用户名: 密码: 验证码:
离子电池正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前商业化的离子电池正极材料仍以LiCoO_2为主,由于钴价格逐年上涨以及LiCoO_2材料自身的缺陷,科研工作者一直在努力寻找其替代材料。层状结构材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2具有高比容量、高循环性能、低成本和环保等优点,有望成为新一代离子电池正极材料。本文综述了离子电池研究进展后,采用共沉淀法合成LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2正极材料,对合成过程中各工艺参数对材料结构和性能的影响进行研究,利用电化学测试手段,结合ICP-OES、XRD和SEM等分析技术,优化了合成工艺,探讨了TiO_2表面包覆改性对材料性能影响。
     用数学建模对氢氧化物共沉淀体系Me~(2+) (Me = Ni, Co, Mn)-NH_3-OH--H_2O进行热力学分析的结果表明,共沉淀法合成前驱体Ni_(1/3)Co_(1/3)Mn_(1/3)(OH)_2的最佳pH值为11,最佳氨水浓度为0.1~0.5 mol·L~(-1)。在此基础上研究了共沉淀剂种类、pH值和氨水浓度对前驱体性能的影响,得到前驱体合成的最佳工艺条件:以NaOH + NH_3·H_2O为共沉淀剂,控制pH值为10.5~11,氨水浓度为0.24 mol·L~(-1)。在氢氧化物共沉淀过程中由于Mn(OH)_2易被氧化,通过加入适量水合肼能有效抑制锰的氧化,提高制备过程的可重复操作性及材料的电化学性能,适宜的水合肼量为0.48 mol·L~(-1)。
     研究适宜配量及最佳焙烧工艺条件对材料结构和性能的影响,即前驱体在500℃下预烧4 h,然后按Li (LiOH·H_2O) / Me (Me= Ni_(1/3)Co_(1/3)Mn_(1/3)) = 1.05 / 1配比充分混合,物料在马弗炉中分两阶段焙烧处理,确定最佳焙烧条件为:先低温500℃下焙烧5 h,然后高温950℃焙烧12 h。上述最佳工艺条件下合成的层状LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料在2.5~4.6 V电压范围、0.1 C和1 C倍率下的首次充放电比容量分别为193.2 mAh·g~(-1)和174.8 mAh·g~(-1),1 C下30次循环后材料的容量保持率达94.16 %。循环伏安测试表明,LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2材料曲线上存在一对明显的氧化还原峰,对应于Ni~(2+) / Ni~(4+)的氧化还原反应。
     为了改善LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的循环性能,对其进行TiO_2表面包覆改性,研究表明少量包覆不会改变材料层状结构和振实密度。当包覆量为2.0 %时改性效果最好,在2.5~4.6 V电压范围内,1 C倍率下经30次循环后,材料容量保持率达95.74 %。
LiCoO_2 has been widely used as a cathode material in commercial lithium ion battery production at present. Due to the high cost and its own disadvantages of LiCoO_2, many efforts have been made to replace it. Layered structure LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 composite compound has been considered as a promising candidate of new-generation cathode materials for rechargeable lithium ion batteries due to its higher capacity, longer cycle life, lower cost and no harm to environment. The research development of lithium ion battery was summarized in this paper. Based on this, a co-precipitation method was applied to obtain a new type of cathode material LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2, and the synthesis technological condition and parameters were investigated systematically and optimized. And then the electrochemical characteristics, ICP-OES, XRD and SEM of the prepared LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 samples were investigated, and TiO_2 modified LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 was prepared and characterized.
     Thermodynamic analysis of the Me~(2+) (Me = Ni, Co, Mn) - NH_3 - OH~- - H_2O co-precipitation system was carried out. The thermodynamic analysis results show that the optimal pH value and ammonia concentration range for the precursor synthesis are 10.5~11 and 0.1~0.5 mol·L~(-1), respectively. The effects of several factors such as precipitating agent, pH value and ammonia concentration on precursors were investigated. On this basis, the optimal synthesis technological parameters were obtained, i. e. , NaOH + NH_3·H_2O as precipitating agent, controlling pH value of the solution as 10.5~11, the ammonia concentration as 0.24 mol·L~(-1). Considering of Mn(OH)2 being easily oxydated during the synthesis process, small amount of hydrazine hydrate was added in the precursor co-precipitation process. Hydrazine hydrate can inhibit effectively the oxidation reaction of manganese and the enhance operation reproducibility of preparation process and the electrochemical performance of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 material with the optimal amout 0.48 mol·L~(-1) for hydrazine hydrate.
     The effects of different calcination temperature, calcination time and ratio of Li (LiOH·H2O) / Me (Me = Ni_(1/3)Co_(1/3)Mn_(1/3)) on the structure and performance of the synthesized layered cathode material were investigated. On this basis, the optimal synthesis conditions were obtained, i. e., precursor was calcined at 500℃for 4 h, and then LiOH·H2O and precursors were mixed with 1.05 / 1 of Li / Me, the mixed materials were calcined at 500℃for 5 h and then calcined at 950℃for 12 h. Based on the above optimal conditions, the initial discharge capacities are 193.2 mAh·g~(-1) and 174.8 mAh·g~(-1), respectively, with a density of 0.1 C and 1 C at the potential range of 2.5~4.6 V, and the capacity retention maintains 94.16 % after 30 charge discharge cycles at the density of 1C. Cycle voltammetry test shows that one pair of redox peaks was corresponding to the redox process of Ni~(2+) / Ni~(4+) couple.
     In order to improve the cycle performance of layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2, surface modification was carried out using TiO_2 as coating agent. The results show that small TiO_2 modification did not change the layered structure and tap density of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2, and the optimal coating amout was 2.0 %. And its capacity retains 95.74 % after cycling 30 times at the density of 1 C in the potential range of 2.5~4.6 V.
引文
[1]吴宇平,万春荣,姜长印等.离子二次电池[M].北京:化学工业出版, 2002: 3-5, 14-15.
    [2]李景虹.先进电池材料[M].北京:化学工业出版社, 2004: 10-11, 255-285.
    [3]吴宇平,张汉平,吴锋等.聚合物离子电池[M]. 2006: 10, 2-7, 104-144.
    [4]李义兵.离子电池正极材料层状LiMnO_2及LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2合成及电化学性能研究[D].长沙:中南大学, 2006.
    [5]汪继强.离子蓄电池技术进展及市场前景[J].电源技术, 1996, 20(4): 147-151.
    [6]钟俊辉.离子电池及其材料[J].电池, 1996, 26(2): 91-95.
    [7]胡行仁.世界电池市场综述[J].电池, 2000, 30(3): 113-115.
    [8] Bruno S.. Lithium rocking chair batteries: an old concet [J]. Journal of the Electrochemical Society, 1992, 139(10): 2776-2781.
    [9]王保峰.二次电池中高容量硅/碳复合负极材料的合成及电化学研究[D].上海:中科院上海微系统与信息技术研究所, 2004.
    [10]孙颢,蒲薇华,何向明等.离子电池硬碳负极材料研究进展[J].化工新型材料, 2005, 33(11): 7-10.
    [11] Sato K., Noguchi M., Demachi A., et al. A mechanism of lithium storage in disordered carbons [J]. Science, 1994, 264(5158): 556-558.
    [12] Dahn J. R., Xing W., Gao Y.. The“falling cards model”for the structure of micro-porous carbons [J]. Carbon, 1997, 35(6): 825-830.
    [13] Liu Y. H., Xue J.S., Zheng T., et al. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins [J]. Carbon, 1996, 34(2): 193-200.
    [14] Mabuchi A., Tokumitsu K., Fujimoto H., et al. Charge-discharge charecteristics of the mesocarbon miocrobeads heat-treated at different temperatures [J]. Journal of the Electrochemical Society, 1995, 142(4): 1041-1046.
    [15] Jean M., Tranchant A., Messina R.. Reactivity of lithium intercalated into petroleum coke in carbonate electrolytes [J]. Journal of the Electrochemical Society, 1996, 143(2): 391-394.
    [16] Tatsumi K., Zaghib K., Sawada y.. Anode performance of vapor-grown carbon fibers in secondary litium-ion batteries [J]. Journal of the Electrochemical Society, 1995, 142(4): 1090-1096.
    [17] Yamamoto O., Imanishi N., Takeda Y., et al. Rechargeable carbon anode [J]. Journal of Power Sources, 1995, 54(1): 72-75.
    [18] Tirdo J. L.. Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects [J]. Materials Science & Engineering Reports, 2003, 40(3): 130-136.
    [19] Dahn J. R., Zheng T., Liu Y., et al. Mechanisms for lithium insertion in carbonaceous materials [J]. Science, 1995, 270(5236): 590-595.
    [20] Wakihara M.. Recent developments in lithium ion batteries [J]. Materials Science and Engineering R, 2001, 33(4): 109-134.
    [21] Ohzuku T., Ueda A.. Why transition metal (di) oxdides are the most attractive materials for batteries [J]. Solid State Ionics, 1994, 69(3-4): 201-211.
    [22] Poizot P., Laruelle S., Grugeon S., et al. Nano-sized transition-metal oxide as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407(6803): 496-499.
    [23] Grugeon S., Laruelle S., Herrera-Urbina R., et al. Particle size effers on the electrochemical performance of copper oxides toward lithium [J]. Journal of the Electrochemical Society. 2001, 148(4): 285-292.
    [24] Laruelle A. S., Grugeon S., Poizot, P.. On the origin of the extra electrochemical capacity displayed by Mo/Li cells at low potential [J]. Journal of the Electrochemical Society, 2002, 149(5): 627-634.
    [25] Alcántara R., Jaraba M., Lavela P., et al. New NixMg6-xMnO8 Mixed Oxides as Active Materials for the Negative Electrode of Lithium-Ion Cells [J]. Journal of Solid State Chemistry, 2002, 166(2): 330-335.
    [26] Alcántara R., Jaraba M., Lavela P., et al. Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4 [J]. Electrochemistry Communications, 2003, 5(1): 16-21.
    [27] Alcántara R., Jaraba M., Lavela P., et al. NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries [J]. Chemistry of Materials, 2002, 14(7): 2847-2848.
    [28]任建国,王科,何向明等,离子电池合金负极材料的研究进展[J].化学进展, 2005, 17(4): 597-603.
    [29] Nishijima M., Tadokoro N., Takeda Y., et al. Li deintercalation-intercalation reaction and structural change in lithium transtition metal nitride, Li7MnN4 [J]. Journal of the Electrochemical Society, 1994, 141(11): 2966-2971.
    [30] Suzuki S., Shodai T.. Electronic structure and electrochemical properties of electrode material Li7-xMnN4 [J]. Solid State Ionics, 1999, 116(1-2): 1-9.
    [31] Gregory H. H.,óMeara P. M., Gordon A. G., et al. Layered ternary transition metalnitrides; syhthesis, structure and physical properties [J]. Journal of Alloys and Cmpounds, 2001, 317-318: 237-244.
    [32] Souza D. C. S., Pralong V., Jacobson A. J., et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry [J]. Science, 2002, 296(5575): 2012-2015.
    [33] Alcántara R., Tirado J. L., Jumas J. C., et al. Electrochemical reaction of lithium with CoP3 [J]. Journal of Power Sources, 2002, 109(2): 308-312.
    [34] Matsumoto S., Sato Y., Kamo M., et al. Vapor-Deposition of diamond particles from methane [J]. Japanese Journal of Applied Physics, 1982, 21(4): 183-185.
    [35] Augus J C., Hayman C. C.. Low-pressure, metastable growth of diamond and diamondlike phases [J ]. Science, 1988, 241(4868): 913-921.
    [36] Shu Z. X., Mcmillan R. S., Murray J. J.. Effects of 12-crow-4 on the electrochemical intercalation of lithium into graphite [J]. Journal of Applied Electrochemistry, 1996, 26(4): 2753-2759.
    [37] Hiroshi H., Masami T., Isao W.. Nonaqueous electrolyte for lithium secondary battery [P]. JP: No. 10064584A, 1998-03-06.
    [38] Amold S., Teremy B.. Additives for inhibiting decompostion of lithium salts and electrolytes containing said additives [P]. US: No.5707760, 1998-01-13.
    [39] Xu K., Ding S. M., Zhang S. S., et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphzenes [J]. Journal of the Electrochemical Society, 2002, 149(5): 622-626.
    [40] Watanabe M., Tokuda H., Muto S.. Anionic effect on ion transport properties in network polyether electrolytes [J]. Electrochimica Acta, 2001, 46(10-11): 1487-1491.
    [41] Mehta M. A., Fujinami T., Inoue T.. Boroxine ring containing polymer electrolytes [J]. Journal of Power Sources, 1999, 81-82: 724-728.
    [42] Sadoway D. R., Huang B. Y., Trapa P. E., et al. Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries [J]. Journal of Power Sources, 2001, 97-98: 621-623.
    [43] Sun H. Y., Takeda y., Imanishi N., et al. Ferroelectric materials as a ceramic filler in solid compostie polyethylene oxide-based electrolytes [J]. Journal of the Electrochemical Society, 2000, 147(7): 2462-2467.
    [44] Song J. Y., Cheng C. L., Wang Y. Y., et al. Microstructure of poly(vinylidene fluoride)-based poly electrolyte and its effect on transport properties [J]. Journal of the Electrochemical Society, 2002, 149(9): 1230-1236.
    [45] Croce F., Fiory F. S., Persi L., et al. A high-rate, long-life, lithium nanocomposite polymer electrolyte battery [J]. Electrocheical and Solid State Letters, 2001, 4(8): 121-123.
    [46] Scrosati B., Croce F., Persi L.. Impedance spectroscopy study of PEG-based nanocomposite polymer electrolytes [J]. Journal of the Electrochemical Society, 2000, 147(5): 1718-1721.
    [47] Hirakimoto T., Nishiura M., Watanabe M.. Effects of addition of a boric acid ester monomer to electrolyte solutions and gel electrolytes on their ionic transport properties [J]. Electrochimica Acta, 2001, 46(10-11): 1609-1614.
    [48] Wen T. C., Chen W. C.. Gelled composite electrolyte comprising thermoplastic polyurethane and poly (ethylene oxide) for lithium batteries [J]. Journal of Power Sources, 2001, 92(1-2): 139-148.
    [49]麦立强,邹正光,陈寒元.离子电池正极材料的研究进展[J].材料导报, 2000, 14(7) : 32-35.
    [50]庄全超,武山,刘文元等.离子电池材料研究进展[J].电池, 2003, 33(2): 116-118.
    [51]吴宇平.离子电池正极材料氧化钴的进展[J].电源技术, 1997, 21(5): 208-209.
    [52]刘景,温兆银,吴梅梅等.离子电池正极材料的研究进展[J].无机材料学报, 2002, 17(1): 1-9.
    [53] Koksbang R., Barker J., Shi H.. Cathode materials for lithium rocking chair batteries [J], Solid State Ionics, 1996, 84(1-2): 1-21.
    [54] Akimoto J., Gotoh Y., Oosawa Y.. Synthesis and structure refinement of LiCoO_2 single crystals [J]. Journal of Solid State Chemistry, 1998, 141(1): 298-302.
    [55]陈德钧.离子最有希望的阴极材料LiNiO_2 [J].电池, 1997, 27(5): 234-237.
    [56]郭炳尡,徐徽,王先友等.离子电池[M].长沙:中南大学出版社, 2002: 101-102.
    [57] Andersson A. S., Thomas J. O.. The source of first cycle capacity loss in LiFePO4 [J]. Journal of Power Sources, 2001, 97-98(5): 498-502.
    [58] Whittingham M. S.. Lithium batteries and cathode materials [J]. Chemical Reviews, 2004, 104(10): 4271-4302.
    [59]钟辉,周燕芳,许惠.层状LiMnO_2正极材料的研究进展[J].化学通报, 2003, 66(7): 449-453.
    [60]曹四海,王志兴,李新海等.固相法制备层状LiNi0.5Mn0.5O_2的研究[J].电池工业, 2006, 11(3): 178-181.
    [61]唐致远,杨光明,王倩. 5 V离子电池材料LiNi0.5Mn0.5O4改性研究现状[J].材料导报, 2007, 21(6): 36-38.
    [62] Ohzuku T., Makimura Y.. Layered lithium insertion material of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 for Lithium-Ion Batteries [J]. Chemistry Letters, 2001, 7: 642-643.
    [63] Koyama Y., Tanaka I., Adachi H., et al. Crystal and electronic structures of superstructural Li1-x[Co_(1/3)Ni_(1/3)Mn_(1/3)]O_2(0≤x≤1) [J]. Journal of Power Sources, 2003, 119-121: 644-648.
    [64] Koyama Y., Yabuuchi N., Tanaka I., et al. Solid-state chemistry and electrochemistry of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for advanced Lithium-ion batteries [J]. Journal of Power Sources, 2004, 151(10): 1545-1551.
    [65] Whitfield P. S., Davidson I. J., Cranswick L. M. D., et al. Investigation of possible superstructure and cation disorder in the lithium battery cathode materials LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 using neutron and anomalous dispersion powder diffraction [J]. Solid State Ionics, 2005, 176(5-6): 463-471.
    [66] He Y. S., Ma Z. F., Liao X. Z., et al. Synthesis and characterization of submicron-sized LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 by a simple self-propagating solid-state metathesis method, Journal of Power Sources, 2007, 163(2): 1053-1058.
    [67] Myung S. T., Lee M. H., Komaba S., et al. Hydrothermal synthesis of layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 as positive electrode material for lithium secondary battery [J]. Electrochimica Acta, 2005, 50(24): 4800-4806.
    [68] Shaju K. M., Subba Rao G. V., Chowdari B. V. R., et al. Performance of layered Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as cathode for Li-ion batteries [J]. Electrochimica Acta, 2002, 48(2): 145-151.
    [69] Cho T. H. , Park S. M., Yoshio M., et al. Effect of synthesis condition on the structural and electrochemical of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 prepared by carbonate co-precipitation method [J]. Journal of Power Sources, 2005, 142(1-2): 306-312.
    [70] Cho T. H., Shiosaki Y., Noguchi H.. Preparation and characterization of layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 as a cathode material by an oxalate co-precipitation method [J]. Journal of Power Sources, 2006, 159(2): 1322-1327.
    [71]施秀娟.锰、铬离子对镍钴酸掺杂效应的研究[D].北京:清华大学, 2006.
    [72] Park S. H., Yoon C. S., Kang S. G., et al. Synthesis and structural characterization of layered Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathode materials by ultrasonic spray pyrolysis method [J]. Electrochimica Acta, 2004, 49(4): 557-563.
    [73] Li D. C., Takahisa M., Zhang L. Q., et al. Effect of synthesis method on theelectrochemical performance of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 [J]. Journal of Power Sources, 2004, 132(1-2): 150-155.
    [74] Marie K., Marek M., Venkat S., et al. Studies of local degradation phenomena in composite cathodes for lithium-ion batteries [J]. Electrochimica Acta, 2007, 52(17): 5422-5429.
    [75] Li H. J., Chen G., Zhang B., et al. advanced electrochemical performance of Li[Ni_(1/3)-xFexCo_(1/3)Mn_(1/3)]O_2 as cathode materials for lithium-ion battery [J]. Solid State Communications, 2008, 146(3-4): 115-120.
    [76]唐爱东,王海燕,吴晓等.掺杂镍钴锰氧材料的合成及电化学性能[J].电源技术, 2007, 31(12): 959-962.
    [77] Ding Y. H., Zhang P., Jiang Y., et al. Effect of rare earth elements doping on structure and electrochemical properties of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 for lithium-ion battery [J]. Solid State Ionics, 2007, 178(13-14): 967-971.
    [78]其鲁,闻雷. LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2-zFz正极材料的合成[J].电源技术研究与设计, 2006, 30(8): 653-656.
    [79] Yang Z., Li X. H., Wang Z. X., et al. Surface modification of spherical LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 with Al2O3 using heterogeneous nucleation process [J]. Transactions of nonferrous metals society of China, 2007, 17(6): 1319-1323.
    [80] Peng Z. D., Deng X. R., Du K., et al. Coating of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode materials with alumina by solid state reaction at room temperature [J]. Journal of central south university of technology, 2008, 15(1): 34-38.
    [81] Li D. C., Kato Y., Kobayakawa K., et al. Preparation and electrochemical characteristics of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 coated with metal oxides coating [J]. Journal of Power Sources, 2006, 160(2): 1342-1348.
    [82] Lin B., Wen Z. Y., Han J. D., et al. Electrochemical properties of carbon-coated Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathode material for lithium-ion batteries[J]. Solid State Ionics, 2008, 179(27-32): 1750-1753.
    [83]苏继桃,苏玉长,赖智广等.共沉淀法制备镍、钴、锰复合碳酸盐的热力学分析[J].硅酸盐学报, 2006, 34(6): 695-698.
    [84] Zhang P. W., Yokoyama T., Itabashi O., et al. Recovery of metal values from spent nickel–metal hydride rechargeable batteries [J]. Journal of Power Sources, 1999, 77(2): 116-122.
    [85]彭忠东,杨建红,邹忠等.共沉淀法制备掺杂氧化压敏陶瓷粉料热力学分析[J].6(3-4): 115-120.无机材料学报, 1999, 14(5): 733-738.
    [86]李梦龙.化学数据速查手册[M].北京:化学工业出版社, 2003:136-138.
    [87]何显达,郭学益,李平等.从人造金刚石触媒酸洗废液中回收镍、钴和锰[J].湿法冶金, 2005, 24(3): 150-154.
    [88]黄华江.实用化工计算机模拟--MATLAB在化学工程中的应用[M].北京:化学工业出版社, 2004: 41-50.
    [89]潘履让.固体催化剂设计与制备[M].天津:南开大学出版社, 1993: 71-73.
    [90] Lee M. H., Kang Y. J., Myung S. T., et al. Synthetic Optimization of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 via Co-precipitation [J]. Electrochimica Acta, 2004, 50(4): 939-948.
    [91] Li H. J., Chen G., Zhang B., et al. Advanced electrochemical performance of Li[Ni_(1/3)-xFexCo_(1/3)Mn_(1/3)]O_2 as cathode materials for lithium-ion battery [J]. Solid State Communications, 2008, 14
    [92]李春霞. LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的制备与掺杂改性[D].长沙:中南大学, 2007.
    [93]黄原君.离子电池正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的合成及改性研究[D].湘潭:湘潭大学, 2007.
    [94]禹筱元.层状LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2与改性尖晶石LiMn2O4的研究[D].长沙:中南大学, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700