胶-凝胶玻璃的比较,中国建材科技, 1999, 2: 43~48
    [128]机械工程标准手册总编委,机械工程标准手册-磨料与磨具卷,北京:中国标准出版社, 2000. 132~133
    [129] Chong N C, Nannaji S, Nam P S, Negative thermal expansion ceramics: A review, Materials Science and Engineering, 1987, 95(11): 303~308
    [130] Van Den Brink J P, Thermal expansion coefficient measurements of molten glasses using the sessile drop technique, Journal of Non-Crystalline Solids, 1999,253(1~3): 163~169
    [131] Gladysz G M, Chawla K K, Coefficients of thermal expansion of some laminated ceramic composites, Composites Part A: Applied Science and Manufacturing, 2001, 32(2): 173~178
    [132] Cheng Y, Xiao H, Guo W, et al, Thermal behavior of GeO2 doped PbO–B2O3–ZnO–Bi2O3 glasses, Materials Science and Engineering: A, 2006, 423(1~2): 184~188
    [133]南京玻璃纤维研究设计院,玻璃测试技术,北京:中国建设工业出版社, 1987
    [134] Tulyaganov D U, Agathopoulos S, Synthesis of lithium aluminosilicate glass and glass-ceramics from spodumene material, Ceramics International, 2004, 30: 1023~1030
    [135] Ghosh A, Das S K, Biswas J R, et al, The effect of ZnO addition on the densification and properties of magnesium aluminate spine, Ceramics International, 2000, 26: 605~608
    [136] Duan R G, Liang K M, Gu S R, The effect of Ti4+ on the site of Al3+ in the structure of CaO-Al2O3-SiO2-TiO2 system glass, Mater Sci & Eng A, 1998, 249: 217~222
    [137]西北轻工业学院,玻璃工艺学,北京:轻工业出版社, 1991
    [138] Bob F, Juergen B, Innovations in dilatometry, Ceramic Industry, 2000, 9: 40~44
    [139] Juergen B, Recent advances in dilatometry, Amer Ceram Soc Bull, 2000, 11: 64~68
    [140] Fujimoto M, Ichida Y, Micro fracture behavior of cutting edges in grinding using single crystal cBN grains, Diamond & Related Materials, 2008, 17: 1759~1763
    [141] Anselmo E D, Adilson J O, Hard turning of interrupted surfaces using CBN tools, Journal of materials processing technology, 2008, 195: 275~281
    [142] Costes J P, Guillet Y, Poulachon G, et al, Tool-life and wear mechanisms of CBN tools in machining of Inconel 718, International Journal of Machine Tools & Manufacture, 2007, 47: 1081~1087
    [143] Brinker C J, Hydrolysis and condensation of silicates effects on structure, Journal of Non-Crystalline Solids, 1988, 100: 31~50
    [144]林健,催化剂对正硅酸乙酯水解-聚合机理的影响,无机材料学报, 1997, 12(3): 363~369
    [145]珲正中,正恩信,完利祥,表面与界面物理,成都:电子科技大学出版社, 1993. 35~36
    [146] Jackson M J, Mills B, Materials selection applied to vitrified alumina &CBN grinding wheels, Journal of Materials Processing Technology, 2000, 108: 114~124
    [147] Herman D, Markul J, Influence of microstructures of binder and abrasive grain on selected operational properties of ceramic grinding wheels made of alumina, International Journal of Machine Tools & Manufacture, 2004, (44): 511~522
    [148] He D W, Akaishi M, Tanaka T, High pressure synthesis of cubic boron nitride from Si-hBN system, Diam Relat Mater, 2001, 10(8): 1465~1469
    [149] Solozhenko L V, Turkevich Z V, On nucleation of cubic boron nitride in the BN-MgB2 system, Phys Chem B, 1999, 103(38): 8137~8140
    [150] Huang J Y, Zhu T Y, Atomic-scale structural investigations on the nucleation of cubic boron nitride from amorphous boron nitride under high pressures and temperatures, Chem Mater, 2002, 14(4): 1873~1878

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700