用户名: 密码: 验证码:
半导体金属氧化物纳米材料的固相合成及其气敏性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,工业、交通、家庭等越来越多地使用各种气体原料、燃料,并不断产生着各种易燃、易爆或有毒气体,对气敏传感器的需求越来越大,对其质量要求也越来越高。这些需求推动了了半导体气敏传感器的快速发展。纳米材料是20世纪80年代发展起来的一种具有全新结构的材料,因其具有独特的性质以及潜在的应用前景引起了人们广泛的关注,特别是气敏材料纳米化已成为材料科学研究领域的热点之一。现有制备氧化物纳米材料的方法往往需要较多的步骤、较高的温度、特殊的仪器、苛刻的实验条件。本论文采用简单方便的室温固相反应法和低热固相化学反应法制备了一系列氧化物及复合氧化物的纳米材料。同时,对所制备的纳米材料的气敏性质作了初步的研究。本论文主体部分分为三部分:
     第一章以盐和氢氧化钠为原料,利用室温固相化学反应一步合成了一系列ZnO纳米粒子,并在加入表面活性剂CTAB及适当反应条件下制备了一系列ZnO纳米棒。借助X-射线衍射确定了样品的组成,并通过透射电镜和扫描电镜观察了样品的形貌。气敏性能结果表明,ZnO纳米粒子的气敏性能优于ZnO纳米棒。本章还讨论了利用醋酸与草酸在低热条件下固相反应合成ZnO前驱化合物,通过不同配比的稀土化合物五氧化二钽,La(acac)3?2H2O,Ce(acac)3?2H2O和Nd(acac)3?3H2O对ZnO前驱化合物混合掺杂,进而热分解制得掺杂纳米ZnO气敏材料。气敏性能结果表明,以固相前驱体法将稀土化合物适量混合掺杂进ZnO气敏材料,气敏性能表现出最佳工作温度低、对C2H5OH气体的选择性和灵敏度都有明显增加的优势。
     第二章利用不同的反应物,采用一步室温固相化学反应法和两步固相化学反应法分别合成了纳米SnO2,利用X-射线衍射对产物的组成进行了表征,并
Up to now, most commercial applied semiconductor gas sensors were made from ceramics. Since 1990, with the development in Micro-Electronics, Automatization and Computer Science et al, it is believed that the miniaturization, integration and multi-function will be the development trends in gas sensors. The gas sensing efficiency of the material depends on its micro-structural properties which are related to its method of preparation, which plays a very important role with regard to the chemical, structural and properties of nanomaterials. These reported methods for preparing oxide nanomatrials usually require multi-step, higher temperature, special apparatus and rigorous conditions. In this paper, a series of nanomaterials were prepared by simple and convenient low-heating solid-state chemical reaction methods with suitable conditions of experiment. In this paper, the main content is divided into three chapters:
     In the first chapter, ZnO nanoparticles and nanorods were prepared by one-step solid-state chemical reaction of zinc acetate and sodium hydroxide under the suitable experiment’s conditions. The compositions of samples were determined by XRD and TG-DTA. The sphere-like or rod-like morphology of samples were observed by TEM and SEM. The gas sensing properties of ZnO were studied by HW-30A. Results show that the gas sensing properties of ZnO nanoparticles were better than gas sensing properties of ZnO nanorods, ZnO nanoparticles doped with and without Nd2O3 and Ce2O3 were prepared by solid-state synthesis. Crystal structure and microstructure of nanoparticles were characterized by XRD, SEM and TEM. The sensitivity of the materials was investigated at different operating temperatures to ethanol, acetone, LPG, ammonia and hydrogen. The results show that the sensitivity
引文
[1] T. Seiyama, A. Kato, A new detector for gaseous components using semiconductor thin film[J], Anal. Chem., 1962, 34(11): 1502-1503.
    [2] 马丽杰,日本气体传感器产业化发展现状[J],云南大学学报(自然科学版), 1997, 19(2): 211-216.
    [3] 潘小青, 刘庆成, 红外技术的发展[J], 华东地质学院学报, 2002, 25(1): 66-69.
    [4] 何 敏, VRML 与 3D 化学结构显示[J], 化学通报, 1998, 3(9): 55-58.
    [5] 张秀英, 娄向东, 田圣军, 配位-沉淀法制备镍酸镧敏感材料[J], 中国稀土学报, 1999, 17(1): 76-77.
    [6] 王存, 王弘, 沈瑜生, 复合氧化物气敏材料的进展[J], 传感器技术, 1994, 1: 1-31.
    [7] 索辉, 吴风清, 全宝富, 柠檬酸盐法合成的纳米晶 L a0. 7Sr0. 3FeO3 材料酒敏特性研究[J],功能材料, 1998, 29 (3): 274-275.
    [8] 吴凤清, 徐宝琨, 李熙, 纳米晶 La1-xSrxFeO3 的合成及气敏特性研究[J], 高等学校化学学报, 1994, 15 (6): 803-806.
    [9] 牛新书, 杜卫平, 蒋 凯, 半导体复合氧化物气敏材料研究进展[J], 化学研究与应用, 6(16): 738-740.
    [10] 贺蕴秋, 解庆红, 掺有过渡金属氧化物的氧化铁系统陶瓷的气敏特性[J], 无机材料学报, 1997, 12(1): 54-58.
    [11] 周仲柏, 吴青海, 硅微机械机构的微电流型电化学气体传感器[J], 传感器技术, 1996, 5: 20-22.
    [12] 索辉, 赵毅, 阮圣平等, La0. 7Sr0. 3FeO3 纳米晶薄膜的制备及 FET 式气敏元件的研制[ J ], 功能材料, 2000, 31: 59-61.
    [13] 娄向东, 沈荷生, 沈瑜生, ZnO 系半导体陶瓷气敏传感器的进展[J], 传感器技术, 1991, 3: 1-5.
    [14] G. S. T Rao, R. D. Tarakarama, Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature[J], Sens. and Actuators B, 1999, 55 (2): 166-169.
    [15] 王毓德, 吴兴惠, 掺杂α- Fe2O3 的气敏材料特性[J], 传感器技术, 1994, 3: 32-361.
    [16] 胡英, 周晓华, 魏红军, CuO—ZnO 异质结气体传感器的敏感性能[J], 传感器技术, 2000, 6 (19): 11-14.
    [17] 李平, 余萍, 肖定金, 气敏传感器的近期进展[J], 功能材料, 1999, 30 (2): 126-1281.
    [18] J. H. Yu, G. M. Choi, Electrical and CO gas sensing properties of ZnO–SnO2 composites[J], Sens. Actuators B, 1998, 52: 251–256.
    [19] N. Yamazoe, T. Kurakawa, T. Seiyama, Effects of addit ive on stm iconductor gas sensors [J], Sens. Actuators B, 1983, 13 (4): 283-289.
    [20] 牛新书, 杜卫平, 杜卫民, 蒋 凯, 掺杂稀土氧化物的 ZnO 材料的制备及气敏性能, 2003, 24(6): 44-47.
    [21] H. Aono, E. Traversa, M. Sakamoto, Y. Sadaoka, Crystallographic characterization and NO2 gas sensing property of LnFeO3 prepared by thermal decomposition of Ln–Fe hexacyancomplexes Ln[Fe(CN)6]·nH2O, Ln = La, Nd, Sm, Gd, and Dy[J], Sens. Actuators B, 2003, 94: 132–139.
    [22] X. S. Niu, W. M. Du, W. P. Du, Preparation and gas-sensing properties of rare earth mixed oxides[J], Sens. Actuators B, 2004, 99: 399–404.
    [23] 王忠春, 刘尔生, 陈耐生等, 氧化共沉淀法制备纳米级掺锑 α-Fe2O3 气敏陶瓷粉料[J], 应用化学, 1997, 14(4): 80-82.
    [24] 全宝贵, 孙良彦, 张彤, 高灵敏度高选择性的 H2S 气敏元件[J], 传感器技术学报, 1996, 4: 27-31.
    [25] 谷丰, 张耀华, 李民强, 多层薄膜结构气敏效应研究[J], 传感器技术学报, 1991, 2(4): 1-7.
    [26] 祁志美, 张耀华, 李民强, SnO2-SiO2 双层薄膜氢敏元件的特性研究[J], 郑州轻工学院学报, 1994, 9(1): 74-78.
    [27] 张立德, 第 4 次浪潮纳米冲击波[M], 北京: 化学经济出版社, 2003: 25-54.
    [28] 张立德, 纳米材料[M], 北京: 化学工业出版社, 2000: 39-48.
    [29] 张春友, 跨世纪的高科技———纳米技术[J], 湖南冶金, 1994, 1: 50-521.
    [30] C. M. Lieber, One-Dimensional Nanostructures: Chemistry[J], Physics & Applications Solid State Commun, 1998, 107: 607-616.
    [31] R. E. Smalley, B. I. Yakobson, The Future of the Fullerenes[J], Solid State Commun, 1998, 107: 59-606.
    [32] 殷敬华, 莫志深, 现代高分子物理学: 下[M], 北京: 北京科学出版社, 2001: 409-430.
    [33] 张立德, 解思深, 纳米材料和纳米结构[M], 北京: 化学工业出版社, 2005: 1-7.
    [34] G. Schmid, M. Bumle, M. Geerkens, I. Heim, C. Osemaun, T. Sawitowski, Current and future applications of nanoclusters[J], Chem. Soc. Rev. , 1999, 28: 179-185.
    [35] K. M. Sung, D. W. Mosley, B. R. Peelle, S. Zhang, J. M. Jacobson, Synthesis of monofundtionalized gold nanoparticles by fmoc solid-phase reactions[J], J. Am. Chem. Soc., 2004, 126(16): 5064-5065.
    [36]K. Riwotzki, H. Meyssamy, A. Kornowski, M. Haase, Liquid-phase synthesis of doped nanoparticles: colloids of luminescing LaPO4:Eu and CePO4:Tb particles with a narrow particle size distribution[J], J. Phys. Chem. B., 2000, 104(13): 2824-2828.
    [37] M. T. Swihart. Vapor-phase synthesis of nanoparticles[J], Curr. Opin. Colloid inter. Sci., 2003, 8: 127-133.
    [38] A. Chatterjee, D. Chakravorty. Electrical conductivity of sol-gel derived metal nanoparticles[J], J. Mater. Sci., 1992, 27: 4115-4119.
    [39] S. Chattopadhyay, H. C. Lo, C. H. Hsu, L. C. Chen, K. H. Chen, Surface-enhanced raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips[J], Chem. Mater., 2005, 17, 553-559.
    [40] S. L. Yao, E. J. Suzuki, A. Nakayama, A novel pulsed plasma for chemical conversion[J], Thin Sol. Films., 2001, 390: 165-169.
    [41] S. Tamir, S. Berger, Electroluminescence and electrical properties of nano-crystalline silicon[J], Mater. Sci. Eng., 2000, B69-70: 479-483.
    [42] W. Bai, K. L. Choy, N. H. J. Stelzer, J. Schoonman. Thermophoresis-assisted vapour phase synthesis of CeO2 and CexY1?xO2?δ nanoparticles[J], Solid State Ion., 1999, 116: 225-228.
    [43] Q. Wang, H. B. Yang, J. L. Shi, G. T. Zou, One-step synthesis of the nanometer particles of γ-Fe2O3 by wire electrical explosion method[J], Mater. Res. Bull., 2001, 36: 503-509.
    [44] D. Sen, P. Deb, S. Mazumder, A. Basumallick, Microstructural investigations of ferrite nanoparticles prepared by nonaqueous precipitation route[J], Mater. Res. Bull., 2000, 35: 1243-1250.
    [45] S. Jeon, P. V. Braun, Hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles[J], Chem. Mater., 2003, 15(6): 1256-1263.
    [46] J. H. Kim, T. A. Germer, G. W. Mulholland, S. H. Ehrman, Size-monodisperse metal nanoparticles via hydrogen-free spray pyrolysis[J], Adv. Mater., 2002, 14: 518-521.
    [47] D. H. Chen, X. R. He, Synthesis of nickel ferrite nanoparticles by sol-gel method[J], Mater. Res. Bull., 2001, 36: 1369-1377.
    [48] W. G. Weng, G. H. Chen, D. J. Wu, Z. Y. Lin, W. L. Yan, Preparation and characterizations of nanoparticles from graphite via an electrochemically oxidizing method[J], Syn. Metals., 2003, 139: 221-225.
    [49] 雷立旭, 忻新泉, 室温固相化学反应与固体结构, 化学通报, 1997, 7:21-24.
    [50] L. X. Lei, X. Q. Xin, Stepwise reaction of CuCl2?2H2O with 2,2’-bipyridyl in the solid state[J], J. Solid State Chem., 1995, 119: 299-303.
    [51] L. X. Lei, X. Q. Xin, Solid state synthesis of a new compound Cu(OH)Cl2 and its formation reaction[J], Thermochim. Acta, 1996, 273: 61-67.
    [52] L. X. Lei, Z. X. Wang, X. Q. Xin, The solid state reaction of CuCl2?2H2O and 8-hydroxylquinoline[J], Thermochim. Acta, 1997, 297: 193-197.
    [53] D.Z. Jia, J.Q. Yu, X. Xia, Synthesis of CuO nanometer powder by one step solid state reaction at room temperature[J], Chin. Sci. Bull., 1998, 43: 571-573.
    [54] 俞建群, 贾殿赠, 张校刚, 夏熙, 郑毓峰, 纳米 PbS 的合成新方法-一步室温固相化学反应法[J], 分子科学学报, 1998, 14: 126-127.
    [55] 黄玉代, 李娟, 贾殿赠, 离子电池正极材料的低温固相合成与性质表征[J], 无机化学学报, 2004, 20(7): 837-840.
    [56] F. Li, H.G. Zheng, D.Z. Jia, X.Q. Xiu, Z.L. Xue, Synthesis of perovskite-type composite oxides nanocrystals by solid-state reactions[J], Mater. Lett., 2002, 53: 282-286.
    [57] Z. P. Sun, L. Liu, L. Zhang and D. Z. Jia, Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties[J], Nanotechnology 2006, 17: 2266–2270.
    [58] Y. L. Cao, D. Z. Jia, L. Liu, J. M. Luo, D. Q. Xiao, Rapid synthesis of zincoxide nanorods by one-step, room-temperature, solid-state reaction[J], Trans. Mater. Res. Soc. Jap., 2004, 29(1): 103-105.
    [59] 王瑞英, 刘浪, 贾殿赠, 骆建敏, 范兆田, 一步室温固相化学反应合成纳米氨基酸杂多电荷转移配合物(HPhe)3PMo12O40·2H2O[J], 高等学校化学学报, 2004, 25(12): 2208-2211.
    [60] 沈茹娟, 贾殿赠, 梁凯, 忻新泉, 王疆瑛, 纳米ZnO的固相合成及其气敏特性[J], 无机化学学报, 2000, 16(6): 906-910.
    [61] 周杰, 贾殿赠, 刘浪, 硫化铜纳米棒的低热固相合成及其光学性质[J], 高等学校化学学报, 2005, 26(4): 620-622.
    [62] J. Q. Xu, Q. Y. Pan,Y. A. Shun, Z. Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor[J], Sens. Actuators B, 2000, 66: 277–279.
    [63] Q.Y. Pan, J.Q. Xu, X.W. Dong, J. P. Zhang, Gas-sensitive properties of nanometer-seized SnO2[J], Sens. Actuators B, 2000, 66(1-3): 237-239.
    [64] F. Li, J.Q. Xu, L.Y. Chen, J.M. Zhu, Z.R. Yang, X.Q. Xin, One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles[J], Sens. Actuators B, 2002, 81, 66(2-3): 165-169.
    [65] H. T. Cui, G. Y. Hong, H. P. You, X. Y. Wu, Coating of Y2O3: Eu3+ particles with alumina by a humid solid-state reaction at room temperature[J], J. Colloid and Interface Sci., 2002, 252: 184-187.
    [66] X. F. Chu, X. Q. Liu, G. Y. Meng, Preparation and gas sensitivity properties of ZnFe2O4 Semiconductors[J], Sens. Actuators B, 1999, 55(1): 19-22.
    [67] Y. L. Liu, Z. M. Liu, Y, Yang, H. F. Yang, G. L. Shen, R. Q. Yu, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials[J], Sens. Actuators B, 2005, 107: 600–604.
    [68] T. S. Zhang, P. Hing, J. C. Zhang, L. B. Kong, Ethanol-sensing characteristicsof cadmium ferrite prepared by chemical coprecipitation[J], Materials Chemistry and Physics 1999, 61: 192-198.
    [69] M.C. Carotta, G. Martinelli, Y. Sadaoka, P. Nunziante, E. Traversa, Gas-sensitive electrical properties of perovskite-type SmFeO3 thick films[J], Sens. Actuators B, 1998, 48: 270-276.
    [70] C. Xu, Coles. G. Williams, N. Yamazoc, Grain size effects on gas sensitivity of porous SnO2-based elements[J], Sens. Actuators B, 1991, 3: 147-155.
    [71] X. Lou, Development of ZnO series ceramic semiconductor gas sensors[J], J. Sens. Trans. Technol., 1991, 3: 1-5.
    [72] S. pan, S. Mei, Sol-gel preparation of ZnO gas sensing film[J], J. Sens. Trans. Technol., 1993, 3: 18-20.
    [73] M. Svetozar, D. Durdica, M. Miroslava, P. Stanko, Influence of chemical synthesis on the crystallization and properties of zinc oxide[J], Mater. Chem. Phys., 2003, 77 (2): 521-530.
    [74] B. Bhooloka Rao, Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour[J], Mater. Chem. Phys., 2000, 64: 62-65.
    [75] 沈茹娟,贾殿赠,乔永民,王疆英,纳米 ZnO 的固相合成及其气敏特性[J], 无机材料学报, 2001, 16(4): 625–629.
    [76] 张立德, 牟季美, 纳米材料和纳米结构[M], 北京科学出版社, 2001, 441-451.
    [77] 易惠中等, 纳米功能材料的开发和应用[J], 功能材料, 1991, 22(5): 32-38.
    [78] Y. D. Wang, X, H. Wu, Z. L. Zhou, Y. F. Li, Investigation of reliability and lifetime distribution of the gas sensors based on C2H5OH, Solid state Electron[J], 2003, 47(1): 107-110.
    [79] 刘杏芹, 陶善文, 沈瑜生, 纳米 SnO2 微粉的制备与性能[J], 应用化学,1996, 13(1): 65-67.
    [80] Y. D. Wang, X.. H. Wu, Q. Su, Y. F. Li, Z.L. Zhou, Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials[J], Solid State Electron., 2001, 45(2): 347–350.
    [81] Q. Y. Pan, J. Q. Xu, X. W. Dong, J. P. Zhang, Gas-sensitive properties of nanometer-seized SnO2[J], Sens. Actuators B, 2000, 66(1-3): 237-239.
    [82] F. Li, J.Q. Xu, L.Y. Chen, J.M. Zhu, Z.R. Yang, X.Q. Xin, One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles[J], Sens. Actuators B, 2002, 81, 66(2-3): 165-169.
    [83] Y. K. Fang, J. J. Lee, A tin oxide thin film sensor with high ethanol sensitivity[J], Thin Solid Films, 1989, 169: 51-56.
    [84] L. Promsong, M. Sriyudthsak, Thin tin-oxide film alcohol gas sensor, Sens. Actuators B, 1995, 24/25: 504-506.
    [85] L. Jianming, L. Honglong, Q. Nanyuan, An investigation of the gas sensing mechanism and properties of sputtering ZnO thin film, Proc. Int. Conf. Electronic Components and Materials. Beijing. China. 1989, 7-10, 197-200.
    [86] Y. Shimizu, S. Kusano, H. Kuwayama, K. Tanaka, M. Egashira, Oxygen-sensing properties of spinel-type oxides for stoichiometric airrfuel combustion control[J], J. Am. Ceram. Soc., 1990, 73: 818-824.
    [87] X. Q. Liu, Z. L. Xu, Y. S. Shen, A new type ethanol sensing material on CdFe2O4 semiconductor[J], J. Yunnan Univ., 1997, 19: 147-149.
    [88] M. Yokoyama, T. Sato, E. Ohta, T. Sato, Magnetization of cadmium ferrite prepared by coprecipitation[J], J. Appl. Phys., 1996, 80: 1015-1019.
    [89] E. Wolska, W. Wolski, J. Kaczmarek, E. Riedel, D. Prick, Defect structure in cadmium-nickel ferrites[J], Solid State Ionics., 1992, 51: 231-237.
    [90] G. L. Castiglioni, G. Minelli, P. Porta, Synthesis and Properties of Spinel-Type Co-Cu-Mg-Zn-Cr Mixed Oxides[J], J. Solid State Chem., 2000, 152: 526-532.
    [91] Y. Shen, T. Nakayama, M. Arai, Magnetic phase transition and physical properties of spi nel-type nickel manganese oxide[J], J. Phys. Chem. Solids, 2002, 63: 947-950.
    [92] 葛秀涛, 银掺杂对 CdFe2O4 电导和气敏性能的影响[J], 化学物理学报, 2001, 14(4):485-490.
    [93] 徐甲强, 刘艳丽, 牛新书, ZnSnO3 纳米粉体的合成及其气敏特性研究[J], 硅酸盐学报, 2002, 30(3): 321-324.
    [94] 牛新书, 刘艳丽, 徐甲强, ZnFe2O4 纳米粉体的室温固相合成及其气敏特性研究[J],功能材料, 2002, 33(4): 413-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700