用户名: 密码: 验证码:
纳米炭粉的制备及结构性能的表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代,人们把尺度小于100nm并且具有特异物理性能和化学性能的粉体材料定义为纳米粉体材料。随着科学技术的迅猛发展,纳米材料在人类的生产生活中起到了举足轻重的作用。纳米炭粉是一种新型轻质纳米级无定型炭素材料,由于它具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性,使得它在磁、光、电、敏感等方面呈现常规材料不具备的特性,从而使其作为一种新型材料在电子、信息、农业、冶金、宇航、化工和生物医学等领域占有十分重要的地位。现在纳米炭粉在催化剂及催化剂载体、功能陶瓷、粘结剂、色谱柱填料和电极材料、造孔剂等领域展现出较大的优越性和广阔的应用前景,所以对纳米炭粉的研究正逐渐引起人们的关注。
     本文以煤焦油沥青为原料,以浓硫酸和浓硝酸为氧化剂,利用溶胶凝胶方法制备水性中间相沥青(Aqua mesophase pitch,以下简称AMP)。将AMP溶解于氨水中得到水相炭基凝胶,经过乙醇与水交换后采用不同干燥技术,对湿凝胶进行干燥和950℃热处理制得纳米炭粉。研究内容包括混酸系AMP的制备和性能分析,探讨了不同氧化条件对AMP产率的影响。详细考察了不同工艺条件,如不同原料、氧化温度、氧化反应时间、搅拌速度、碱溶反应时间等氧化条件对水性中间相收率和性能的影响。结合原料的性质、实验现象和各种表征技术获得的信息对氧化机理进行了初步讨论。利用溶胶凝胶法得到湿凝胶之后,通过常温干燥、冷冻干燥(-20℃,干冰冷冻和液氮冷冻)以及超临界干燥等方式进行干燥。并考察了不同冷冻溶剂介质(乙醇、丁醇)对纳米炭粉产率和性能结构的影响。最后,利用FT-IR红外光谱分析,热重分析(TGA),X-射线衍射分析(XRD),电镜粒度分析(TEM)等方法对AMP、纳米炭原粉以及纳米炭粉的结构进行表征分析。
     结果表明:在沥青与混酸氧化过程中,主要发生硝化、氧化、磺化反应。纳米炭原粉的热解过程分为脱醇脱水、预解热、强烈热分解阶段和结构重排等四个阶段,其中超临界干燥制得纳米炭粉的热解反应最激烈。不同的干燥方式得到的纳米炭原粉和纳米炭粉其化学结构和炭结构有所不同。液氮冷冻干燥得到的纳米炭原粉其杂原子基团的含量较少,制得的纳米炭粉其炭微晶尺寸较大。采用冷冻干燥的方法制备的纳米炭粉粒度均匀、规则,形状近似于球形,平均粒径为10nm左右,其炭结构为无序的乱层石墨结构。采用常温干燥也能成功制备出纳米炭粉。可见,常温干燥和冷冻干燥方法是一种低成本、简单易行的制备纳米炭粉的方法。
Nanopowders are the powders with the size of no more than 100 nm. Owing to the extremely small dimensions, nano-materials are structurally characterized by a large volume fraction of grain boundaries or interphase boundaries, which exhibit some unique structural characteristics and properties compared to the conventional materials. With the development of science and technology, nano-materials play an important role in the society and are widely applied in many fields, such as information, manufacturing, biotechnology and agriculture etc. Nano-carbon powders are the new turbostratic carbon materials and have broad prospects in catalysis and its supports, functional ceramics, binder, stationary phases for chromatography, electrode materials and producer. Therefore, it is much concerned to prepare nano-carbon powders with interesting and useful properties.
    In this paper, The nano-carbon powders were prepared by sol-gel method, in which the coal tar pitch was first oxidized into aqua-mesophase pitch (AMP) by mixtures of concentrated sulfuric acid and nitric acid, and then the AMP was dissolved in aqueous solution of ammonia hydroxide to form the carbonaceous hydrogel, which was directly exchanged with ethanol to remove water and dried by different drying methods temperature. After carbonization at 950 ℃, the nano-carbon powders were obtained. Preparation and performance analysis of AMP was investigated by oxidation with mixtures of concentrated sulfuric acid and nitric acid. The effects of oxidation conditions, such as raw materials, temperature, reaction time and stirring velocity, on the yields and properties of AMP were studied in detail. The effect of drying media and methods of wet gel on the nano-carbon powders yield and properties was also investigated. The AMP, the primary nano-carbon powders and their heat-treated products were characterized by FT-IR, TG, XRD and TEM methods. Mechanisms of oxidation are discussed briefly.
    The results show that oxidation conditions greatly affect the yields and properties of AMP. The reactions such as nitration, oxidation and sulfonation mainly happen during the reactions of coal tar pitch with mixing acids. The pyrolysis of the primary nano-carbon powders can be divided into four stages, including removal of drying media and water, pre-thermol decomposition, thermol decomposition and rearrangement of carbon structure. The different drying methods and medias of wet gel are found to affect the chemical and carbon structure of the primary nano-carbon powders and nano-carbon powders. The ball-like nano-carbon powders with the average size about 10nm and turbostratic carbon structure can
引文
[1] G.Y. Zhang, X. Jiang, E.G Wang. Tubular graphite cones. Science, 2003, 300: 472-474.
    [2] Ashfaq Hussanain, Chemical vapor deposition of carbon nanomaterials: (doctoral dissertation). Florida: university of central florida, 2002.
    [3] 王茂章,李峰,杨全红等.由不同碳源合成及制备纳米碳管的进展.新型炭材料,2003,18(4):250-264.
    [4] 田春霞.纳米粉末制备方法综述.粉末冶金工业,2001,11(5):19-24.
    [5] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,1999.
    [6] Fujii M, Yamada Y, Imamura T, et al. Preparation of aqua-mesophase by nitration or sulfonation of carbonaceous mesophase and properties of carbon material made from it. The 18th Biennial Conference of Carbon, 1987, 405-406.
    [7] Tateshi D, Esumi K, Honda H. Formation of carbonaceous gel. Carbon, 1991, 29:1296-1298.
    [8] Tateshi D, Esumi K, Honda H. Preparation of organic-carbonaceous gel. Carbon, 1992, 30: 944-945.
    [9] Esumi K, Sugii H, Tateshi D, et al. Preparation of carbon microbeads containing fine platinum particles from aqua-mesophase. Carbon, 1992,30:121-122.
    [10] Kodama M, Honda H.A new preparation method of ultrafine pitch partical. Carbon, 1993, 31:837-842.
    [11] Sujii H, Esumi K, Honda H, et al. Characterization of carbonaceous gel beads prepared in presence of polymer using water-in-oil emulsion. Carbon, 1995,33:821-825.
    [12] 江智渊.低维纳米材料的制备研究:(博士学位论文).厦门:厦门大学,2002.
    [13] 金兆国.脉冲激光轰击法连续制备纳米合金、纳米碳及其聚合物杂化材料的研究:(硕士学位论文).福州:福建师范大学,2004.
    [14] 管飞.纳米粉体材料的制备、表征及其应用:(硕士学位论文).兰州:西北师范大学,2002.
    [15] Olga B Koper, Isabelle Lagadic, Alexander volodin. Alkaline-earthoxide nanoparticles obtained by aerogel methods. Chemical materials. 1997, (11):2468-2480.
    [16] 廖莉玲,刘吉平.固相法合成纳米氧化镁.精细化工,2001,(12):696-698.
    [17] 张近.纳米氧化镁合成工艺条件的研究.无机盐工业,1999,31(2):3-5.
    [18] 杨荣棒.正交法选择纳米氧化镁的最佳合成条什.陕西师范大学学报,2004,32(1):69-72.
    [19] 钟胜,戴永年.真空蒸法-冷凝制取超细金属粉末的研究与应用动态.云南冶金,1997,26(6):42-45.
    [20] Yamada Y, Imamura T, Honda H, et al. Characteristics of meso-carbon microbeads seperated from pitch. Carbon, 1974,12(3):307-319.
    [21] Brooks J D, Taylor G H. The formation of graphitizing carbons from the liquid phase. Carbon, 1965, 3(2):185-186.
    [22] 吕永根,凌立成,刘朗等.煤焦油中吡啶不溶物及聚合条件对中间相炭微球收率、球径及其分布的影响.炭素技术,1998,5:15-19.
    [23] 吕永根,凌立成,刘朗等.原生吡啶不溶物在煤焦油聚合制备中间相炭微球过程中的作用.新型碳材料,1998,13(1):38-42.
    [24] 宋怀河,沈曾民.添加炭黑对催化裂化渣油中间相沥青炭微球制备的影响.石油学报,1999,15(6):63-68.
    [25] A Gachwindt, K Hutinger. Sintering of powders of polyaromatic mesophase to high-strength isotropic carbons—Ⅱ. Influences of the synthesis conditions of the mesophases and the preparation of the powders. Carbon, 1994,32(6):1105-1118.
    [26] Esumi K, Nishina S, Sakurada S, et al. Plasma treatment of heat-treated meso-carbon microbeads. Carbon, 1987,25(6):821-825.
    [27] Nakagawa Y, Pujita K, Mori M. 17th Bienn conf on Carbon. Extended Abstracts and Program, 1985:409-410.
    [28] 王红强,李新军,郭华军等.中间相炭微球结构对其电化学性能的影响.中南工业大学学报,2003,34(2):140-143.
    [29] 刘秀军,王成扬,李同起等.酚醛树脂对均相成核的中间相炭微球生成的作用.炭素技术,2003,124:1-4.
    [30] 罗道成,易平贵,陈安国等.用煤焦油制备优质活性炭的研究.湘潭矿业学院学报,2003,18(1):87-90.
    [31] 郑洪河,张虎成,高书燕.中间相石墨微球与液体非水电解质的配伍性.河南师范大学报(自然科学版),2003,31(1):127-128.
    [32] 李伏虎,沈曾民,薛锐生等.乳液法制备中间相炭微球的研究.新型炭材料,2004,19(1):21-27.
    [33] 李新贵,黄美荣.高性能中介相沥青基碳微球及碳片.材料科学与工艺,1997,5(3):92-96.
    [34] Yoon S H, Park Y D, Maochida I. Preparation of carbonaceous spheres from uspensions of pitch materials. Carbon, 1992,30(5):781-786.
    [35] LU Y G, Ling L C, et al. Preparation of carbon microbeads from pitch and resin by suspention. New Carbon Material, 2001,16(6):1-5.
    [36] 王文志.悬浮法制备中间相沥青微球的研究:(硕士学位论文).西安:西北工业大学,2006.
    [37] 贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1995.
    [38] 李同起,王成扬.碳质中间相形成机理研究.新型炭材料,2005,20(3):278-285.
    [39] Sogabe T, Matsuda T, Kuroda K et al. Preparation of B_4C-mixed graphite by pressureless sintering and its air oxidation behavior. Carbon, 1995,33(12):1783-1788.
    [40] Garcia-Rosales C, Ordas N, Oyazabal E et al. Improvement of the thermo-mechanical properties of fine grain graphite by doping with different carbides. Journal of Nuclear Materials, 2002, 307-311:1282-1288.
    [41] Esumi K, Kimura Y, Nakada T, Megurao K et al. Adsorption of some solutes on heat-treated meso-carbon microbeads treated by plasma. Carbon, 1989,27(2):301-303.
    [42] 许斌,陈鹏.中间相炭微珠(MCMB)的的开发、性质和应刚.新型碳材料,1996,11(3):4-8.
    [43] Preiss H, Lischke G, Eckelt R, et al. Preparation of carbon catalysts by hydrothermal treatment of a carbonaceous by hydrogel. Carbon, 1994,32(4):587-592.
    [44] Preise H, Berger L, Braun M. Formation of black glasses and silicon carbide from binary carbonaceous silica hydrogels. Carbon, 1995,33(12):1739-1746.
    [45] Preise H, Berger L, Szulzewsk K. Thermal treatment of binary carbonaceous/zirconia gels and formation of Zr(C, O, N)solid solution. Carbon, 1996,34(1): 109-119.
    [46] Preise H, Kant W.A theological and thermal characterization of carbonaceous hydrogels produced from pitch. Carbon, 1994,32:351-353.
    [47] Oda H, Tateshi D, Esumi K, et al. The formation of porous carbon materials from carbonaceous gel. Carbon. 1994,32:355-356.
    [48] 余高奇,李轩科,刘秀然等.混酸系(HNO-3/H_2SO_4)制备水性中间相.炭素技术,2000,(3):22-24.
    [49] 余高奇,李轩科,刘秀然等.水性中间相的制备研究(Ⅱ).炭素,2000,(4):28-32.
    [50] 吴卫泽,朱珍平,刘振宇.水性中间相沥青的制备研究.新型炭材料,2001,16(2):8-13.
    [51] 李轩科,刘朗,沈士德.原料以及制备条件对水性中间相产率和性能的影响.新型炭材料,2000,15(3):57-60.
    [52] 熊新向,李轩科,杨栋梁.水性中间相制备的初步研究.炭素技术,1998,94(2):28-30.
    [53] 蒋汉赢.湿法冶金过程物理化学.北京:冶金工业出版社,1984.
    [54] 李轩科,刘朗,沈士德.原料以及制备条件对水性中间相产率和性能的影响.新型炭材料,2000,15(3):57-60.
    [55] 薛更生,张军利,杨永珍等.溶胶-凝胶法制备纳米粉体.机械管理开发.2001,增刊2.81-82.
    [57] 李轩科,刘朗,沈士德.由炭质溶胶-凝胶制备超细炭的研究.新炭型材料,1999,14(3):49-52.
    [58] 吴卫泽,朱珍平,刘振宇.水相炭基溶胶-凝胶法制备纳米碳粉的研究.新炭型材料,2001,16(3):12-16.
    [59] 余高奇,刘秀然,王东梅等.超细炭前躯体的分析.武汉科技大学学报(自然科学版),2001,24(4):355-357.
    [60] 李文翠,陆安慧,朱盛维.溶胶一凝胶法制备间甲酚甲醛炭气凝胶.燃料化学学报,2000,28(4):332-335.
    [61] 李文翠,郭树才.溶胶凝胶技术在新型纳米气凝胶合成中的应用.开发与应用,2001,2:34-36.
    [62] 吴卫泽,朱珍平,刘振宇.由沥青制备炭基凝胶的研究.新型炭材料,2001,16(4):7-11.
    [63] Hedlund J, Sterte J. Synthesis of thin molecular sieve films. Nanostructured materials, 1999,12(1),413-416.
    [64] Tsunekawa S, Sivamohan R, Ito Set al. Structural study on monosize CeO_(2-x)nanoparticles. Nanostructured Materials. 1999,11(1),141-147.
    [65] Tetsuo Yazawa, Hiroshi Tanaka, Hiroshi Nakamichi et al. Preparation of water and alkali durable porous glass membrane coated on porous alumina tubing by sol-gel method. Membrane Science, 1987,60(2-3):307-317.
    [66] Klein L C,J L Vossen, W Kern. Thin Film Process Ⅱ. new York:Academic, 1991.
    [67] Brinker C J, Hurd A J, Schunk P R. Review of sol-gel thin film formation. Journal of Non-crystalline Solids, 1992,147-148,424-436.
    [68] Kanichi Kamiya, Tomonori Dohkai, Masanori Wada et al.X-ray diffraction of silica gels made by sol-gel method under different conditions. Journal of Non-Crystalline Solids, 1998,240(1-3),202-211.
    [69] Jones R W. Fundamcntal Principles of Sol-Gel Technology. London:Institute of Metals, 1992.
    [70] Sue-min Chang, Ruey-an Doong. ZrO_2 thin films with controllable morphology and thickness by spin-coated sol-gel method. Thin Solid Films, 2005,489(1-2):17-22.
    [71] 章永化,龚克成.Sol-Gel法制备有机/无机纳米复合材料的进展.高分子材料科学与工程,1997,13(4):14-18.
    [72] 余家国,赵修建.掺银TiO_2复合薄膜的制备和光催化性能的研究.稀有金属材料与工程,2000,29(6):399-393.
    [73] 余桂郁,杨南如.溶胶凝胶法简介第三讲溶胶凝胶法工艺过程.硅酸盐通报,1993,(6):60-66.
    [74] 秦国彤.RF有机气凝胶及炭气凝胶的合成及表征:(博士学位论文).大连:大连理工大学,1999.
    [75] Flory P J. Principle of polymer Chem Rev. Cornell University Press, Ithaca, NY, 1953. Chapter Ⅸ.
    [76] Guotong Qin, Shucai Guo. Preparation of RF organic aerogels and carbon aerogels by alcoholic sol-gel process. Carbon, 2001,39(12)1935-1937.
    [77] 岑可法,樊建人.燃烧流体力学.北京:水利电力出版社,1991.
    [78] Nathalie Job, Alexandre Thery, Rene Pirard, et al. Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon, 2005,43(12):2481-2494.
    [79] Bands W H, Cryst Schaefer P C. Polymers, Fractals, and Ceramic Materials. Science, 1989, 243:1023-1027.
    [80] Scherer G W. Drying gels:ⅫⅠ. Revision and review. Journal of Non-Crystalline Solids, 1989,109(2-3):171-182.
    [81] Scherer G W.Stress and fracture during drying of gels. Journal of Non-Crystalline Solids, 1990,121(1-3):104-109,
    [82] 肖进兵.乙胺-水体系中制备纳米二氧化锆.鞍山科技大学学报,2004,27(5):324-326.
    [83] 刘加中,韩朝绘,李道伟.关于冷冻干燥的原理应用和探讨.齐鲁药事,2004,23(4):54-56.
    [84] ZHANG R, ZHAN L, MENG Q H et al. A comparative study of supercritical petroleum ether and carbon dioxide drying in the preparation of carbon aerogels. New carbon Materials. 2004,19(1):7-10.
    [85] 李惫强.湿化学法合成陶瓷粉料的原理和方法.硅酸盐学报,1994,22(1):85-90.
    [86] 许迪春,郝晓春,朱宜惠.湿化学法制备ZrO_2(Y_2O_3)超细粉末过程中团聚状态的控制.硅酸盐学报,1992,20(1):48-54.
    [87] 李蔚,高镰,郭景坤.醇-水溶液加热法制备纳米氧化锆粉体.无机材料学报,1999,14(1):161-164.
    [88] 李蔚,王宏志,高镰等.醇-水溶液加热法制备纳米氧化锆粉体的烧结行为.硅酸盐学报,2002,8(1):57-59.
    [89] 方小龙,杨传芳,陈家铺.湿化学工艺条件对ZrO_2(Y_2O_3)超细颗粒团聚的影响.硅酸盐学报,1998,26(6):732-739.
    [90] 陈小兵,余双平,邓淑华等.纳米粉体干燥方法的研究进展.无机盐工业.2004.36(1):7-9.
    [91] 顾燕芳,胡黎明,顾家建.冷冻干燥法制备高活性的氧化铝超细粒子.硅酸盐通报,1994,(1):21-25.
    [92] 王树森,胡蕴玉,罗卓荆等.硫酸肝素复合胶原蛋白制备新型神经组织工程支架材料.第四军医大学学报,2004,25(10):869-873.
    [93] 栗伟玲,高镰,郭景坤.纳米粉体干燥方法的研究.无机材料学报,1997,12(6):835-839.
    [94] 李革胜.利用冷冻干燥法制备二氧化钛陶瓷超微粉的研究.沈阳:中国科学院金属研究所,1994.
    [95] 薛军民,李承恩,赵梅瑜等.柠檬酸盐溶液冷冻干燥法制备Ba_2Ti_9O_(20)粉体.功能材料,1997,28(2):162-164.
    [96] Hirano, Yoshinaka M, Hiroca K. Formation, characterization and hotisostati pressing of Cr203-doped ZrO2(0. 3%Y_2O_3)prepared by hydrazine method. J. Am. Ceram. Soc.,1996,79(1):171-176.
    [97] Nakane S. Characterization and sintering of reactive cevrum(N) oxide powders prepared by the hydrazine method. J. Am. Ceram. Soc.,1997,80(12):3321-3324.
    [98] Zhou Y C, Philips R J, Switzer J A. Electrochemical synthesis and sintering of nanoerystal1ine cerium oxide powders. J. Am. Ceram. Soc.,1995,74(4):981-985.
    [99] Kawabata, Hirani S. Solid solution of metastable tetragohal ZrO_2 and Ce_3ZrO_8 in the system ZrO_2-CeO_2. J. Am. Ceram. Soc.,1996,31(18):4945-4949.
    [100] 张秀成,李晓娥,陈立宇等.真空干燥钛酸丁酯凝胶的工艺过程研究.西北大学学报(自然科学版),1997,27(4):323-325.
    [101] 徐华蕊,叶明泉,宋洪昌等.沉淀转化法制备单分散超细碳酸铅粉体.南京理工大学学报,1998,22(1):10-14.
    [102] Nikolic N, Mancic L, Marinkovic Z, et al. Preparation of fine oxide ceramic powders by freeze drying. Ann. Chim. Sci. Mat., 2001,26(5):35-41.
    [103] 顾燕芳,胡黎明.冷冻干燥法制备高活性的氧化铝超细粒子.硅酸盐通报,1994,13(1):21-25.
    [104] Meschke F, Claussen N. Phase stability of fine-grained (Mg, Y)-PSZ. J. Am. Ceram. Soc.,1995,78(7):1997-1999.
    [105] 周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社,1995.
    [106] 梁丽萍,党淑娥,高荫本.超临界流体干燥法合成无团聚ZrO_2(CaO)纳米粉体及其烧结性行为.硅酸盐学报,2002,30(5):623-628.
    [107] 曹维良,张敬畅,石锦华.超微粒子氧化铁的制备研究.应用科学学报,2000,18(2):171-174.
    [108] 张敬畅,高炜,曹维良.超临界流体干燥法制备纳米氧化的研究.材料科学与工艺,2002,10(3):251-255.
    [109] 刘秀然,李轩科,沈士德.溶膝一凝胶超临界干燥法制备纳米氧化镍气凝胶.武汉科技大学学报(自然科学版),2001,24(2):155-156.
    [110] 姜国伟,周亚松.溶胶凝胶和超临界流体干燥法制备纳米TiO_2微粉.石油大学学报(自然科学版),2001,25(6):89-91.
    [111] 陆凡,陈诵英.超临界流体干燥法合成超微二氧化锡.应用化学,1994,11(5):68-70.
    [112] 徐鹏,王玉国,刘学武.纳米TiO_2的制备、表面处理及表征的研究进展.现代涂料与涂装,2006,6:39-43.
    [113] Van Bomme M J, De Haan A B. Drying of silica aerogel with supercritical carbon dioxide. Journal of Non-Crystalline Solids, 1995,186:78-82.
    [114] Zoran Novak, Zeljko Knez, Irena Ban, et al. Synthesis of barium titanate using supercritical CO_2 drying of gels. The Journal of Supercritical Fluids, 2001,19(2):209-215.
    [115] Geoge W Scherer. Effect of drying on properties of silica gel. Journal of NonCrystalline Solids, 1997,215(2-3):155-168.
    [116] 郭艳芝,沈军,王珏.常压干燥法制备炭气凝胶.新炭型材料,2001,16(3).55-57.
    [117] G.-W.厄特延,P.黑斯利(德)著.徐成海译.北京:化学工业出版社,2006.
    [118] 赵鹤皋等.冷冻干燥技术与设备.武汉:华中科技大学出版社,2005.
    [119] 高福成,刘志胜,李修渠.冻干食品.北京:中国轻工业出版社,1998.
    [120] Sujii H, Ksumi K, Honda H, et al. Characterization of carbonaceous gel beads prepared in presence of polymer using water-in-oil emulsion. Carbon, 1995,33:821-825.
    [121] 胡良全,程建国,滕慧萍.纳米炭粉对炭/酚醛材料性能的影响.固体火箭技术,2000,23(3):58-63.
    [122] 张爱黎,符岩,翟秀静等.离子电池纳米碳负极材料的结构与嵌行为.东北大学学报(自然科学版),2004,25(3):258-260.
    [123] 周德凤,马越,赵艳玲等.纳米炭/石墨碳混合材料的电化学性质研究.无机材料学报,2004,19(5):1111-1117。
    [124] 吴翔,张锡江,孟国军等.纳米碳在电池中的应用研究.2004年中国纳米技术应用研讨会,2004,298-301.
    [125] 熊政专,段海平,段玉平.纳米炭粉/ABS复合材料屏蔽效能的研究.塑料工业,2005,33(7):46-48.
    [126] 李永峰.煤基纳米和微米炭材料的电弧法制备研究:(博士学位论文).大连:大连理工大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700